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Abstract— We introduce a family of group action induced
distances on spaces of Linear Dynamical Systems (LDSs)
of fixed size and order. The distance between two LDSs is
computed by finding the change of basis that best aligns
the state-space realizations of the two LDSs, hence the name
alignment distance. This distance can be computed efficiently,
hence it is particularly suitable for applications in modern
dynamic data analysis (e.g., video sequence classification and
clustering), where a large number of high-dimensional LDSs
may need to be compared. Based on the alignment distance,
we also define a notion of average between LDSs of the same
size and order with the property that the order and in some
cases stability are naturally preserved. Various extensions to
the basic notion of alignment distance are also proposed.

I. INTRODUCTION

In control and systems theory, the notion of a distance
between Linear Dynamical Systems (LDSs) has a long
history, and several such distances have been introduced for
different applications, e.g., system identification [15], [21],
robust control [11], and model reduction [12]. An important
differentiating factor between such distances is the LDS
spaces on which they are defined. For instance, while [21]
and [15] are concerned with the spaces of LDSs of fixed
output-input dimension (i.e., size) and fixed minimal order,
the more commonly used gap metric is defined on the spaces
of LDSs of fixed size but arbitrary (possibly infinite) order
[11]. The distances may also differ in their computational
frameworks, e.g., [21] and [15] define Riemannian distances
in terms of state-space realization parameters1, while the gap
metric is defined in terms of transfer functions viewed as
operators in a Hilbert space [11].

More recently, the need for comparing LDSs has arisen
in fields such as computer vision. For example, it has been
shown that one can use LDSs to effectively describe or model
videos of human motion or activity (see, e.g., [1], [4], [5],
[7], [10], and references therein). This is usually done via
fitting an LDS to a video sequence for which efficient state-
space system identification algorithms are available (see, e.g.,
[10] for details). While different people move differently,
the dynamical models of two people performing the same
action (e.g., walking) should be “closer” to each other than
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1To be clear, we should mention that in these and similar works (for
system identification purposes) the main object of interest has not been a
Riemannian distance itself rather its infinitesimal form (a.k.a. the Rieman-
nian metric), which in comparison is a computationally friendly object. On
the other hand, finding the Riemannian distance (essentially integrating the
Riemannian metric) involves solving systems of nonlinear ODEs, hence is
computationally expensive.

the models of two people performing a different action (e.g.,
walking vs running) [5]. Obviously, here, a notion of distance
between LDSs is useful for recognizing an action and other
purposes.

In practice, the LDSs appearing in such applications are
of a special form which we call tall and full rank (see
§II and §II-D.1 for more details). Moreover, often all the
LDSs are of the same size and order. Hence, in such an
application a space of LDSs of fixed size and order is a
natural choice. Typically, the LDSs are of very large output
dimension (103 − 104) and low input dimension and order
(3 − 10), and one usually deals with tens of thousands of
them. This warrants for efficiently computable distances on
the spaces of LDSs of fixed size and order, for which existing
frameworks (e.g., as in [21] or [14]) are not suited, due to
their inherent heavy computational cost.

A valid question is “Why not use a more readily available
distance?” In fact, a target space, namely, the space of LDSs
of size (p,m) and order n can be viewed as an embedded fi-
nite dimensional subspace in the infinite dimensional ambient
space of LDSs of size (p,m) and of arbitrary order. The am-
bient space is a linear space, and any distance there induces
a distance on the target space. An example is the commonly
used distance based on the L2 norm of the difference between
two transfer functions. The main problem with this distance,
the gap metric, or other similar distances, is that they are too
coarse and blind to the order of LDSs (unless one specializes
them to the target subspace, which is challenging). This
problem becomes pronounced, e.g., if one wants to use such
a distance to define a notion of average on the target space.
Averaging LDSs is useful because it allows us to replace
a large set of LDSs with a single representative LDS (see
[1] for an application in video sequence classification and
clustering). Finding an average LDS using the mentioned
L2 based distance (as the minimizer of the sum of square
of distances) amounts to finding the Euclidean average of
the corresponding transfer functions. Thus the average of N
LDSs of order n is (generically) of order nN , which can
be extremely large. It is also not clear if model reduction
methods are practically applicable and justified here, where
such a drastic order reduction is desired. Instead, a notion
of average, which automatically preserves system order is a
more natural solution, and for that a distance on the target
space cognizant of system order is needed. We add that
to our knowledge defining such a notion of average has
not been studied systematically. An exception is the similar
notion of interpolation in gain scheduling control, where one
interpolates between two controllers of the same order to get
a new one [25].



Contributions, scope, and outline. In this paper, we intro-
duce a large family of easy-to-compute group action induced
distances (called the alignment distances) on spaces of LDSs
of fixed size and order. The computational advantage stems
from the fact that such a distance is found by a simple
minimization problem over a (matrix) rotation group. The
basic idea behind the alignment distance is to compare state-
space realizations of two LDSs considering the fact that each
LDS has an equivalent class of realizations (related via a
state-space change of basis). Hence, one needs to align the
realizations (in a specific sense) and then compare them. In
our earlier work [1], we introduced the alignment distance
for the class of tall and full rank LDSs. In this paper (see
§II), we use methods from differential geometry and the
theory of balanced realizations [17] to extend this definition
to other classes of LDS spaces of fixed size and order. In
§III, we show that the alignment distance naturally leads to
a notion of average which preserves the system order. In
§IV, we show how the basic definition can be extended to
other useful and application-oriented distances. The paper
conclusions are presented in §V. This is a theoretical paper
entirely devoted to discrete-time deterministic LDSs, and due
to space limitation the proofs of most stated results will
appear elsewhere. Some computational aspects and the case
of stochastic LDSs have been addressed in [19] and [2],
respectively.

II. THE ALIGNMENT DISTANCE

Consider a discrete-time LDS M of order n and size
(p,m) described by:

xt = Axt−1 +Bvt

yt = Cxt,
(1)

where vt, xt, and yt are the input, state, and output signals,
respectively. We explicitly distinguish between a realization
R = (A,B,C) and M the LDS it realizes.

Define the realization space L̃m,n,p as

L̃m,n,p = {(A,B,C) ∈ Rn×n × Rn×m × Rp×n}. (2)

We let GL(n) denote the Lie group of n × n non-singular
matrices. An important fact is that, as far as input-output
relation is concerned, for any P ∈ GL(n), R and P ◦ R,
where

P ◦R = (P−1AP,P−1B,CP ), (3)

represent the same system. Formally, one says that GL(n)
acts on the space of realizations L̃m,n,p via the above action
(strictly speaking this is a right action because (P1P2)◦R =
P2 ◦ (P1 ◦ R), but for notational convenience we write it
as a left action). Now the space of LDSs of order n and
size (p,m), denoted by Lm,n,p, is the quotient space of this
action, i.e., Lm,n,p = L̃m,n,p/GL(n). On Lm,n,p we define
the notion of equality:

Definition 1: Two systems in Lm,n,p are equal if their
impulse responses are equal.

If a Lie group acts on a smooth manifold smoothly, freely
and properly, then the quotient space will be a smooth mani-
fold whose dimension is equal to the difference between the

dimension of the original manifold and that of the group [22,
p. 218]. The action in (3) is clearly smooth (where smooth-
ness is induced from the standard topology of L̃m,n,p). Recall
that an action of a Lie group on a manifold M is free if the
identity element of the group is the only element that fixes an
element of M. Properness is a more technical notion about
the properties of the orbits of the action and we leave it for
Appendix I. The action of a compact group is always proper.
In Proposition 72 in Appendix I we show that the action (3)
is free and proper on the subspaces of realizations which
are observable, controllable, minimal, with rank(C) = n, or
with rank(B) = n (the latter two exist only when p ≥ n and
m ≥ n, respectively). Let us denote the realization spaces in
these cases by L̃ob

m,n,p, L̃co
m,n,p, L̃min

m,n,p, L̃tC
m,n,p(⊂ L̃ob

m,n,p),
and L̃fB

m,n,p(⊂ L̃co
m,n,p), respectively. All these spaces are,

in fact, smooth (open and dense) submanifolds of L̃m,n,p.
The corresponding (smooth quotient) manifolds of systems
will be denoted with the same letters but without the ,̃
e.g., (L̃min

m,n,p,Lmin
m,n,p) where Lmin

m,n,p = L̃min
m,n,p/GL(n).

We call every such realization-system space pairs a proper
realization-system space pair. Each pair is an example of a
principal fiber bundle with the structure GL(n) [20]. The
differential geometry of (L̃min

m,n,p,Lmin
m,n,p), in particular, had

been the subject of extensive studies in the 70’s and 80’s
(see e.g., [14], [9], [8], [21] and references therein). In
occasions, it is more convenient to use a generic proper
pair (Σ̃m,n,p,Σm,n,p) rather than a specific one. The next
proposition is essential, since it shows when equality in
Lm,n,p translates into equal realization equivalent classes.

Proposition 2: Let Σ̃m,n,p be any of the above proper
realization spaces. Let M be a system in Lm,n,p that has
a realization R1 in Σ̃m,n,p. Then for every P ∈ GL(n),
P ◦R1 is also a realization of M in Σ̃m,n,p. Conversely, for
any other realization of R2 of M in Σ̃m,n,p, there exists a
unique P ∈ GL(n) such that R2 = P ◦R1.

A. Difficulties due to the non-compactness of GL(n)

Let (Σ̃m,n,p,Σm,n,p) be a proper realization-system space
pair. Defining a distance on Σm,n,p is conceptually straight-
forward (see [26, Ch. 12] for a general theory): One starts
with a GL(n)-invariant distance d̃(·, ·) on Σ̃m,n,p and defines
the distance between two systems M1,M2 ∈ Σm,n,p as
d(M1,M2) = infP∈GL(n) d̃(P ◦R1, R2), where R1 and R2

are any realizations of M1 and M2, respectively. Recall that
d̃ is GL(n)-invariant if d̃(P ◦ R1, P ◦ R2) = d̃(R1, R2)
for ∀P ∈ GL(n). Unfortunately, constructing such a d̃
due to the non-compactness of GL(n) is computationally
difficult. Most available distances (e.g., matrix norm-based
ones) are only unitary-invariant. If the goal is to construct
a Riemannian distance on Σm,n,p, one can define a GL(n)-
invariant Riemannian structure on Σ̃m,n,p (hence a GL(n)-
invariant distance) and then solve the corresponding geodesic

2This, presumably, is a known result. However, we found no published
proof for it. An alternative proof that LDSs of size (p,m) and minimal
order n form a smooth manifold of dimension n(m + p) is given in [8].



equation and compute distances between LDSs (this was pro-
posed by Krishnaprasad in [21]). However, the computational
challenge is that the geodesic equation is a system of high-
dimensional nonlinear ODEs.

B. Reduction of the structure to maximal compact subgroup
A fundamental observation we make is that the action

of GL(n) on Σ̃m,n,p can be reduced to the action of its
subgroup O(n), the group of n × n orthogonal matrices.
This is an example of bundle or structure group reduction
[20], and in the theory of principal fiber bundles it has a
precise meaning: One can find a submanifold of Σ̃m,n,p

(not necessarily unique) denoted by ÕΣm,n,p on which
P ◦R ∈ ÕΣm,n,p implies P ∈ O(n). Moreover, Σm,n,p

diff
=

ÕΣm,n,p/O(n), meaning that the two sides are not only
equal as sets but also diffeomorphic to each other. Intuitively,
the meaning of this reduction is that one can get rid of the
non-compact part of GL(n) (i.e., keep its maximal compact
subgroup) while the differential-topological structure of the
quotient is unchanged. We call this reduction standardization
or orthonormalization of the realization space Σ̃m,n,p. This
process is analogous to Gramm-Schmidt orthonormalization.

The main benefit of standardization for us is computa-
tional: constructing O(n)-invariant distances on ÕΣm,n,p

is straightforward (see §II-C). Assuming an O(n)-invariant
distance on ÕΣm,n,p, d̃ÕΣm,n,p

, one can define a distance
on Σm,n,p simply by

dΣm,n,p(M1,M2) = min
Q∈O(n)

d̃ÕΣm,n,p
(Q ◦R1, R2), (4)

where R1 and R2 are any realizations of M1 and M2 in
ÕΣm,n,p, respectively. We call this problem the realization
alignment problem, or simply the alignment problem, and
denote a solution to it by Q12. We call dΣm,n,p

an alignment
distance (see Figure 1). In general, the alignment problem
is not a convex minimization problem and its solution may
not be unique. Recall that a similar situation may happen in
a Riemannian manifold where, e.g., there may be more than
one shortest geodesic between two points.

•
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Fig. 1. Over each system in Σm,n,p sits a realization fiber. The fibers
together form the realization space (bundle) Σ̃m,n,p. ÕΣm,n,p is a stan-
dardized subspace of Σ̃m,n,p. Constructing an O(n)-invariant distance on
the standardized subspace and hence the corresponding alignment distance
on Σm,n,p is computationally easy (see (4)).

C. A simple O(n)-invariant distance on realization spaces

The most immediate example of an O(n)-invariant dis-
tance on Σ̃m,n,p is the Frobenius norm based distance:

d̃2
F

(
R1,R2)=λA‖A1−A2‖2F+λB‖B1−B2‖2F+λC‖C1−C2‖2F ,

(5)
where λA, λB , λC > 0 are weights (which could be tuned
in some applications). The use of the Frobenius norm makes
this distance as computationally friendly as one could hope
for. In [19], a fast Jacobi-type algorithm for finding the
alignment distance (4) based on d̃F is proposed. Such an
algorithm is a local minimization algorithm over O(n), how-
ever, an interesting experimental observation made in [19] is
that this algorithm is more likely to find the global minimizer
than the gradient algorithm. Another feature of d̃F is that
it is a product distance, i.e., it is the sum of three separate
terms coming from the product structure of the ambient space
L̃m,n,p ⊃ Σ̃m,n,p. This feature is advantageous in some
related optimization problems (see §III). Finally, note that
d̃F is an extrinsic distance on Σ̃m,n,p (and its submanifolds)
meaning that it need not respect the nonlinearities of Σ̃m,n,p,
e.g., in the case of L̃min

m,n,p the distance is blind to the min-
imality of the realizations. Nevertheless, see d̃ST in §II-D.1
which does better and yields an intrinsic alignment distance
on LtC

m,n,p. In general, constructing a distance which takes
into account all nonlinearities of a space is challenging. Even
in the Riemannian case defining a Riemannian metric does
not automatically guarantee this, and one has to judiciously
design a complete Riemannian metric, i.e., one in which
geodesics never leave the space in finite time [20].

D. Examples of standardized realization spaces

Next, we introduce some realization standardization meth-
ods that yield O(n)-subbundles. First, we establish some
notations. Denote by Ok = [C>, (CA)>, . . . , (CAk−1)>]>

and Ck = [B,AB, . . . , Ak−1B] the observability and con-
trollability matrices of order k (n ≤ k ≤ ∞). The
observability and controllability Gramians of order k are
defined as Wo,k = O>k Ok and Wc,k = CkC>k , respectively.
For k = ∞ asymptotic stability of A is needed. These
matrices are realization dependent and under the action (3)
they transform in obvious ways: Ok → OkP , Ck → P−1Ck,
Wo,k → P>Wo,kP , and Wc,k → P−1Wc,kP

−> (the last
two coincide if P ∈ O(n)).

1) Orthonormalized observation matrix (OOM): This
standardization is specific to (L̃tC

m,n,p,LtC
m,n,p) which we

call the tall and full rank realization-system space pair,
but similarly can be applied to (L̃fB

m,n,p,LfB
m,n,p). Let R =

(A,B,C) ∈ L̃tC
m,n,p and let C = USV > be a thin SVD of C.

With the change of coordinates R′ = (A′, B′, C ′) = P ′ ◦R,
where P ′ = (SV >)−1 we have C ′>C ′ = In. Let us define

ÕLtC
m,n,p = {(A,B,C) ∈ L̃tC

m,n,p|C>C = In}. (6)

We then have:
Proposition 3: ÕLtC

m,n,p is an O(n)-subbundle of L̃tC
m,n,p

with codimension n(n+1)
2 .



Interestingly, ÕLtC
m,n,p naturally appears in a PCA-based

system identification method employed often in computer
vision applications [10]. The realization space ÕLtC

m,n,p

equipped with the distance d̃F (5) was used in [1] to define
a distance on LtC

m,n,p. Also note that in ÕLtC
m,n,p, C belongs

to the Stiefel manifold ST(p, n). Therefore, instead of d̃F an
alternative intrinsic distance on L̃tC

m,n,p could be defined as

d̃2
ST(R1, R2) = ‖A1−A2‖2F +‖B1−B2‖2F +d2

ST(p,n)(C1, C2),
(7)

where dST(p,n) is the standard Riemannian distance on
ST(p, n). This distance induces an intrinsic (Riemannian)
distance on LtC

m,n,p. However, for very large p (e.g., in video
sequence analysis) the computations can become prohibitive.

2) Output-normalized realizations: The output-
normalized realization is a generalization of the OOM
realization in which instead of orthonormalizing the
observation matrix C, we orthonormalize the observability
matrix Ok. Since rank(Ok) = n, we can orthonormalize Ok

by the change of coordinates R′ = (A′, B′, C ′) = P ′ ◦ R,
with P ′ = (SV >)−1, where Ok = USV >. We define
the space of observable realizations with orthonormalized
observability matrix (the order k is implicitly assumed) as:

ÕLob,on
m,n,p = {(A,B,C) ∈ L̃ob

m,n,p|Wo,k = In}, (8)

for which we have:
Proposition 4: ÕLob,on

m,n,p is an O(n)-subbundle of L̃ob
m,n,p

with codimension n(n+1)
2 .

3) Balanced realizations (in the sense of Helmke [17]):
We follow [17] in defining a balanced realization, which
is (slightly) different from the (diagonal) balanced realiza-
tion originally introduced in [23]. For k = ∞ the extra
assumption of asymptotic stability of A is needed, in which
case we consider the space of minimal asymptotically stable
realizations L̃min,a

m,n,p and the corresponding system space
Lmin,a
m,n,p. The space of balanced realizations is defined by

ÕLmin,bl
m,n,p = {(A,B,C) ∈ L̃min

m,n,p|Wo,k = Wc,k}. (9)

As shown in [17] this space can also be characterized as
follows: Consider the function h : GL(n) → R where
h(P ;R) = trace(P>Wo,kP ) + trace(P−1Wc,kP

−>) and
R ∈ L̃min

m,n,p. The realization R can be transformed to a
balanced one by minimizing h(P ;R) over GL(n). Clearly
h(P ;R) is invariant on O(n). It can be shown that any
critical point of h is a global minimizer. Moreover, for
any two critical points P1, P2 ∈ GL(n) there is a unique
Θ ∈ O(n) such that P1 = P2Θ, and the realization P1 ◦ R
belongs to ÕLmin,bl

m,n,p [17]. Based on this we can show:

Proposition 5: ÕLmin,bl
m,n,p is an O(n)-subbundle of L̃min

m,n,p

with codimension n(n+1)
2 .

The original realization balancing (more precisely diago-
nally balancing) as defined in [23] makes the controllability
and observability Gramians not only equal but also diagonal.
Therefore, such a realization also belongs to ÕLmin,bl

m,n,p, and
any algorithms for diagonal balancing can be used to balance

realizations in the sense of Helmke. Also we add that the
above variational approach has been used in [17], [18] to
define a large class of balanced realizations which could be
shown to correspond to standardization or bundle reduction
as defined here. Accordingly, they all can be used to define
a large family of distances on the LDS spaces.

E. Digression on continuous canonical forms

The reader might ask why we are not using canonical
forms as vehicles to define distances. Recall that a (global)
canonical form s : Σm,n,p → Σ̃m,n,p is a function that
assigns to each system M ∈ Σm,n,p a unique realization
s(M) in the equivalent class of realizations of M in Σ̃m,n,p.
For our applications we need the canonical form to be
additionally continuous (otherwise the realizations of two
nearby systems might be far). Having such a continuous
canonical form and a distance d̃ on Σ̃m,n,p, we can de-
fine the distance d(M1,M2) as d̃(s(M1), s(M2)) for every
M1,M2 ∈ Σm,n,p. However, a fundamental problem is that
for most of our realization-system space pairs no continuous
canonical form exists. As mentioned before the realization
space Σ̃m,n,p is a principal fiber bundle over Σm,n,p with
the structural group GL(n). The non-existence of (global)
continuous canonical forms is the consequence of a basic
fact in the theory of principal fiber bundles that only a trivial
principal fiber admits a continuous cross section. Triviality
means that Σ̃m,n,p must be (globally) diffeomorphic to the
product Σ̃m,n,p × GL(n). It has been established that the
realization bundles L̃ob

m,n,p, L̃co
m,n,p, L̃min

m,n,p are trivial only
when m = 1 or p = 1 hence they do not admit continuous
canonical forms when m > 1 or p > 1 (see [16]). This fact
is, actually, a major culprit in making the identification of
MIMO systems a challenging task (see e.g., [13] and [3]).
On the other hand, it is easy to see that L̃tC

m,n,p and L̃fB
m,n,p

are trivial; and hence we can have continuous canonical
forms over LtC

m,n,p and LfB
m,n,p. However, even in this case

the alignment distance is preferable. To see this consider
Figure 2, where a global continuous canonical form s exists
on the realization bundle and a group-invariant distance
d̃Σ̃m,n,p

(·, ·) is available. Consider two systems M1 and M2

with canonical forms s(M1) = R1 and s(M2) = R2.
Also assume that Q12 aligns R1 to R2. In general, the
canonical form is not adapted to the distance and we have
d̃Σ̃m,n,p

(R1, R2) > d̃Σ̃m,n,p
(Q12 ◦ R1, R2), which indicates

that by aligning the realizations we get a more realistic
distance.

III. HOW TO AVERAGE LDSS?

Now, we briefly address the LDS averaging problem intro-
duced in §I. We are given an LDS set {Mi}Ni=1 ⊂ Σm,n,p.
Next, we choose a suitable standardized realization space
ÕΣm,n,p and find corresponding realizations {Ri}Ni=1 ⊂
ÕΣm,n,p. For simplicity assume that we use the Frobenius
based alignment distance pair (d̃F , dΣm,n,p). We define the
average (Fréchet mean) of {Mi}Ni=1 as the (not necessarily
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Fig. 2. If a canonical form exists on a realization-system space pair and
a group-invariant distance is available, then still the group action induced
distance is more suitable than the distance induced by the canonical form.

unique) system

M̄ = argminM∈Σm,n,p

N∑

i=1

d2
Σm,n,p

(Mi,M). (10)

We give a simple approximate iterative algorithm for
solving this problem. Let M̄0 be an initial estimate of the
average with a realization R̄0 = (Ā0, B̄0, C̄0) ∈ ÕΣm,n,p.
At step k + 1, where R̄k is available, we align each Ri

to R̄k and find the aligning matrix Qk
i ∈ O(n) (see (4)).

Next we need to solve min
R∈ÕΣm,n,p

∑N
i=1 d̃

2
F (Qk

i ◦Ri, R).
Despite the apparent decoupling of the three terms for A,
B, and C in d̃2

F since ÕΣm,n,p is, in general, non-trivial
this (constrained) minimization would be difficult to solve.
Instead, we solve the unconstrained version of the problem,
i.e., assuming R = (A,B,C) ∈ L̃m,n,p and then project
the result onto ÕΣm,n,p. Since the unconstrained problem
decouples, one needs to find simple Euclidean averages,
namely, Âk = 1

N

∑
i=1Q

k>
i AiQ

k
i , B̂k = 1

N

∑
i=1Q

k>
i Bi

and Ĉk = 1
N

∑
i=1 CiQ

k
i . Next, one finds R̄k+1 by

projecting R̂k to ÕΣm,n,p and then repeats the above steps.
This algorithm for LtC

m,n,p was used in [1] for classifica-
tion/clustering of video sequences. The projection step may
be costly, but if the realization space Σ̃m,n,p is dense in
L̃m,n,p, instead of the projection we may simply perform
standardization of R̄k (the two are, in general, different).
If the elements of Σm,n,p are asymptotically stable, then
a standardization of R̂k might not be enough. However, if
‖Ai‖2, the 2-norm of the Ai, is smaller than 1 for every
i, then ‖Âk‖2 < 1 (hence Âk is asymptotically stable).
Interestingly, the use of ÕLmin,bl

m,n,p automatically takes this
into account, since in this subbundle any asymptotically
stable LDS has realizations with ‖A‖2 ≤ 1 and generically
the strict inequality holds (see II-D.3 and [24]); hence, gener-
ically order and stability will be preserved. The convergence
properties of the algorithm have yet to be studied.

IV. GENERALIZATIONS AND EXTENSIONS

The introduced methodology of group action induced
distances is quite flexible and general in the sense that it
allows us to define a large family of distances over a given
space of systems. Here, we briefly discuss some extensions
and generalizations. The most immediate extension is the
use of distances other than d̃F . We already alluded to d̃ST in

(7). Another interesting example could be the matrix nuclear
norm. Next, we discuss some less trivial extensions.

A. General input, internal, and output symmetries

The action ◦ is an example of what we call internal
symmetry. More generally, one can think of other internal,
input, or output symmetries. For example, in the case of
stochastic systems the group O(m) induces a symmetry at
the input. This is because when vt is the standard Gaussian
input noise so is Θvt for any Θ ∈ O(m). Therefore,
R = (A,B,C) and (Q,Θ) • R = (Q>AQ,Q>BΘ, CQ)
((Q,Θ) ∈ O(n) × O(m)) when stimulated with vt yield
the same power spectral density and hence the same output
processes (see [2] for more details).

As another example, we could consider a situation where
a group G = Gout × Gint × Gin acts on a realization space
ÕΣm,n,p, where the groups Gint, Gin, and Gout act at the
input, internally, and at the output, respectively. Denote the
action by ?. If a G-invariant distance d̃ÕΣm,n,p

is given, we
can define a distance as:

dΣm,n,p
(M1,M2) = min

Ω∈G
d̃ÕΣm,n,p

(Ω ? R1, R2). (11)

We mention that in certain cases the group G may be a dis-
crete group in which case solving this minimization problem
would more challenging than our previous examples.

There are interesting cases where G is non-compact and
finding a G-invariant distance d̃ÕΣm,n,p

is difficult, yet (11)
could give a distance-like measure. One such example is
scaling at the input and output, in which case (A,B,C) and
(Q,α)?(A,B,C) = (Q>AQ,αQ>B,αCQ) are considered
equivalent for every Q ∈ O(n) and α ∈ R+. Another
interesting case is when two LDSs are considered equivalent
if one is a slow (or fast) copy of another one (e.g., in the
video sequence application the LDSs modeling slow walking
and fast walking may be considered equal). Assuming the
discrete-time LDSs are coming from a continuous-time stable
systems, one might consider (Q, l) ? (Q>AlQ,Q>B,CQ)
and (A,B,C) equivalent for every l in R+ (or nonnegative
integers) and solve a minimization problem similar to (11) to
define a “speed invariant” distance measure. This is another
example of what we called internal symmetry. There are
other types of symmetries associated with LDSs studied in
[6], which could potentially be used to define interesting
distances in like manner as above.

B. Distances via diffeomorphic and related spaces

Here, we consider spaces diffeomorphic to ÕΣm,n,p or
some subspaces in this space to define new distances. For
example, for any positive integer l, ÕΣm,n,p is diffeomorphic
to {(A,A2, . . . , Al, B,C)|(A,B,C) ∈ ÕΣm,n,p} on which
GL(n) acts in an obvious way. One can define a new
distance on ÕΣm,n,p (and hence on Σm,n,p) by considering
the powers of A:

d̃2(R1, R2) =

l∑

i=1

‖Ai
1−Ai

2‖2F +‖B1−B2‖2F +‖C1−C2‖2F .

(12)



Such a distance might be useful in certain applications where
the role of A is important. A similar idea in the case of
asymptotically stable LDSs yields a new distance where
in (5) instead of the first term we have ‖(In − A1)−1 −
(In−A2)−1‖2F . As another example, we might consider the

subspace {(A,B,C) ∈ ÕLmin,bl
m,n,p|‖B‖F = ‖C‖F = 1} and

use (5) or any of the other distances on this subspace to get an
alignment distance on the LDS space. This is an alternative
way to define a scale-invariant distance.

V. CONCLUSIONS

We introduced a class of group action induced distances
on spaces of LDSs of fixed size and order, which we
collectively called alignment distances. Our emphasis was on
extrinsic distances since they are computationally favorable.
Our framework is extendible and flexible, and can be used
to construct new distances and perform statistical analysis
(e.g., find averages) on spaces of LDSs. We did not address
any specific control application here, but we expect that the
alignment distance and the notion of average LDS can be
useful in areas such as system identification, robust control,
model order reduction, and linear parameter varying systems.

APPENDIX I
PROPER ACTIONS

The following is a working definition of a proper action
[22, Ch. 9]:

Definition 6: Let ◦ be a smooth action of a Lie group
G on a manifold M. The action ◦ is called proper if the
following holds: If {mi}i is a convergent sequence in M
and {gi}i is a sequence in G such that {gi ◦mi}i converges
in M, then a subsequence of {gi}i converges in G.

Proposition 7: Let Σ̃m,n,p be either L̃ob
m,n,p, L̃co

m,n,p,
L̃min
m,n,p, L̃tC

m,n,p, and L̃fB
m,n,p or their stable or minimum

phase submanifolds. Then GL(n) acts properly and freely
on Σ̃m,n,p via (3).

Proof: We only prove the result for L̃ob
m,n,p, the rest

are similar. First, let R ∈ L̃ob
m,n,p, and P ◦ R = R for

some P ∈ GL(n). It follows that OP = O, where O is
the (full rank) observation matrix of order n. This implies
freeness of the action, because we must have P = In. Now,
to see properness, assume that {Ri}i is a sequence in L̃ob

m,n,p

converging to R ∈ L̃ob
m,n,p and {Pi ◦ Ri}i is converging to

R̄ ∈ L̃ob
m,n,p. With some abuse of notation, let O, Oi, and Ō

denote the observability matrices of order n corresponding
to realizations R, Ri, and R̄. These assumptions on the
realizations, in an obvious way, translate to corresponding
ones about the observability matrices: {Oi}i converges to O
and {OiPi}i converges to Ō. Let O†i denote the left pseudo
inverse of Oi (this is unique since Oi is full rank). Note that
since {Oi}i converges to O and O is full rank, for large
enough i there is K such that ‖O†i ‖2 < K, where ‖.‖2
is the matrix 2-norm. Therefore, we have ‖Pi − O†i Ō‖2 ≤
K‖OiPi − Ō‖2 for large enough i. This implies that {Pi}i
converges to O†Ō ∈ GL(n), which suffices for properness.

REFERENCES

[1] B. Afsari, R. Chaudhry, A. Ravichandran, and R. Vidal. Group
action induced distances for averaging and clustering linear dynamical
systems with applications to the analysis of dynamic visual scenes. In
IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[2] B. Afsari and R. Vidal. Group action induced distances on spaces of
high-dimensional linear stochastic processes. In Geometric Science of
Information, volume 8085 of LNCS, pages 425–432. Springer, 2013.

[3] D. Bauer and M. Deistler. Balanced canonical forms for system
identification. IEEE Transactions on Automatic Control, 44(6):1118–
1131, Juner 1999.
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