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Abstract— The alignment distance is a recently introduced
(differential-geometric) distance on the manifold of LTI systems
of fixed order n and output-input dimension (p,m). In this
paper, we formulate model order reduction for discrete-time
LTI (MIMO) systems in terms of the alignment distance. The
intuition behind our formulation is to consider systems of
orders lower than n as boundary points of the mentioned
manifold in an appropriate ambient space, and the goal is to
find a system of order at most r (on the boundary) closest
to a given system of order n, where closeness is measured in
the alignment distance. We introduce an algorithm for this
minimization problem and give some a-priori error bounds in
terms of the Hankel singular values of the system. Interesting
relations and resemblances emerge with the popular balanced
truncation reduction, which is a method not based on any
optimality criterion. We show that in certain cases (but not
always) balanced truncation provides a good approximation
to reduction based on the alignment distance. In fact, our
approach can be considered as a principled attempt to put
balanced truncation in an optimization framework, and in
doing so we allude to a shortcoming of balanced truncation
that highlights an advantage of our approach. The proposed
approach is general and can be extended to other classes of
systems.

I. INTRODUCTION

Model order reduction is an important and old problem in
control theory with applications in the analysis, design, and
implementation of systems and controllers. Despite its long
history and great importance, the definite solution to it has
proven to be elusive. This is partly due to the fact that the
problem itself is not quite well defined. In its simplest form
the problem can be expressed as follows: Given a linear time-
invariant (LTT) system of order n find another system of order
r < n that best approximates the system in “an appropriate
sense.” An important challenge is that the appropriate sense
highly depends on the application or even the designer.

An ideal model order reduction method should have a
rather long list of desirable (often contradicting) properties.
For example, it should be theoretically sound yet con-
ceptually simple, have nice control-theoretic features, be
computationally friendly, and work well in practice, i.e.,
be effective in achieving the good reduction the designer
expects. Certain approaches are quite natural, e.g., the L2
model order reduction where the closest (in the L?-norm
between impulse responses) system of order 7 is sought [28],
[17]. However, this approach results in a highly nonlinear
non-convex optimization. Another issue with this approach
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is that it is only applicable to stable systems, whereas one
often wants to reduce the order of unstable systems in a
way that any design (e.g., a stabilizing controller) applied
to the reduced-order system works well for the original
system. In fact, a desirable control-theoretic property is
robustness, especially robustness of stability under feedback
(see [10], [19] on how the sense of approximation can relate
to robustness of stability under feedback). In that sense
the gap metric would be an ideal candidate distance to
formulate model order reduction in terms of [8]. However,
model reduction in terms of the gap metric again results in
highly complicated algorithms (see [11], [24] and references
therein).

Among existing algorithms, Moore’s diagonally[ﬂ balanced
truncation [23] seems to be the most popular algorithm in
practice. This is presumably mainly due to its simple and
intuitive framework, ease of implementation, and good or ac-
ceptable practical results. However, this approach also lacks
a sound theoretical foundation (see e.g., Section V in [23]
for the author’s view on “theoretical gaps” in the approach),
is not applicable to unstable and stable systems seamlessly
(although some workarounds have been proposed [22]), and
more importantly has some shortcomings in capturing the
dynamics of the model (this issue is really linked to the first
criticism, see [20] and our discussion in . Overall, an all-
around solution to model reduction remains highly elusive.
The reader is referred to [26] and [4] for various aspects of
the problem of model reduction.

In this paper we try to address model order reduction from
a new point of view with the hope of addressing some of the
shortcomings in this area. The proposed approach is based
on a recently introduced distance on the manifold of LTT sys-
tems of fixed order and size called the alignment distance [2].
The core idea behind this new distance is to find the change
of basis that best aligns the state-space realizations of two
given LTI systems and then compare the aligned realizations
to get a distance between the systems (see Figure [I)). Its
derivation is based on some basic notions from differential
geometry. The setting in which the alignment distance can
be defined is quite general, e.g., deterministic, stochastic,
discrete or continuous-time systems can be considered (see
[2], [3], [1]). So far we have used this distance mainly
for applications in comparing linear dynamical systems in
modeling high-dimensional time-series data such as video

'In the paper we will be dealing with a more general form of realization
balancing where the controllability and observability Gramians are equal
but not necessarily diagonal; hence we distinguish between balancing and

diagonal balancing (see {III-A)



sequences [1]. The goal (and hope) of this paper is to
show that the alignment distance can be useful in solving
important control problems, e.g., model order reduction can
be expressed naturally in the alignment distance.

When compared with existing approaches, our approach
has multiple advantages, it has a sound theoretical foun-
dation, it can be applied to unstable and stable systems
as well as to stochastic systems, it is especially suited
for Multi-Input Multi-Output (MIMO) systems, and it is
conceptually simple and naturalE] Also, as we show, it can
alleviate a shortcoming of the popular diagonally balanced
truncation method. Nevertheless, the computational aspect of
our approach is not ideal (mainly the optimization problem
involved is not convex, thus a-priori it might have local
solutions and our algorithm may converge to such a solution).
We should recall, however, that many model order reduction
methods based on optimization also deal with non-convex
optimization and among them only the Hankel norm method
remarkably finds in closed-form all the (globally) optimal
solutions [12]. We stress that the alignment distance and our
approach in model reduction differ substantially from most
traditional “approximation senses” and existing approaches;
however, as mentioned before, the introduced model reduc-
tion method is closely related to the balanced truncation
algorithm.

The remainder of this paper is organized as follows. In
we recall some basic definitions and establish notations. In
gIlll we give some preliminaries about the alignment distance.
We try to avoid differential-geometric discussions and rely on
intuition. In we formulate the model reduction problem
in the sense of the alignment distance. In we give
an algorithm for solving the model reduction problem. In
gVI| we give an a-priori error bound on the approximation
error (which resembles the well-known bound of Enns [9]).
We also discuss connections with the diagonally balanced
truncation method and a shortcoming of this method, which
our approach alleviates. In a typical model reduction
problem is solved as an example and finally concludes
the paper. Due to space limitation some more theoretical
aspects of the results (including some of the proofs) and
more discussions will not appear in this paper.

II. BASICS AND NOTATION

We consider a deterministic discrete-time LTI system M
of order n and size (p,m) (i.e., m-dimensional input and
p-dimensional output) described by:

xy = Axy_1 + Buy
(1)
Yt = Cxtv

where R = (A, B,C) € Ly pp = R x RMPXM x RPX7
is called a realization of M. Here, u; is the m-dimensional

2To be precise, in this paper we will not study all the enumerated aspects.
However, we mention that the formulation in[[V]can be applied to both stable
and unstable systems but the algorithm presented in is solely applicable
to asymptotically stable systems. In a later work the other case will be
addressed. Similarly the alignment distance for stochastic systems has been
introduced [3] and model order reduction in this case can be pursued along
the same lines presented here; however, the details will appear elsewhere.

input assumed to be a deterministic signal stimulus. Given a
positive integer < n, partition the matrices conformably
as A = [41 4], B = [B'] C = [Cu Ci2], where
A11 is r x r. We call R11 = (A1173117011) and R22 =
(Asz, Ba1,C12) the top (or 11) and the bottom (or 22)
sub-realizations of R, respectively. For a (possibly unstable)
realization denote by Oy = [CT,(CA)T,... (CA=1)T]T
and C; = [B,AB, ..., A*"1B] the observability and con-
trollability matrices of order k (n < k < oo). Here T denotes
the transpose operation. The observability and controllability
Gramians of order k are defined as W, = O;Ok and
Wer = CkC,I, respectively. For k = oo (in which case we
write simply W, and W) asymptotic stability of A is needed.
For an asymptotically stable realization R the controllability
and observability Gramians satisfy the Lyapunov equations

W,=BB'" + AW_AT, (2a)
W,=CTC+ ATW,A. (2b)

The Hankel singular values of the system M (which are
invariant under the state-space change of coordinate) are
the square roots of the eigenvalues of W,W,, which we
denote by A\; > Ag... > \,. We denote the diagonal matrix
comprised of these singular values as A. If the realization R
is diagonally balanced [23] then we can assume W, = W, =
A. Given a diagonally balanced realization R, we always
assume that the singular values are decreasingly ordered and
we call Ry; and Rgo the strong and weak sub-realizations,
respectively (see [23] for reasons for this naming).

III. PRELIMINARIES ABOUT THE ALIGNMENT DISTANCE

The reader is referred to [2] for a detailed and rigorous
introduction to the alignment distance. Here, we rely more
on intuition. We explicitly distinguish between a realization
R and M, the system realized by R, which has an equivalent
class of realizations all related by a change of coordinates
under the group of nonsingular n X n matrices denoted by
GL(n). Specifically, let us denote the change of coordinates
or the so-called similarity action by o, where for any P €
GL(n)

PoR= (P 'AP,P'B,CP). (3)

Then R and P o R realize the same system from an input-
output point of view. In fact, each LTI system of the form
(T) has an equivalent class of realizations. In other words the
space of systems can be considered as the guotient space of
the space realizations under the above action of the group
GL(n). We write Ly, np = Lmnp/GL(1).

It turns out that the space L,,, , is not a nice mathe-
matical objet (e.g., it is not a smooth manifold). However,
if we restrict attention to the space (manifold) of minimal
realizzgions E“n‘lif‘n)p or asymptotically stable minimal realiza-
tions E‘,‘};ﬁ‘,’zp, then their respective quotignt spaces (namely
E",,‘Lif‘n’p = Z‘ﬁjf‘nyp/GL(n) and E",,‘jf‘ﬁfp = Z‘ﬁj{‘;jfp/GL(n)) are
smooth manifolds of dimension n(m + p). Here smoothness
comes from the usual notion of smoothness in the Euclidean

space L np. The realization-space pairs (X5, ¥mn )
and (Xpina ymina ) form an object called principal fiber



bundle with structure group G L(n). Defining a (group action
induced) distance on the bottom or base space X of a generic
principal bundle (3, ) with structure group GL(n) is con-
ceptually simple: Given a GL(n)-invariant distance ds on
the top space one defines dx (M1, M) = inf peg(n) ds(Po
Ry, Ry), where R;(i = 1,2) is any realization (or representa-
tion) of M;. The distance ds(Po Ry, Ry) is G L(n)-invariant
if d(P o Ry, P o Ry) = dg(R1,Ry) for VP € GL(n)
and VR, Ry € 3. The simple intuition here is to align
the two realizations (bring them as close as possible) by
sliding one along the fiber it belongs to (see Figure [T). The
main difficulty is that (due to non-compactness of GL(n))
constructing such a GL(n)-invariant distance is difficult and
complicated, although not impossible (see [2] and references
therein). Our approach is principally the same but first we try
to reduce the group GL(n) (in a specific sense) to a compact
group as described next.

A. Standardization and Balancing of Realizations

Working with a noncompact group such as GL(n) brings
about various theoretical and computational challenges. One
might wonder if we could somehow replace GL(n) with
its compact subgroup O(n), the subgroup of orthogonal
matrices. The answer is positive and in a general setting
it is called reduction of structure group, a notion which
has a precise meaning in differential geometry [21]. In the
context of control applications, certain notions of realization
balancing can be linked to the reduction of structure group
[2]. However, the standard diagonal balancing as defined by
Moore [23] and others does not conform with the reduction
of structure group. Nevertheless, a slightly more general form
of balancing as introduced in [15] and [27] does. Here,
one makes the controllability and observability Gramians
equal but does not enforce diagonality. Define the set of
asymptotically stable balanced realizations as

—~—min,a,bl Smin.a
0%, np =1{(A,B,C) e SR W =W, =0}, (4)
and the set of k-balanced realizations (k > n) as
——min,bl,k Smin
Ozm,mp = {(A,B,C) € Em7n,p|WO,/€ =Wk = 0}7 )

where X > 0 means that the matrix X is positive definite.

——min,a,bl
Notice that if R belongs to O, , . so does () o R for

every @ € O(n). In fact, the reverse can be shown too, if
—— min,a,bl

R and P o R belong to 0% for some P € GL(n),

——min,bl,k

then P € O(n) The same holds for OX%

——min,a,bl ——bl,k
show that OX and 0%

m,n,p

mon,p - ONE can

are smooth submanifolds

m,n,p m,n,p
min,a min : :
(subbundles) of 7%, and X700, . {fspectlvely. More im-
. —~—min,a, .
min,a — min
portantly, we have X% = 0%, . /O(n) and X3, =

——min,bl,k . . .
0%, np /O(n), where equality is understood in the sense

of diffeomorphism (see [2] for more details). Informally, we
could get rid of the non-compact part of GL(n) without caus-
ing any topological complications. This latter fact enables us

3This is an important property whose proof is not trivial and is essentially
equivalent to the notion of reduction of structure group.

to easily define group action induced distances on the space
of LTI systems (the bottom space) using commonly used
distances on the space of realizations (the top space). Other
forms of balancing and reduction of structure are possible
(see [2]). We call all these transformations standardization
or orthogonalization of the realization space or bundle.

1) More on Balancing: Notice that we explicitly dis-
tinguished between diagonally balanced realizations (the
often used form of balancing) and balanced realizations.
A diagonally balanced realization is balanced in this more
general sense but not vice versa. diagonal balancing is not a
topologically natural operation and, in general, has no useful
topological meaning e.g., the set of diagonally balanced
realizations does not form a smooth submanifold of the
total realization bundle E“n‘jf‘gfp. In diagonal balancing (or in
diagonally balanced canonical forms, see e.g., [25]) one tries
to remove the group action ambiguity from realizations by
assigning exactly one realization to every system. However,
an important topological fact is that no smooth canonical
form on the manifold E‘,‘,ljf‘n’p (or Zfr‘f%“,p) exists (when
min(m,p) > 1, see [14], [7]). Therefore, the assignment
cannot be smooth globally and at certain points it loses conti-
nuity (the non-uniqueness of diagonally balanced realizations
has been a source of complication since the early days [23]).
The unfortunate result of this topological obstruction is that
one cannot define a bonafide distance between systems by
simply comparing their (discontinuous) respective canonical
forms. On the other hand, as mentioned before, balanced
realizations form smooth submanifolds and they can be used
to define group action induced distances, which we call the
alignment distances.

B. The Alignment Distance

The alignment distance is a group action induced distance
which can be defined in a very general setting [2], [3].
However, here we limit ourselves to some specific choices.
The starting point is a unitary-invariant distance on the space
of realizations. For example, we consider the Frobenius norm
based distance:

di(Ri, Ry) = || A1 — Ao|[3: + [|B1 — B[ + [|C1 — Cal 7,

(6)
where R; = (A;, B;, C;),i = 1, 2. Then given a standardized
realization space, the realization alignment problem is simply
defined as aligning two standardized realizations by an
orthogonal state-space change of basis so as to minimize

the above distance. Specifically we define:
Definition 1 (Alignment Distance): Let (OX, 1 ppXm.n.p)

. ——min,a,bl min.a ——min,bl,k min
denote either (O%,, , ,Z0%2) or (0%, ., X500 )
Let My and M; be two systems in X, , . The alignment
distance subordinate to (standardization) O, , , is defined
as

ds

My, M) = min d R1, R2), 7
monp (M1, Mo) = 1ot dp(Qo Ry, Ba),  (7)
where R;(i = 1,2) is any realization of M; in @mnp
The above minimization problem is called the realization
alignment problem subordinate to O%,;, ;, .



It can be shown that the alignment distance is a true
distance, i.e., it is symmetric, positive definite and obeys
the triangle inequality (see [2]). Computing the alignment
distance amounts to a non-convex optimization on the com-
pact manifold of orthogonal matrices. The problem actually
is closely related to (however more general than) the well-
studied Procrustes analysis appearing in statistics [13]. Using
tools from optimization on manifolds efficient algorithms can
devised, where the likelihood of finding a global minimizer
can be increased by using multistarting strategies or other
approaches (see [18], [1]).

Figure [T] depicts the steps in computing the alignment
distance: given two systems M; and M, (with possibly
non-standardized realizations) and the standardized sub-
bundle O, p,, one first standardizes the realizations

(e.g., via a diagonal balancing algorithm in the case of
—~—min, ,a,
(0%, np s Er,‘};“nap)) to get standardized realizations Ry and

R in the standardized subbundle @im’n,p, then one aligns
the two standardized realizations R; and R, i.e., solves (]Z])
by sliding one realization, say 2y with an orthogonal matrix
Q@ to the closest dg-distance from Rs, and then finds the
distance dx; (My, M3) =dp(Q o Ry, Ry).

m,n,p

Realization Space (Bundle) 5
Standardized (Orthogonal) Subbundle [

e mmm e

S
)
TS
&)
1 | = |
- -
Base (LDS) Space M,
Fig. 1. Computing the alignment distance between to systems M7 and
Mo, see [)

IV. MODEL ORDER REDUCTION IN THE ALIGNMENT
DISTANCE: PROBLEM FORMULATION

A. Boundary of the Manifold of Balanced Minimal Realiza-
tions

In mathematical terms, we want to extend the alignment
distance in (7) to the space of systems of order less than
or equal to n, i.e., we consider this space as the metric
completion of the manifold of systems of (minimal) order n.
Due to space limitation we leave a rigorous construction and
discussion (including topological aspects) to a later work,
and we follow a more applied and intuitive approach here.
The next proposition, whose proof is straightforward, shows
that the boundary points (taken in the distance dr) are simply

balanced realizations with singular Grammians.
min,bl,k

Proposition 2: Let O%
min,bl, k
of 0%

m,n,p

(k > n) denote the closure
min,a,bl

mn,p denote the closure of

m,n,p

in Em)mp and O%

min,a,bl

monp 0Ly, . Then we have:
——min,bl,k -
O%np =ARE Ly | Wor =Wep =0}, (8)
and
——min,a,bl
O%np ={RE /.Zm np | Wo =W, =0} )

The next proposition characterizes the realizations on the
boundary. The proof of the proposition is omitted due to
space limitation.

Proposition 3: (i) On the boundary of (’)Em,w, any
realization of minimal order not larger than r < n is of
the form @ o R where ) € O(n) and R = (A4, B, C) are of
the form

A= [All 0 :|’B: [Bu

0 A 0

——min,a,bl

|,C=[cuo], (0

(A1, B11,Cn) €
is balanced and Ay is asymptotically stable. If

mm
(i) On the
——min,bl,k . .
boundary of Ome,p any realization of minimal order

not larger than r is of the form (10} except that Ry, =

where the (sub-)realization R;; =
‘min,a,bl
ox

m,r,p

the minimal order is 7 then Ry; € O%,, , rp

_ _ _ ——min,bl
(A11,B11,C11) € OZmrp and if the minimal order is
——min,bl,k
exactly r then Ryy € O%,, . .

B. Model Reduction in the Alignment Distance

We define model order reduction in the alignment distance
as follows:
Definition 4 (Model Reduction in the Allgnment Distance):

Let (O p.n.p) Smon,p) denote either ((’)Emmﬂl ymina )

N m,n,p > “m,n,p
min,bl,
or (0%, » ,E“n‘;“np) Let M be an LTI system in X, ,,

with realization R € 0%, ,, . Then the r"-order model
order reduction in the alignment distance (subordinate to
OX iy n,p) is defined as

infoeo (), rdr(Q o R, R) (11)

where R is a realization of minimal order at most r on
the boundary of O%,, ,,, of the form in Proposition
Bl and we call such a realization a feasible realization. If a
feasible realization achieving the infimum exists we call this
realization the reduced order realization or the solution.
The following proposition (which could possibly be im-
proved) gives a-priori existence of solution(s) to the problem:

Proposition 5 (A-prtorl existence of solutioni:

(i) In the
bl k
case of (OEI:nnnn 5 > Smn ) the problem in (11) always has

a solution, i.e., there exists ab{ekalization R of order at most
mln
7 on the boundary of O%,

——min,a,bl . . ..
In the case of (0%, , ,Xm»2 ) a realization achieving
the infimum always exists, and such a realization is either
asymptotically stable (and solution to the problem) or it is

only stable (i.e., it has pole(s) on the unit circle).
——min,bl, k

Proof:  For (i) first note that 0%, ,
set in L, (hence a complete metric space). Also note

achieving the infimum; (ii)

is a closed



that if R = (A, B,C) is a feasible realization for which
one of ||A||r, |B||r, or |C||F is larger than 2(||Allr +
|Bllz + ||C||), then dr(R,R) > dr(R,0). This means
that the feasible set for the minimization problem (I1I)) can
be considered as a closed and bounded (hence compact) set
(note that O(n) is compact). Thus a solution achieving the
infimum exists. For (ii) the situation is similar in terms of
boundedness of the feasible set; howgver, in this case the
set of feasible realizations is open in L, , , with boundary
points being realizations which are limits of realizations in

min,a,bl

m.n,p and have poles on the unit circle. The statement

is a consequence of this fact. [ ]

Strictly speaking the model reduction problem above is

not expressed explicitly in terms of the alignment distance

between systems (primarily for convenience). However, if we

define the quotient space Xy, . = OXpn.n.»/O(n), then the
model reduction problem can formulated as

M, M), (12)

min ds,

M P

where M is a system of order at most 7 (on the boundary
of ¥ np) and ds  (-,-) is the alignment distance on

Em,nﬂp-

V. AN ALTERNATING MINIMIZATION ALGORITHM:
ALIGN, TRUNCATE, & PROJECT (ATP)

In this section we give an algorithm for solving the model
order reduction problem (1) using alternating minimization

between @ and R = ([Agl Aom] [ B 0], [G1]). We limit
our derivation to ((f’)\imm’d’b
case to a later work.

Let Q and R € 0%, »,p solve the minimization in .
If @ is fixed in the minimization ming dp(Q o R, R), where
R is in the form , then we must have Az = (Q T AQ)20.

Note that the top sub-realization of R, Ri1, solves

dF((Q © R)n, Rn)-

T
min,a
monp > Smnp)s and leave the other

min,a,bl

min
——min, a,bl

R11€0%

13)

m,r,p

In the above we are slightly abusing the notation since here
dp(-,-) is defined on the truncated realizations (of order r
instead of n as in (6)). The above problem is nothing but the
projection (in the dp distance) of the truncated part or top
sub-realization of () o R (namely, (Q o R)11) onto the space

——min,a,bl

0%, ., - The scheme of the iterative algorithm is clear
now: We start with an initial guess R°, solve the alignment
problem to find Q*, truncate Q* o R° to get the (Q' o R%)1;

——min,a,bl
and A3, in R', then project (Q" o R%);; onto O%,, . to
get R}, and repeat the three steps to generate R¥, (k > 1)
till convergence. We call this algorithm the align, truncate,
and project (ATP) algorithm.

The main computational challenge here is the step of
projection onto the space of balanced realizations (i.e.,
solving @I)). An important fact is that, in discrete-time,
sub-realizations of a balanced realization (even if diagonally
balanced) are not, in general, balanced. It is interesting to

recall that in the continuous-time case and for a diagonally
balanced realization the sub-realizations are balanced (see
[23]). Therefore, in this case, we need to device an al-
gorithm for the projection. Nevertheless, we mention that
in certain cases no projection might be needed, e.g., for
balanced realization R, if the A matrix is symmetric then
we have A;; = AL, BBT = CTC, which implies
B11Bf, = C{,C11, which in turn implies that for Ry, =
(A11, B11, C11) observability and controllability Grammians
are equal (consider 2| with W, = W, and A symmetric). As
a practical note, also we mention that in some cases the first
step of alignment might give a good enough approximate
solution; or as an approximation one might try to simply
re-balance the truncated realization using standard balancing
(change of coordinate) algorithms (but such a re-balancing
obviously need not to coincide projection (13).

A. Projection Algorithm

Here, we use the alternating direction method of multiplies
(ADMM) and augmented Lagrangian to solve (see [,
Section 4.2] and [6]). We relax the (asymptotic) stability
constraint on the sought realization R, ie., we solve a
constrained optimization in which the only constraint is
equality of Gramians induced from the discrete-time Lya-
punov equations (2)). Note that the Lyapunov equations for
Gramians might have solution even if the system is unstable
and the actual Gramians do not exist. In our experiments
all the found projections from asymptotically stable systems
remain asymptotically stable and we conjecture that this
relaxation generically yields the exact solution.

We consider the constraint WC—WO = 0 and the following
augmented Lagrangian (notice the re-labeling of variables,

cf. (13))

Fy(R;R,Y) = d3(R, R) + g,(R) (14)

where

9 (R) = (YT (We = Wo)) + EIWe = Woll3: - (15)
where Y € R" " is the Lagrange multiplier, p > 0 is the
penalty parameter, WO(R) and W, are the Gramians of the
sought balanced realization R = (A, B, C)). Each itertation
of ADMM consists of the following internal minimization
steps and the Lagrangian and penalty parameter updates:

1) A+l = argmin 3 f1(A; B!, CY), where f,(A; B,C) =

|4~ A%+ g,(4,B',CY),

2 Bl = argming fo(B; A*1,CY),  where
fa(B; A, C) = ||B = B3 + g (~Al+17~37cl)
3) ¢! = argming f3(C; A" B!, where

fd(év Av B) = ”C - é”%‘ + gpl (AH_l: Bl+17 é)
4) y U+ — y (@ +pl(Wc(l+1) _ Wélﬂ))
5) increase p! to p!*t! (e.g., p't! = Bp! where B > 1 is
a constant).
Generally (i.e., in a non-convex problem) p' needs to gradu-
ally increase to pass an unknown threshold (see [5, Section
4.2]). For the internal minimization steps we use simple gra-
dient descent with Armijo’s line search (although, generally,



for multiplier methods a higher accuracy method such as the
Newton method is prescribed [5]). To perform the gradient
descent we need to find the gradients of the functions A
f1(A;B,C), B — fo(B;A,C), and C — f5(C;A,B)
defined above. We briefly describe the basic ingredients,and
more implementational details will appear in the actual code
which is available onhneE] We need to calculate the derviates
of the Gramians W, and W, with respect to matrices A,
B, and C. By using standard vectorization and Kronecker
product ® we can get the following relations from which
the desired gradients can be found easily:

— . —
AW =12 —A @A) (AW, ® I,,)+ (I, ® AW,)H,,)dA

_> ~ - - - ﬁ
AW =12~ AR A) " (1,0 ATW,)+(ATW,®1,) Hnp, )dA

— . - - —
AW =(I,2—A®A)"((B® I,,)+ (I, ® B)Hy,,,)dB
— . . - - —
AW =12~ AT @ AT) (I, ® CT)+ (CT @ I,,) Hpy, ) dC
(16)
Here H,,,, is the mn xmn commutation matrix, i.e., it solves

=
X' = Hmn} for any m x n matrix X, A denotes the

column-wise stacked (vectorized) version of matrix A, and
dA is the so-called differential of A (a matrix of the same

size as A). In each of the above equations the matrix that
relates the vectorized differential on the right hand-side to the
vectorized differential on the left_l}and-side is the respective

derivative, e.g., the derivative dWe s the n? x n? matrix
- - e . dA ___ _
(Ina— ATQ AN (I, @ ATW,) + (ATW, ®1,,)Hyy, ), and

so forth. As an example the gradient of f1(A; B, C) with
respect to A can be calculated as:

. v,
grad; f1(4; B, C) = XT>+7T<q o)+
dA dA
dW d->V~V AW, aw,
—> o c
o( =) - Wol=- - =)
dA dA dA dA
. e =
Hence, A can be updated as AT « AT —

pgrad z f1(4; B,C) where the step-size ;1 can be choosen
according to Armijo’s rule (or any other line search method)
to ensure decrease at each update. Similar updates for B
and C' can be derived. With this all the ingredients needed
to implement the steps of the ADMM algorithm described
above are available.

VI. A-PRIORI BOUNDS AND COMPARISON WITH
BALANCED TRUNCATION

Certain a-priori bounds on model reduction error (mea-
sured in L>° norm of the error) for methods such as balanced
truncation and Hankel norm approximation have appeared
in the literature and proven useful (see e.g., [9], [12], [16]).
These errors bounds have a simple form in terms of the sum
of the n—r smallest singular values of the system. However,
it should be noted that there is no sense of optimality in
some of these bounds, i.e., in the case of the Hankel norm

4Code for this algorithm is available at http://vision. jhu.edu/
code/| Code for calculating the alignment distance based on the Jacobi
method [18] is also available from the same website.

approximation the bounded error is measured in a sense
(L°°) which is different from the original optimization sense
and in the case of balanced truncation, in fact, there is no
optimization sense. Here, we derive an a-priori bound on
the alignment distance between reduced order system and
the original system for model reduction in the alignment
distance.

Proposition 6: Let Ay > --- > X\. > --- > )\, > 0 be the
singular values of M € E“nlbmn“p Let M be a best r'" order
system M approximation of M in the alignment distance

dimln.a , then we have

m,n,p

dfmin,a (M, M) S

m,n,p

Z/\ 1+

i=r+1

) + P_Error, (17)

Whel‘e dﬂ]in,a
Em""-ap

and dp, defined in and P_Error is error

th order diagonally balanced truncated
min,a,bl

is the alignment distance subordinate to

min,a,bl
m,n,p
In projecting an 7

realization of M onto 0%, , .

Proof: The main idea of the proof is to bound the
error when evaluated for the diagonally balanced truncation
of M. Let R and Ry be, respectively, a diagonally balanced
realization of M and the r** order truncation of R in the
form (L0) but where the top sub-realization in Ry is not
balanced. Then let RT b1 be the prOJected version of Ry i.e.,
where the top sub-realization of RT b1 18 the dpg-projection

——min,a,bl
of the top sub-realization of Ry onto (’)Emﬂ,’p (i.e., the
solution to (I3). Then, using the triangle inequality, we have
dimin,a (M, M) < dF(R7 RT,bl) SdF(R, RT) (18)
m,n,p
+ dp(Rr, Rrpi)

Note that dr(Rr, Rrp) is the second term on the right
hand side of (17). Next we bound dp(R, Rr). Note that
dp(R, Rr) < [[Aw2||% + [[A21]|% + | Bail[F + [|Crz % Let
A = [/\01 AOQ] be the diagonally balanced Gramian of M
(singular values put in decreasing order). Obviously (from
the Lyapunov equations (2)) Bai By < Az, C1207, < Ag,
A21A1A21 = Ag, and A12A1A12 = AQ. From the first two
we have || Bay [|% < D00, 1 Ai and [|Ci2|7 < [|As||p. From
the last two we have \,Az;Ag; < Ag and N\ ALA[, =
Alz, agd hence ||A9[|% < %ZZ v Aioand [[Agpl|E <
3= 2izrt1Ai- The result then follows from adding these
bounds and taking square root. [ ]
This result is not quite satisfactory since the bound on the
projection error is not explicitly given. However, note that,
as mentioned above, in certain cases the projection error can
be assumed to be small or even zero (e.g., in when A is
symmetric). Nevertheless, we conjecture that this result can
be improved and the projection error term also could be
bounded in terms of the Hankel singular values, but we leave
further developments to a later work.

A. Connections with Diagonally Balanced Truncation

The first term in the bound (modulo the square
root) resembles the well-known bound in the L°° norm


http://vision.jhu.edu/code/
http://vision.jhu.edu/code/

for diagonally balanced truncation methods (cf. [16] for the
result in the discrete-time case). In fact, in deriving the bound
we used diagonally balanced truncation as a suboptimal
solution to bound the error.

As the above discussion suggests, in certain cases Moore’s
diagonally balanced truncation can be considered as an
approximate solution to model reduction in the alignment
distance, and in fact our algorithm may be initialized with
such a solution. To understand the situation better consider
the problem (IT)) and for the sake of argument assume that
R is a diagonally balanced realization of minimal order r,
i.e., a realization of the form (10). In this case both R and
the sought realization R are in the same form and a global
solution to is clearly R = R and Q = I. The key
point is that in this case the norms of By; and Cis in
the bottom or weak sub-realization of R are zero and the
optimization which involves three terms in d%. decouples
and the global error of zero can be achieved. Therefore, one
expects that as long as the mentioned norms are close to
zero truncation of a diagonally balanced realization will be
a good approximation of model reduction in the alignment
distance. The interesting point is that a similar phenomenon
in the case of continuous-time systems has been reported
in the literature. Specifically, in the continuous-time case
the norms of the rows of B and those of the columns of
C are equal and they are called balanced gains [20]. As a
shortcoming of diagonally balanced truncation, it has been
argued that diagonally balanced truncation is blind to these
gains and may result in poor L? norm errors [20]. The issue
is that the so-called weak sub-realization may have large
balanced gains despite having small singular values, and such
a sub-realization can influence the behavior of the overall
system significantly (a fact which renders the labels ‘weak”
and ‘strong” somewhat bad aliases).

1) The Role of Alignment (Change of Basis): The next
example shows that diagonally balanced truncation can result
in significantly worse errors than what actual minimization
of the alignment distance gives.

Example 7: Consider the diagonally balanced realization
R=(A,B,C):

A= [ 550010 0sasr ] - B =[§:8838], C = [0.1026 0.9007]..
(19)
where

Wo = Wc =A= [88"6345 9.9%31] (20)

Note that in this case since A is symmetric alignment
distance reduction does not need a projection step. If we
use Moore’s truncation of the diagonally balanced realiza-
tion as an approximation we get the reduced order system
with realization Ry = ([ ) Qa7 ], [21926], [0.1026 0])
((Rr)11 being the minimal first order solution) and er-
ror of d,y = 1.2783, whereas with the alignment dis-
tance based reduction we get the first order system
Rarp = (%% 5], [19950], {10050 0]) and error
darp = 0.0059, which is significantly lower than dy,.

In this example, the Hankel singular value of the strong
sub-realization is much larger than that of the weak sub-

realization, but since the so-called balanced gains of the
weak sub-realization are larger than those of the strong
sub-realization, simple truncation does not give a good
approximation. Here, in analogy, we call the norms of By
and C75 as balanced gains. In the example, we indicated
the order reduction errors in the alignment distance. If we
calculate the L? error norm we have dy,r2 = 3.1576
and darp,z,2 = 0.5631, which indicates that the alignment
distance model reduction gives better error in this example.
However, since our original criterion is different from L2 this
situation does not hold in general. Recall that although a zero
(or small) alignment distance between two systems implies
zero (or small) distance between their impulse responses,
the alignment distance itself is not computed based on
direct comparison of the impulse responses. Nevertheless,
finding relation between input-output based distances and the
alignment distance is a relevant question.

This example shows that in the diagonally balanced form
(ordered according to the Hankel singular values) still with
a new change of coordinates one can reduce the model
reduction error significantly. Informally speaking, although
the starting point for the alignment distance model reduction
method could be a diagonally balanced realization, the step
of alignment (or finding the best state-space change basis)
in the method does not ignore the bottom (or weak) sub-
realization and if it has high balanced gains it could influence
the optimal solution. It should be noted that in the Hankel
norm based model reduction method a similar situation
happens [12], where the method starts with a diagonally
balanced realization and the weak sub-realization influences
or enters the optimal solution.

VII. SIMULATIONS
In this section we apply the ATP algorithm to a MIMO
system of order n = 5 and output-input dimension (p, m) =
(2,2) to obtain a system of order » = 2. Consider a system
M with a diagonally balanced realization R = (A, B, C):

—0.6326 —0.3671 0.0198 —0.1399 —0.0390 0.7301 0.9050
0.4070 0.4639 0.3820 —0.1468 —0.0631 0.8392 0.4398

A= 0.1255 0.0304 0.1101 —0.1152 0.1131 , B = —0.6782 0.8016 s
0.1270 —0.1599 —0.1814 0.4217 —0.2466 0.0787 0.0659
—0.0228 0.0167 —0.0172 —0.0078

21)

C = 0.3269 0.3338 —0.9272 —0.1553 —0.0299 (22)
— [ 1.0809 —1.0186 0.0223 —0.0596 —0.0170

0.0841 0.3995 —0.2895

and

The singular values of the system are (A} = 2.6951, Ao =
1.9341, A3 = 1.1637, Ay = 0.1755, A5 = 0.0420). We run
the ATP algorithm with initial solution as the diagonally
balanced truncated realization. In the implementation we use
the algorithm in [18] to compute the alignment distance (the
alignment step). For the ADMM projection algorithm we use
initial value p = 10 and $ = 1.1. A simple Armjio step-size
selection ensures that at each iteration of the internal gradient
descents (as described in §V)) the cost is reduced and we used
a fixed number (I = 20) of iterations for gradient descent
in each subproblem of the ADMM projection algorithm. We
run a total K = 20 iterations of ATP. Figure [2] shows the
squared of the error in reduction in terms of K. The first
point in the graph is the alignment distance error in simply
using diagonally balanced truncation. As it can be seen in this



case, the reduction in the error beyond the initial diagonally
balanced truncation is not significant (although still tangible).
The output of the ATP algorithm i.e., the final reduced order
(r = 2) (balanced) realization is:
Auy = [0 0] B = (B39 %3580 = (8339 27500)
(23)
It is interesting to note that the reduced order system is
asymptotically stable like the original system. The singular
values of the reduced order system are \; 2.7233 and
Ay = 1.5454.

convergence of the ATP algorithm
2.25 T T T T T T T T T

model reduction error
N
o
&
.

1.95r 1

1.9r 1

185 . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20
iteration

Fig. 2. The performance of the ATP algorithm in an example.

VIII. CONCLUSIONS

In this paper we formulated the problem of model re-
duction in terms of the alignment distance for discrete-
time LTI systems. In fact, the problem formulation is quite
natural in this setting. We also indicated close a relation
between our approach and the popular diagonally balanced
truncation method. We derived an algorithm (called ATP) for
solving the problem. Several theoretical and computational
improvements are possible, which are part of our ongoing
research. In the future, we also plan to extend this approach
to other classes of systems and perform a comparative study
with other methods.

Acknowledgements. The authors are grateful to the review-
ers for insightful comments (especially about the proof of
Proposition [5] and Example 7).
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