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Abstract. This paper studies the geometrization of spaces of stochastic
processes. Our main motivation is the problem of pattern recognition in
high-dimensional time-series data (e.g., video sequence classification and
clustering). First, we review some existing approaches to defining dis-
tances on spaces of stochastic processes. Next, we focus on the space of
processes generated by (stochastic) linear dynamical systems (LDSs) of
fixed size and order (this space is a natural choice for the pattern recog-
nition problem). When the LDSs are represented in state-space form, the
space of LDSs can be considered as the base space of a principal fiber
bundle. We use this fact to introduce a large class of easy-to-compute
group action-induced distances on the space of LDSs and hence on the
corresponding space of stochastic processes. We call such a distance an
alignment distance. One of our aims is to demonstrate the usefulness of
control-theoretic tools in problems related to stochastic processes.

Keywords: Stochastic processes, pattern recognition, linear dynamical
systems, extrinsic and intrinsic geometries, principal fiber bundle.

1 Introduction and motivation

Pattern recognition (e.g., classification and clustering) of time series data is
important in many real world data analysis problems. Early applications include
the analysis of one-dimensional data such as speech and seismic signals (see, e.g.,
[18] for a review). More recently, applications in the analysis of video data (e.g.,
activity recognition [1]), robotic surgery data (e.g., surgical skill assessment [5]),
or biomedical data (e.g., analysis of multichannel EEG signals) have motivated
the development of statistical techniques for the analysis of high-dimensional
(or vectorial) time-series data. There are different grand strategies in dealing
with this problem [18]. One is a parametric approach based on modeling the
observed time series and then performing statistical analysis and inference on a
space of models (instead of the space of the observed raw data). In many real-
world instances (e.g., video sequences [1,5,21]), one could model the observed
high-dimensional time series with low-order Linear Dynamical Systems (LDSs).
In such instances the mentioned strategy could prove beneficial, e.g., in terms
of implementation (due to significant compression achieved in high dimensions),
statistical inference, and synthesis of time series. These motivations lead us to
state the following prototype problem.



Problem 1 (Statistical analysis on spaces of LDSs). Let {yi}Ni=1 be a collection
of p-dimensional time series indexed by time t. Assume that each time series
yi = {yi

t}
∞
t=1 can be approximately modeled by an (stochastic) LDS Mi of

output-input size (p,m) and order n1 realized as

xi
t = Aix

i
t−1 +Bivt, (1)

yi
t = Cix

i
t +Divt, (Ai, Bi, Ci, Di) ∈ S̃Lm,n,p = Rn×n × Rn×m × Rp×n × Rp×m

where vt is a common stimulus (e.g., white Gaussian noise with identity covari-
ance) and where the realization Ri = (Ai, Bi, Ci, Di) is learnt and assumed to be
known. The problem is to: (1) Choose an appropriate space S of LDSs containing
the learnt models {Mi}

N
i=1, (2) geometrize S, i.e., equip it with an appropriate

geometry (e.g., define a distance on S), (3) develop tools (e.g., probability distri-
butions, averages or means, variance, PCA) to perform statistical analysis (e.g.,
classification and clustering) in a computationally efficient manner.

The state-space representation (1) is quite general and with n large enough it
can approximate a large class of processes. In Problem 1, obviously, the first two
steps (which are the focus of this paper) have significant impacts on the third one.
One has different choices for the space S as well as geometries on that space. The
gamut ranges from an infinite dimensional linear space to a finite dimensional
(non-Euclidean) manifold, and the geometry can be either intrinsic or extrinsic.
By an intrinsic geometry we mean one in which a shortest path between two
points in a space stays in the space, and by an extrinsic geometry we mean one
where the distance between the two points is measured in an ambient space.
Our approach is somewhere in between: to design an easy-to-compute extrinsic
distance, while keeping the ambient space not too large.

This paper is organized as follows: In Section 2, we review some existing
approaches in geometrization of spaces of stochastic processes. In Section 3, we
focus on processes generated by LDSs of fixed order, and in Section 4, we study
smooth fiber bundle structures over spaces of LDSs generating such processes.
Finally, in Section 5, we introduce our class of group action induced distances
namely the alignment distances. The paper is concluded in Section 6. Due to
space limitation, proofs will appear elsewhere and the reader is referred to stan-
dard texts on differential geometry or control theory for some basic definitions.

2 A Review of Existing Approaches

This review, in particular, since the subject appears in a range of disciplines is
non-exhaustive. Unless otherwise stated, by a process we mean a discrete-time
(wide sense) stationary zero mean Gaussian stochastic process with no deter-
ministic component. In view of Problem 1, our main interest is in the finite
dimensional spaces of LDSs of fixed order and the processes they generate. How-
ever, since such a space can be embedded in the larger infinite dimensional space
of “virtually all processes,” first we consider the latter.

1 Typically in video analysis: p ≈ 1000− 10000, m,n ≈ 10 (see e.g., [1,5,21]).



Geometrizing the space of power spectral densities. A process can be
identified with its covariance sequence or equivalently the Fourier (or z) trans-
form of its covariance sequence, namely the power spectral density. We denote
the space of all p × p power spectral density (PSD) matrices by Pp. This is an
infinite dimensional cone which also has a convex linear structure coming from
matrix addition and multiplication by nonnegative reals. The subset of Pp com-
prised of PSD matrices which are of rank p at every frequency ω ∈ [0, 2π] is
denoted by P+

p . Most of the literature is devoted to geometrizations of P+
1 .

In the case of P+
1 the famous Itakura-Saito distance between PSDs has been

used in practice, at least since the 1970’s (see [18] for references). The high-
dimensional version of the Itakura-Saito distance has also been known since the
1980’s [13] but less used in practice. The Itakura-Saito distance is essentially
induced from the Kullback-Leibler divergence in the time domain between (in-
finite dimensional) probability densities of two processes.2 Therefore, it is not a
true distance. Amari’s information geometry-based approach [3, Ch. 5] allows to
geometrize P+

1 in various ways and yields different distances (e.g., the Itakura-
Saito distance). Furthermore, in this framework one can define geodesics be-
tween two processes under various Riemannian or non-Riemannian connections.
Recently, in [11] a Riemannian framework for geometrization of P+

p for p ≥ 1
has been proposed. In general, such approaches are not suited for large p (due
to computational costs and the full-rankness requirement).

The space Pp (or even P+
p ) is too large. For, it includes, e.g., ARMA processes

of arbitrary large orders, and it is not clear, e.g., how an average of some ARMA
models or processes of equal order might turn out (it is reasonable to require the
average to be of the same order). The ideal is a workable Riemannian framework
which respects all nonlinearities and allows to define geodesics, averages, etc.

Geometrizing the spaces of models. Any distance on Pp (or P+
p ) induces a

distance, e.g., on a subspace corresponding to AR or ARMA models of a fixed
order. This is an example of an extrinsic distance induced from an infinite dimen-
sional ambient space to a finite dimensional subspace. In general, this framework
is not ideal and we might try to, e.g., define an intrinsic distance on the finite
dimensional subspace. In fact, Amari’s original paper [2] lays down a frame-
work for this approach, but lacks actual computations. For the one-dimensional
case in [22], based on Amari’s approach, distances between models in the space
of ARMA models of fixed order are derived. For high order models or in high
dimensions, such calculations are, in general, computationally difficult [22].

Alternative approaches also have been pursued. For example, Piccolo’s [20]
approach is based on first calculating the (possibly) infinite order AR equivalent
of an invertible ARIMA model and then defining a distance between models via
embedding the AR(∞) models in the Hilbert space of `2 sequences. In principle,
this approach is extendible to P+

p (albeit computationally difficult). In [19] a
conceptually similar approach is pursued by defining a distance between two

2 Notice that defining distances between probability densities in the time domain is
a more general approach than PSD-based approaches and can be employed in the
case of nonstationary as well as non-Gaussian processes.



processes via a weighted `2 distance between the sequences of the cepstrum
coefficients of the two processes. Interestingly, in the case of ARMA models this
specific distance can be expressed in closed form in terms of the poles and zeros of
the models. In [7], this approach is given a simple interpretation in terms of state-
space parameters (in particular subspace angles between extended observability
matrices). In [6], this approach is shown to be a special case of the family of
Binet-Cauchy kernels introduced in [24]. In [4], the space of AR processes of
order p is geometrized using the geometry of Toeplitz matrices (via reflection
coefficient parameterizations). Extensions of all these methods to Pp for p > 1
do not seem obvious.

More relevant to us are [16] and [9], where (intrinsic) state-space based Rie-
mannian distances between LDSs of fixed size and fixed order have been studied.
Such approaches ideally suit Problem 1, but they are computationally demand-
ing. More recently, in [1] we introduced group action induced distances on a
specific class of LDS spaces of fixed size and order. Here, we give further theo-
retical foundation for that approach.

3 Processes generated by finite order LDSs

Consider an LDS, M , of the form (1) with a realization R = (A,B,C,D) ∈

S̃Lm,n,p. In the sequel, for various reasons, we will restrict ourselves to in-

creasingly smaller submanifolds of S̃Lm,n,p which will be denoted by addi-
tional superscripts. Recall that the p × m matrix transfer function is T (z) =
D + C(In − z−1A)−1B, where z ∈ C and In is the n-dimensional identity ma-
trix. The output PSD matrix (in the z-domain) is the p × p matrix function
S(z) = T (z)T>(z−1) (> is matrix transpose). The PSD is a rational matrix
function of z whose rank (a.k.a. normal rank) is constant almost everywhere
in C. Stationarity of the output process is guaranteed if M is asymptotically
stable, or equivalently if all eigenvalues of A are of modulus smaller than one.

We denote the submanifold of such realizations by S̃L
a

m,n,p ⊂ S̃Lm,n,p.

Embedding stochastic processes in LDS spaces. Two (stochastic) LDSs
are indistinguishable if their output PSDs are equal. Using this equivalence on
the entire set of LDSs is not useful, because it induces a complicated many-to-one
correspondence between the LDSs and the subspace of stochastic processes they
generate. However, if we restrict ourselves to the subspace of minimum phase
LDSs the situation improves. The LDS in (1) is minimum phase if its transfer
function has constant rank m everywhere outside the unit circle in the complex
plane C (including at infinity). Denote the subspace of minimum phase realiza-

tions by S̃L
a,mp

m,n,p ⊂ S̃L
a

m,n,p. This is clearly an open submanifold of S̃L
a

m,n,p.

In S̃L
a,mp

m,n,p, the spectral factorization of the output PSD is unique up to an

orthogonal matrix [23]: let T1(z) and T2(z) have realizations in S̃L
a,mp

m,n,p and let

T1(z)T
>
1 (z−1) = T2(z)T

>
2 (z−1), then T1(z) = T2(z)Θ for a unique Θ ∈ O(m),

where O(m) is the Lie group of m×m orthogonal matrices.



Equivalent classes of realizations under group actions. A fundamental
fact is that there are symmetries or invariances due to certain Lie group actions
in the model (1). Let GL(n) denote the Lie group of n × n non-singular (real)
matrices. We say that the Lie group GL(n)×O(m) acts on the realization space

S̃Lm,n,p (or its subspaces) via the action • defined as

(P,Θ) • (A,B,C,D) = (P−1AP,P−1BΘ,CP,DΘ). (2)

One can easily verify that under this action the output covariance sequence
remains invariant. In general, the converse is not true. That is, two output co-
variance sequences might be equal while their corresponding realizations are not
related via • (due to non-minimum phase and the action not being free [17], see
below). For the converse to hold we need to impose further rank conditions.

Observability and controllability. Recall that controllability and observabil-
ity matrices of order k are defined as Ck = [B,AB, . . . , Ak−1B] and Ok =
[C>, (CA)>, . . . , (CAk−1)>]>, respectively. A realization is called controllable
(resp. observable) if Ck (resp. Ok) is of rank n for k = n. We denote the sub-

space of controllable (resp. observable) realizations by S̃L
co

m,n,p (resp. S̃L
ob

m,n,p).

The space S̃L
min

m,n,p = S̃L
co

m,n,p ∩ S̃L
ob

m,n,p is called the space of minimal realiza-
tions. An important fact is that we cannot reduce the order (i.e., the size of A)
of a minimal realization without changing its input-output behavior.

Tall and full rank LDSs. Another (less studied) rank condition is when C is

of rank n (here p ≥ n is required). Denote by S̃L
tC

m,n,p ⊂ S̃L
ob

m,n,p the subspace
of such realizations and call a corresponding LDS tall and full-rank. Such LDSs
are closely related to generalized linear dynamic factor models for (very) high-
dimensional time series [8] and also appear in video sequence modeling [1,5,21].
It is easy to verify that all the above realization spaces are smooth open subman-
ifolds of S̃Lm,n,p. Their corresponding stable or minimum-phase submanifolds

(e.g., S̃L
a,mp,co

m,n,p ) are defined in an obvious way.
The following proposition forms the basis of our approach to defining dis-

tances between processes: any distance on the space of LDSs with realizations in
the above submanifolds (with rank condition) can be used to define a distance
on the space of processes generated by those LDSs.

Proposition 1. Let Σ̃m,n,p be S̃L
a,mp,co

m,n,p , S̃L
a,mp,ob

m,n,p , S̃L
a,mp,min

m,n,p , or S̃L
a,mp,tC

m,n,p .

Then realizations R1, R2 ∈ Σ̃m,n,p generate the same PSD matrix if and only if
there is a unique (P,Θ) ∈ GL(n)×O(m) such that (P,Θ) •R1 = R2.

4 Principal fiber bundle structures over spaces of LDSs

An LDS M is an equivalent class of realizations related by the action •. Hence M
sits naturally in a quotient space, namely S̃Lm,n,p/(GL(n) × O(m)). However,
this space is not smooth or even Hausdorff. Recall that if a Lie group G acts on a
manifold smoothly, properly, and freely then the quotient space has the structure



of a smooth manifold [17]. Smoothness of • is obvious. In general, the action of a
non-compact group such as GL(n)×O(m) is not proper. However, one can verify
that the rank conditions we imposed in Proposition 1 are enough to make • both
a proper and free action on the realization submanifolds. The resulting quotient
manifolds are denoted by dropping the tilde superscript ∼, e.g., SLa,mp,min

m,n,p . The
next theorem, which is an extension of existing results, e.g., in [9] shows that, in
fact, we have a principal fiber bundle structure.

Theorem 1. Let Σ̃m,n,p be as in Proposition 1 and Σm,n,p = Σ̃m,n,p/(GL(n)×
O(m)) be the corresponding quotient LDS space. The realization-system pair
(Σ̃m,n,p, Σm,n,p) has the structure of a smooth principal fiber bundle with struc-
ture group GL(n) × O(m). In the case of SLa,mp,tC

m,n,p the bundle is trivial (i.e.,
diffeomorphic to a product), otherwise it is trivial only when m = 1 or n = 1.

This theorem implies that the minimality condition is a complicated nonlinear
constraint, in the sense that it makes the bundle twisted and nontrivial.

Reduction of structure group to the orthogonal group. Next, we recall
the notion of reducing a bundle with non-compact structure group to one with a
compact structure group. This will be useful in our geometrization approach in
the next section. Interestingly, bundle reduction also appears in statistical anal-
ysis of shapes under the name of standardization [14]. The basic fact is that any

principal fiber G-bundle (Σ̃, Σ) can be reduced to an H-subbundle ÕΣ ⊂ Σ̃,
where H is the maximal compact subgroup of G [15]. This reduction means that

Σ is diffeomorphic to = ÕΣ/H (i.e., no topological information is lost by going
to the subbundle and the subgroup). Therefore, in our cases of interest we can
reduce a GL(n) × O(m)-bundle to an O(n) × O(m)-subbundle. We call such a
subbundle a standardized realization space or (sub)bundle. One can perform re-
duction to various standardized subbundles and there is no canonical reduction.
However, in each application one can choose an interesting one. A reduction is in
spirit similar to the Gram-Schmidt orthonormalization. As an example, consider

R = (A,B,C,D) ∈ S̃L
a,mp,tC

m,n,p , and let C = UP be an orthonormalization of C,

where U>U = In and P ∈ GL(n). Now the new realization R̂ = (P−1, Im)•R be-

longs to the O(n)-subbundle ÕSL
a,mp,tC

m,n,p = {R ∈ S̃L
a,mp,tC

m,n,p |C>C = In}. Other

forms of bundle reduction, e.g., in the case of the nontrivial bundle S̃L
a,mp,min

m,n,p

are possible. In particular, via a process known as realization balancing (see
[10]), we can construct a large family of standardized subbundles. Due to space
limitations, the details will appear elsewhere.

5 Extrinsic quotient geometry and the alignment distance

Equipping a principal fiber bundle with a group invariant Riemannian metric
and constructing an intrinsic distance on the base space (via a process known
as Riemannian submersion) is well known. However, in our applications, this
approach (e.g., as introduced in [16]) is computationally prohibitive, since it in-
volves solving a high-dimensional nonlinear geodesic ODE. Instead, we propose



to use the large class of extrinsic unitary invariant distances on a standardized
realization subbundle to build distances on the LDS base space. The main ben-
efits are that such distances are abundant, the ambient space is not too large
(e.g., not infinite dimensional), and calculating the distance in the base space
boils down to a simple optimization problem (albeit non-convex). Specifically,
let d̃

ÕΣm,n,p

be a unitary invariant distance on a standardized realization sub-

bundle ÕΣm,n,p with the base Σm,n,p (as in Theorem 1). One example of such
a distance is

d̃2
ÕΣm,n,p

(
R1,R2)=λA‖A1−A2‖

2
F +λB‖B1−B2‖

2
F +λC‖C1−C2‖

2
F +λD‖D1−D2‖

2
F ,

(3)
where λA, λB, λC , λD > 0 are constants and ‖ ·‖F is the matrix Frobenius norm.
A group action induced distance (called the alignment distance) between two

LDSs M1,M2 ∈ Σm,n,p with realizations R1, R2 ∈ ÕΣm,n,p is found by solving
the realization alignment problem

d2Σm,n,p
(M1,M2) = min

(Q,Θ)∈O(n)×O(m)
d̃2
ÕΣm,n,p

(
(Q,Θ) •R1, R2

)
. (4)

This distance has been used for efficient video sequence classification and clus-
tering (e.g., via defining averages or a k-means like algorithm) [1]. In [12] a fast
algorithm is developed which (with little modification) can be used to compute
this distance. The above alignment distance based on (3) is only an example. In
any application, a large class of such distances can be constructed and among
them a suitable one can be chosen or they can be combined in a machine learning
framework (such distances may even correspond to different standardizations).

6 Conclusion

In this paper our focus was the geometrization of spaces of stochastic processes
generated by LDSs of fixed size and order, for use in pattern recognition of high-
dimensional time-series data (e.g., in the prototype Problem 1). We argued how
existing approaches lack practicality. We then introduced a general and flexible
geometrization framework, based on the quotient structure of the space of such
LDSs, which leads to a large class of extrinsic distances. Our approach can be
extended in various directions and that will be the subject of our future work.
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