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Chapter 8
Distances on Spaces of High-Dimensional
Linear Stochastic Processes: A Survey

Bijan Afsari and René Vidal

Abstract In this paper we study the geometrization of certain spaces of stochastic1

processes. Our main motivation comes from the problem of pattern recognition in2

high-dimensional time-series data (e.g., video sequence classification and clustering).3

In the first part of the paper, we provide a rather extensive review of some existing4

approaches to defining distances on spaces of stochastic processes. The majority of5

these distances are, in one or another, based on comparing power spectral densities6

of the processes. In the second part, we focus on the space of processes generated by7

(stochastic) linear dynamical systems (LDSs) of fixed size and order, on which we8

recently introduced a class of group action induced distances called the alignment9

distances. This space is a natural choice in some pattern recognition applications10

and is also of great interest in control theory. We review and elaborate on the notion11

of alignment distance. Often it is convenient to represent LDSs in state-space form,12

in which case the space (more precisely manifold) of LDSs can be considered as13

the base space of a principal fiber bundle comprised of state-space realizations. This14

is due to a Lie group action symmetry present in the state-space representation of15

LDSs. The basic idea behind the alignment distance is to compare two LDSs by first16

aligning a pair of their realizations along the respective fibers. Upon a standardization17

(or bundle reduction) step this alignment process can be expressed as a minimization18

problem over orthogonal matrices, which can be solved efficiently. The alignment19

distance differs from most existing distances in that it is a structural or generative20

distance, since in some sense it compares how two processes are generated. We also21

briefly discuss averaging LDSs using the alignment distance via minimizing a sum22

of the squares of distances (namely, the so-called Fréchet mean).23
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2 B. Afsari and R. Vidal

Keywords Stochastic processes · Pattern recognition · Linear dynamical systems ·24
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factor model · Minimum phase · Spectral factorization · All-pass filter · Hellinger26

distance · Itakura-Saito divergence · Fréchet mean27

8.1 Introduction and Motivation28

Pattern recognition (e.g., classification and clustering) of time-series data is important29

in many real world data analysis problems. Early applications include the analysis of30

one-dimensional data such as speech and seismic signals (see, e.g., [48] for a review).31

More recently, applications in the analysis of video data (e.g., activity recognition32

[1]), robotic surgery data (e.g., surgical skill assessment [12]), or biomedical data33

(e.g., analysis of multichannel EEG signals) have motivated the development of34

statistical techniques for the analysis of high-dimensional (or vectorial) time-series35

data.36

The problem of pattern recognition for time-series data, in its full generality, needs37

tools from the theory of statistics on stochastic processes or function spaces. Thus it38

bears relations with the general problem of inference on (infinite dimensional) spaces39

of stochastic processes which is a quite sophisticated mathematical theory [30, 59].40

However, at the same time, the pattern recognition problem is more complicated41

since, in general, it involves not only inference but also learning. Learning and infer-42

ence on infinite dimensional spaces obviously can be daunting tasks. In practice, there43

have been different grand strategies proposed in dealing with this problem (e.g., see44

[48] for a review). In certain cases it is reasonable and advantageous from both theo-45

retical and computational points of view to simplify the problem by assuming that the46

observed processes are generated by models from a specific finite-dimensional class47

of models. In other words, one could follow a parametric approach based on model-48

ing the observed time series and then performing statistical analysis and inference on49

a finite dimensional space of models (instead of the space of the observed raw data).50

In fact, in many real-world instances (e.g., video sequences [1, 12, 22, 60] or econo-51

metrics [7, 20, 24]), one could model the observed high-dimensional time series52

with low-order Linear Dynamical Systems (LDSs). In such instances the mentioned53

strategy could prove beneficial, e.g., in terms of implementation (due to significant54

compression achieved in high dimensions), statistical inference, and synthesis of55

time series. For 1-dimensional time-series data the success of Linear Predictive Cod-56

ing (i.e., auto-regressive (AR) modeling) modeling and its derivatives in modeling57

speech signals is a paramount example [26, 49, 58]. These motivations lead us to58

state the following prototype problem:59

Problem 1 (Statistical analysis on spaces of LDSs) Let { yi }N
i=1 be a collection of60

p-dimensional time series indexed by time t . Assume that each time series yi =61

{ yi
t }∞t=1 can be approximately modeled by a (stochastic) LDS Mi of output-input62

size (p, m) and order n1 realized as63

1 Typically in video analysis: p ≈ 1000–10000, m, n ≈ 10 (see e.g., [1, 12, 60]).
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8 Distances on Spaces of High-Dimensional Linear Stochastic Processes 3

xi
t = Ai xi

t−1 + Bi vt ,64

yi
t = Ci xi

t + Di vt , (Ai , Bi , Ci , Di ) ∈ S̃Lm,n,p = Rn×n × Rn×m × Rp×n × Rp×m

(8.1)
65

66

where vt is a common stimulus process (e.g., white Gaussian noise with identity67

covariance)2 and where the realization Ri = (Ai , Bi , Ci , Di ) is learnt and assumed68

to be known. The problem is to: (1) Choose an appropriate spaceS of LDSs containing69

the learnt models {Mi }N
i=1, (2) geometrize S, i.e., equip it with an appropriate geom-70

etry (e.g., define a distance on S), (3) develop tools (e.g., probability distributions,71

averages or means, variance, PCA) to perform statistical analysis (e.g., classification72

and clustering) in a computationally efficient manner.73

The first question to ask is why to model the processes using the state-space model74

(representation) (8.1)? Recall that processes have equivalent ARMA and state-space75

representations and model (8.1) is quite general and with n large enough it can76

approximate a large class of processes. More importantly, state-space representa-77

tions (especially in high dimensions) are often more suitable for parameter learning78

or system identification. In important practical cases of interest such models con-79

veniently yield more parsimonious parametrization than vectorial ARMA models ,80

which suffer from the curse of dimensionality [24]. The curse of dimensionality in81

ARMA models stems from the fact that for p-dimensional time series if p is very82

large the number of parameters of an ARMA model is roughly proportional to p2,83

which could be much larger than the number of data samples available pT , where84

T is the observation time period (note that the autoregressive coefficient matrices85

are very large p × p matrices). However, in many situations encountered in real86

world, state-space models are more effective in overcoming the curse of dimen-87

sionality [20, 24]. The intuitive reason, as already alluded to, is that often (very)88

high-dimensional time series can be well approximated as being generated by a low89

order but high-dimensional dynamical system (which implies small n despite large90

p in the model (8.1)). This can be attributed to the fact that the components of the91

observed time series exhibit correlations (cross sectional correlation). Moreover, the92

contaminating noises also show correlation across different components (see [20, 24]93

for examples of exact and detailed assumptions and conditions to formalize these94

intuitive facts). Therefore, overall the number of parameters in the state-space model95

is small compared with p2 and this is readily reflected in (or encoded by) the small96

size of the dynamics matrix Ai and the thinness of the observation matrix Ci in (8.1).397

2 Note that in a different or more general setting the noise at the output could be a process wt different
(independent) from the input noise vt . This does not cause major changes in our developments. Since
the output noise usually represents a perturbation which cannot be modeled, as far as Problem 1 is
concerned one could usually assume that Di = 0.
3 Note that we are not implying that ARMA models are incapable of modeling such time series.
Rather the issue is that general or unrestricted ARMA models suffer from the curse of dimensionality
in the identification problem, and the parametrization of a restricted class of ARMA models with
small number of parameters is complicated [20]. However, at the same time, using state-space
models it is easy to overcome the curse of dimensionality and this approach naturally leads to
simple and effective identification algorithms [20, 22].
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4 B. Afsari and R. Vidal

Also, in general, state-space models are more convenient for computational purposes98

than vectorial ARMA models. For example, in the case of high-dimensional time99

series most effective estimation methods are based on state-space domain system100

identification rooted in control theory [7, 41, 51]. Nevertheless, it should be noted101

that, in general, the identification of multi-input multi-output (MIMO) systems is a102

subtle problem (see Sect. 8.4 and e.g., [11, 31, 32]). However, for the case where103

p > n, there are efficient system identification algorithms available for finding the104

state-space parameters [20, 22].105

Notice that in Problem 1 we are assuming that all the LDSs have the same order106

n (more precisely the minimal order, see Sect. 8.3.3.1). Such an assumption might107

seem rather restrictive and a more realistic assumption might be all systems having108

order not larger than n (see Sect. 8.5.1). Note that since in practice real data can be109

only approximately modeled by an LDS of fixed order, if n is not chosen too large,110

then gross over-fitting of n is less likely to happen. From a practical point of view111

(e.g., implementation) fixing the order for all systems results in great simplification in112

implementation. Moreover, in classification or clustering problems one might need113

to combine (e.g., average) such LDSs for the goal of replacing a class of LDSs114

with a representative LDS. Ideally one would like to define an average in a such a115

way that LDSs of the same order have an average of the same order and not higher,116

otherwise the problem can become intractable. In fact, most existing approaches tend117

to dramatically increase the order of the average LDS which is certainly undesirable.118

Therefore, intuitively, we would like to consider a space S in which the order of LDSs119

is fixed or limited. From a theoretical point of view also this assumption allows us120

to work with nicer mathematical spaces namely smooth manifolds (see Sect. 8.4).121

Amongst the most widely used classification and clustering algorithms for static122

data are the k-nearest neighborhood and k-means algorithms, both of which rely123

on a notion of distance (in a feature space) [21]. These algorithms enjoy certain124

universality properties with respect to the probability distributions of the data; and125

hence in many practical situations where one has little prior knowledge about the126

nature of the data they prove to be very effective [21, 35]. In view of this fact, in this127

paper we focus on the notion of distance between LDSs and the stochastic processes128

they generate. Hence, a natural question next is what space and what type of distance129

on it? In Problem 1, obviously, the first two steps (which are the focus of this paper)130

have significant impacts on the third one. One has different choices for the space S, as131

well as, for geometries on that space. The gamut ranges from an infinite dimensional132

linear space to a finite dimensional (non-Euclidean) manifold, and the geometry can133

be either intrinsic or extrinsic . By an intrinsic geometry we mean one in which a134

shortest path between two points in a space stays in the space, and by an extrinsic135

geometry we mean one where the distance between the two points is measured in136

an ambient space. In the second part of this paper, we study our recently developed137

approach which is somewhere in between: to design an easy-to-compute extrinsic138

distance, while keeping the ambient space not too large.139

This paper is organized as follows: In Sect. 8.2, we review some existing140

approaches in geometrization of spaces of stochastic processes. In Sect. 8.3, we focus141

on processes generated by LDSs of fixed order, and in Sect. 8.4, we study smooth142
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8 Distances on Spaces of High-Dimensional Linear Stochastic Processes 5

fiber bundle structures over spaces of LDSs generating such processes. Finally, in143

Sect. 8.5, we introduce our class of group action induced distances namely the align-144

ment distances. The paper is concluded in Sect. 8.6. To avoid certain technicalities145

and just to convey the main ideas the proofs are omitted and will appear elsewhere.146

We should stress that the theory of alignment distances on spaces of LDSs is still147

under development; however, its basics have appeared in earlier papers [1–3]. This148

paper for most parts is an extended version of [3].149

8.2 A Review of Existing Approaches to Geometrization of the150

Spaces of Stochastic Processes151

This review, in particular, since the subject appears in a range of disciplines is non-152

exhaustive. Our emphasis is on the core ideas in defining distances on spaces of153

stochastic processes rather than enumerating all such distances. Other sources to154

consult may include [9, 10, 25]. In view of Problem 1, our main interest is in the155

finite dimensional spaces of LDSs of fixed order and the processes they generate.156

However, since such a space can be embedded in the larger infinite dimensional space157

of “virtually all processes,” first we consider the latter.158

Remark 1 We shall discuss several distance-like measures some of which are known159

as distance in the literature. We will try to use the term distance exclusively for a160

true distance namely one which is symmetric, positive definite and obeys the triangle161

inequality. Due to convention or convenience, we still may use the term distance for162

something which is not a true distance, but the context will be clear. A distance-like163

measures is called a divergence it is only positive definite and it is called pseudo-164

distance, if it is symmetric and obeys the triangle inequality but it is only positive165

semi-definitive (i.e., a zero distance between two processes does not imply that they166

are the same). As mentioned above, our review is mainly to show different schools of167

thought and theoretical approaches in defining distances. Obviously, when it comes168

to comparing these distances and their effectiveness (e.g., in terms of recognition169

rate in a pattern recognition problem) ultimately things very much depend on the170

specific application at hand. Although we should mention that for certain 1D spec-171

tral distances there has been some research about their relative discriminative prop-172

erties; especially for applications in speech processing, the relation between of the173

distances to the human auditory perception system has been studied (see e.g., [9, 25,174

26, 29, 49, 54]). Perhaps one aspect that one can judge about rather comfortably175

and independently of the specific problem is the associated computational costs of176

calculating the distance and other related calculations (e.g., calculating a notion of177

average). In that regard, for Problem 1, when the time-series dimension p is very178

large (e.g., in video classification problems) our introduced alignment distance (see179

Sect. 8.5) is cheaper to calculate relative to most other distances and also renders180

itself quite effective in defining a notion of average [1].181
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6 B. Afsari and R. Vidal

Remark 2 Throughout the paper, unless otherwise stated, by a process we mean182

a (real-valued) discrete-time wide-sense (or second order) stationary zero mean183

Gaussian regular stochastic process (i.e., one with no deterministic component).184

Some of the language used in this paper is borrowed from the statistical signal185

processing and control literature for which standard references include [40, 56]. Since186

we use the Fourier and z-transforms often and there are some disparities between the187

definitions (or notations) in the literature we review some terminologies and estab-188

lish some notations. The z-transform of a matrix sequence {ht }+∞
−∞(ht ∈ Rp×m) is189

defined as H(z) = ∑+∞
−∞ ht z−t for z in the complex plane C. By evaluating H(z)190

on the unit circle in the complex plane C (i.e., by setting z = eiω,ω ∈ [0, 2π])191

we get H(eiω), the Fourier transform of {ht }+∞
−∞, which sometimes we denote by192

H(ω). Note that the z-transform of {h−t }+∞
−∞ is H(z−1) and its Fourier transform193

is H(e−iω), and since we deal with real sequences it is the same as H(eiω), the194

complex conjugate of H(eiω). Also any matrix sequence {ht }+∞
0 defines (causal) a195

linear filter via the convolution operation yt = ∑∞
τ=0 hτϵt−τ on the m-dimensional196

sequence ϵt . In this case, we call H(ω) or H(z) the transfer function of the filter197

and {ht }+∞
0 the impulse response of the filter. We also say that ϵt is filtered by H to198

generate yt . If H(z) is an analytic function of z outside the unit disk in the complex199

plane, then filter is called asymptotically stable. If the transfer function H(z) is a200

rational matrix function of z (meaning each entry of H(z) is a rational function of z),201

then the filter has a finite order state-space (LDS) realization in the form (8.1). The202

smallest (minimal) order of such an LDS can be determined as the sum of the orders203

of the denominator polynomials (in z) in the entries appearing in a specific represen-204

tation (factorization) of H(z), known as the Smith-McMillan form [40]. For a square205

transfer function this number (known as the McMillan degree) is, generically, equal206

to the order of the denominator polynomial in the determinant of H(z). The roots of207

these denominators are the eigenvalues of the A matrix in the minimal state-space208

realization of H(z) and the system is asymptotically stable if all these eigenvalues209

are inside the unit disk in C.210

8.2.1 Geometrizing the Space of Power Spectral Densities211

A p-dimensional process yt can be identified with its p × p covariance sequence212

sequences C y(τ ) = E{ yt y⊤
t−τ } (τ ∈ Z), where ⊤ denotes matrix transpose and213

E{·} denotes the expectation operation under the associated probability measure.214

Equivalently, the process can be identified by the Fourier (or z) transform of its215

covariance sequence, namely the power spectral density (PSD) Py(ω), which is a216

p × p Hermitian positive semi-definite matrix for every ω ∈ [0, 2π].4 We denote217

the space of all p × p PSD matrices by Pp and its subspace consisting of elements218

4 Strictly speaking in order to be PSD matrix of a regular stationary process a matrix function on
[0, 2π] must satisfy other mild technical conditions (see [62] for details).
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8 Distances on Spaces of High-Dimensional Linear Stochastic Processes 7

that are full-rank for almost every ω ∈ [0, 2π] by P+
p . Most of the literature prior to219

2000 is devoted to geometrization of P+
1 .220

Remark 3 It is worth mentioning that the distances we discuss below here are blind221

to correlations, meaning that two processes might be correlated but their distance can222

be large or they can be uncorrelated but their distance can be zero. For us the starting223

point is the identification of a zero-mean (Gaussian) process with its probability224

distribution and hence its PSD. Consider the 1D case for convenience. Then in the225

Hilbert space geometry a distance between processes y1
t and y2

t can be defined226

as E{( y1
t − y2

t )
2} in which case the correlation appears in the distance and a zero227

distance means almost surely equal sample paths, whereas in PSD-induced distances228

yt and − yt which have completely different sample paths have zero distance. In a229

more technical language, the topology induced by the PSD-induced distances on230

stochastic processes is coarser than the Hilbert space topology. Hence, perhaps to be231

more accurate we should further qualify the distances in this paper by the qualifier232

“PSD-induced”. Obviously, the Hilbert space topology may be too restrictive in some233

practical applications. Interestingly, in the derivation of the Hellinger distance (see234

below) based on the optimal transport principle the issue of correlation shows up and235

there the optimality is achieved when the two processes are uncorrelated (hence the236

distance is computed as if the processes are uncorrelated, see [27, p. 292] for details).237

In fact, this idea is also present in our approach (and most of the other approaches),238

where in order to compare two LDSs we assume that they are stimulated with the239

same input process, meaning uncorrelated input processes with identical probability240

distributions (see Sect. 8.3).241

The space Pp is an infinite dimensional cone which also has a convex linear242

structure coming from matrix addition and multiplication by nonnegative reals. The243

most immediate distance on this space is the standard Euclidean distance:244

d2
E( y1, y2) =

∫
∥Py1(ω) − Py2(ω)∥2dω, (8.2)245

where ∥ · ∥ is a matrix norm (e.g., the Frobenius norm ∥ · ∥F ). In the 1-dimensional246

case (i.e., P1) one could also define a distance based on the principle of optimal247

decoupling or optimal (mass) transport between the probability distributions of the248

two processes [27, p. 292]. This approach results in the formula:249

d2
H( y1, y2) =

∫ ∣∣
√

Py1(ω) −
√

Py2(ω)|2dω (8.3)250

This distance is derived in [28] and is also called the d̄2-distance (see also [27, p. 292]).251

In view of the Hellinger distance between probability measures [9], the above252

distance, in the literature, is also called the Hellinger distance [23]. Interestingly,253

dH remains valid as the optimal transport-based distance for certain non-Gaussian254

processes, as well [27, p. 292]. The extension of the optimal transport-based defini-255

tion to higher dimensions is not straightforward. However, note that in P1, dH can be256
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8 B. Afsari and R. Vidal

thought of as a square root version of dE. In fact, the square root based definition can257

be easily extended to higher dimensions, e.g., in (8.3) one could simply replace the258

scaler square roots with the (matrix) Hermitian square roots of Pyi (ω), i = 1, 2 (at259

each frequency ω) and use a matrix norm. Recall that the Hermitian square root of260

the Hermitian matrix Y is the unique Hermitian solution of the equation Y = X X H ,261

where H denotes conjugate transpose. We denote the Hermitian square root of Y as262

Y 1/2. Therefore, we could define the Hellinger distance in higher dimensions as263

d2
H( y1, y2) =

∫
∥P1/2

y1 (ω) − P1/2
y2 (ω)∥2

F dω (8.4)264

However note that, for any unitary matrix U , X = Y 1/2U is also a solution to265

Y = X X H (but not Hermitian if U differs from the intensity). This suggests that,266

one may be able to do better by finding the best unitary matrix U (ω) to minimize267

∥P1/2
y1 (ω)− P1/2

y2 (ω)U (ω)∥F (at each frequency ω). In [23] this idea has been used to268

define the (improved) Hellinger distance on Pp which can be written in closed-form269

as270

d2
H′( y1, y2) =

∫
∥P1/2

y1 − P1/2
y2

(
P1/2

y2 Py1 P1/2
y2

)−1/2 P1/2
y2 P1/2

y1 ∥2
F dω, (8.5)271

where dependence of the terms on ω has been dropped. Notice that the matrix272

U (ω) =
(
P1/2

y2 Py1 P1/2
y2

)−1/2 P1/2
y2 P1/2

y1 is unitary for every ω and in fact it is a273

transfer function of an all-pass possibly infinite dimensional linear filter [23]. Here,274

by an all-pass transfer function or filter U (ω) we mean exactly one for which275

U (ω)U (ω)H = Ip. Also note that (8.5) seemingly breaks down if either of the PSDs276

is not full-rank; however, in fact, solving the related optimization shows that by277

continuity the expression remains valid. We should point out that recently a class278

of distances on P1 has been introduced by Georgiou et. al. based on the notion of279

optimal mass transport or morphism between PSDs (rather than probability distrib-280

utions, as above) [25]. Such distances enjoy some nice properties, e.g., in terms of281

robustness with respect to multiplicative and additive noise [25]. An extension to Pp282

also has been proposed [53]; however, the extension is no longer a distance and it is283

not clear if it inherits the robustness property.284

Another (possibly deeper) aspect of working with the square root of the PSD is285

about the ideas of spectral factorization and the innovations process. We review some286

basics which can be found e.g., in [6, 31, 32, 38, 62, 65]. The important fact is that the287

PSD Py(ω) of a regular process yt in Pp is of constant rank m ≤ p almost everywhere288

in [0, 2π]. Moreover, it admits a factorization of the form Py(ω) = Pl y(ω)Pl y(ω)H ,289

where Pl y(ω) is p × m-dimensional and uniquely determines its analytic extension290

Pl y(z) outside the unit disk in C. In this factorization, Pl y(ω), itself, is not determined291

uniquely and any two such factors are related by an m×m-dimensional all-pass filter.292

However, if we require the extension Pl y(z) to be in the class of minimum phase filters,293

then the choice of the factor Pl y(ω) becomes unique up to a constant unitary matrix.294
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8 Distances on Spaces of High-Dimensional Linear Stochastic Processes 9

A p × m (m ≤ p) transfer function matrix H(z) is called minimum phase if it is295

analytic outside the unit disk and of constant rank m there (including at z = ∞). Such296

a filter has an inverse filter which is asymptotically stable. We denote this particular297

factor of Py by P+ y and call it the canonical spectral factor. The canonical factor is298

still not unique, but the ambiguity is only in a constant m × m unitary matrix. The299

consequence is that yt can be written as yt = ∑∞
τ=0 p+τϵt−τ , where the p × m300

matrix sequence {p+t }∞t=0 is the inverse Fourier transform of P+ y(ω) and ϵt is an301

m-dimensional white noise process with covariance Im . This means that yt is the302

output of a linear filter (i.e., an LDS of possibly infinite order) excited by a white303

noise process with standard covariance. The process ϵt is called the innovations304

process or fundamental process of yt . Under Gaussian assumption the innovations305

process is determined uniquely, otherwise it is determined up to an m × m unitary306

factor. The important case is when Py(z) is full-rank outside the unit disk, in which307

case the inverse filter P−1
+ y is well-defined and asymptotically stable, and one could308

recover the innovations process by filtering yt by its whitening filter P−1
+ y .309

Now, to compare two processes one could, obviously, somehow compare their310

canonical spectral factors5 or if they are in P+
p their whitening filters. In [38] a311

large class of divergences based on the idea of comparing associated whitening312

filters (in the frequency domain) have been proposed. For example, let P+ yi be the313

canonical factor of Pyi , i = 1, 2. If one filters yi
t , i = 1, 2, with P−1

+ y j , j = 1, 2,314

then the output PSD is P−1
+ y j Pyi P−H

+ y j . Note that when i = j then the output PSD315

is Ip the p × p identity across every frequency. It can be shown that dI ( y1, y2) =316 ∫
tr(P−1

+ y1 Py2 P−H
+ y1 − Ip)+tr(P−1

+ y2 Py1 P−H
+ y2 − Ip)dω is a symmetric divergence [38].317

Note that dI ( y1, y2) is independent of the unitary ambiguity in the canonical factor318

and in fact319

dI ( y1, y2) =
∫

tr(P−1
y1 Py2 + P−1

y2 Py1 − 2Ip)dω. (8.6)320

Such divergences enjoy certain invariance properties e.g., if we filter both processes321

with a common minimum phase filter, then the divergence remains unchanged. In322

particular, it is scale-invariant. Such properties are shared by the distances or diver-323

gences that are based on the ratios of PSDs (see below for more examples). Scale324

invariance in the case of 1D PSDs has been advocated as a desirable property, since in325

many cases the shape of the PSDs rather than their relative scale is the discriminative326

feature (see e.g., [9, 26]).327

One can arrive at similar distances from other geometric or probabilistic paths.328

One example is the famous Itakura-Saito divergence (sometimes called distance)329

between PSDs in P+
1 which is defined as330

5 In fact, our approach (in Sects. 8.3–8.5) is also based on the idea of comparing the minimum phase
(i.e., canonical) filters or factors in the case of processes with rational spectra. However, instead of
comparing the associated transfer functions or impulse responses we try to compare the associated
state-space realizations (in a specific sense). This approach, therefore, is in some sense structural or
generative, since it tries to compare how the processes are generated (according to the state-space
representation) and the model order plays an explicit role in it.
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10 B. Afsari and R. Vidal

dIS( y1, y2) =
∫ (

Py1

Py2
− log

Py1

Py2
− 1

)
dω (8.7)331

This divergence has been used in practice, at least, since the 1970s (see [48] for332

references). The Itakura-Saito divergence can be derived from the Kullback-Leibler333

divergence between (infinite dimensional) probability densities of the two processes334

(The definition is a time-domain based definition, however, the final result is read-335

ily expressible in the frequency domain).6 On the other hand, Amari’s information336

geometry-based approach [5, Chap. 5] allows to geometrize P+
1 in various ways and337

yields different distances including the Itakura-Saito distance (8.7) or a Riemannian338

distance such as339

d2
R( y1, y2) =

∫ (
log

( Py1

Py2

))2

dω. (8.8)340

Furthermore, in this framework one can define geodesics between two processes341

under various Riemannian or non-Riemannian connections. The high-dimensional342

version of the Itakura-Saito distance has also been known since the 1980s [42] but343

less used in practice:344

dIS( y1, y2) =
∫ (

trace(P−1
y2 Py1) − log det P−1

y2 Py1 − p
)
dω (8.9)345

Recently, in [38] a Riemannian framework for geometrization of P+
p for p ≥ 1 has346

been proposed, which yields Riemannian distances such as:347

d2
R( y1, y2) =

∫
∥ log

(
P−1/2

y1 Py2 P−1/2
y1

)
∥2

F dω, (8.10)348

where log is the standard matrix logarithm. In general, such approaches are not suited349

for large p due to computational costs and the full-rankness requirement. We should350

stress that in (very) high dimensions the assumption of full-rankness of PSDs is not351

a viable one, in particular because usually not only the actual time series are highly352

correlated but also the contaminating noises are correlated, as well. In fact, this has353

lead to the search for models capturing this quality. One example is the class of354

generalized linear dynamic factor models, which are closely related to the tall, full355

rank LDS models (see Sect. 8.3.3 and [20, 24]).356

The above mentioned issues aside, for the purposes of Problem 1, the space Pp357

(or even P+
p ) is too large. The reason is that it includes, e.g., ARMA processes of358

arbitrary large orders, and it is not clear, e.g., how an average of some ARMA models359

6 Notice that defining distances between probability densities in the time domain is a more general
approach than the PSD-based approaches, and it can be employed in the case of nonstationary as
well as non-Gaussian processes. However, such an approach, in general, is computationally difficult.
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8 Distances on Spaces of High-Dimensional Linear Stochastic Processes 11

or processes of equal order might turn out. As mentioned before, it is convenient or360

reasonable to require the average to be of the same order.7361

8.2.2 Geometrizing the Spaces of Models362

Any distance on Pp (or P+
p ) induces a distance, e.g., on a subspace corresponding363

to AR or ARMA models of a fixed order. This is an example of an extrinsic distance364

induced from an infinite dimensional ambient space to a finite dimensional subspace.365

In general, this framework is not ideal and we might try to, e.g., define an intrinsic366

distance on the finite dimensional subspace. In fact, Amari’s original paper [4] lays367

down a framework for this approach, but lacks actual computations. For the one-368

dimensional case in [61], based on Amari’s approach, distances between models in369

the space of ARMA models of fixed order are derived. For high order models or370

in high dimensions, such calculations are, in general, computationally difficult [61].371

The main reason is that the dependence of PSD-based distances on state-space or372

ARMA parameters, in general, is highly nonlinear (the important exception is for373

parameters of AR models, especially in 1D).374

Alternative approaches also have been pursued. For example, in [57] the main idea375

is to compare (based on the ℓ2 norm) the coefficients of the infinite order AR models376

of two processes. This is essentially the same as comparing (in time domain) the377

whitening filters of the two processes. This approach is limited to P+
p and computa-378

tionally demanding for large p. See [19] for examples of classification and clustering379

of 1D time-series using this approach. In [8], the space of 1D AR processes of a fixed380

order is geometrized using the geometry of positive-definite Toeplitz matrices (via the381

reflection coefficients parameterization), and, moreover, L p averaging on that space382

is studied. In [50] a (pseudo)-distance between two processes is defined through a383

weighted ℓ2 distance between the (infinite) sequences of the cepstrum coefficients384

of the two processes. Recall that the cepstrum of a 1D signal is the inverse Fourier385

transform of the logarithm of the magnitude of the Fourier transform of the signal.386

In the frequency domain this distance (known as the Martin distance) can be written387

as (up to a multiplicative constant)388

d2
M( y1, y2) =

∫ (
D

1
2 log

(
Py1

Py2

) )2

dω, (8.11)389

where Dλ is the fractional derivative operator in the frequency domain interpreted390

as multiplication of the corresponding Fourier coefficients in the time domain by391

eπiλ/2nλ for n ≥ 0 and by e−πiλ/2(−n)λ for n < 0. Notice that dM is scale-invariant392

in the sense described earlier and also it is a pseudo-distance since it is zero if the393

PSDs are multiple of each other (this is a true scale-invariance property, which in394

7 Interestingly, for an average defined based on the Itakura-Saito divergence in the space of 1D AR
models this property holds [26], see also [5, Sect. 5.3].
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12 B. Afsari and R. Vidal

certain applications is highly desirable).8 Interestingly, in the case of 1D ARMA395

models, dM can be expressed conveniently in closed form in terms of the poles and396

zeros of the models [50]. Moreover, in [18] it is shown that dM can be calculated397

quite efficiently in terms of the parameters of the state-space representation of the398

ARMA processes. In fact, the Martin distance has a simple interpretation in terms399

of the subspace angles between the extended observability matrices (cf. Sect. 8.4.3)400

of the state-space representations [18]. This brings about important computational401

advantages and has allowed to extend a form of Martin distance to higher dimensions402

(see e.g., [16]). However, it should be noted that the extension of the Martin distance403

to higher dimensions in such a way that all its desirable properties carry over has404

proven to be difficult [13].9 Nevertheless, some extensions have been quite effective405

in certain high-dimensional applications e.g., video classification [16]. In [16], the406

approach of [18] is shown to be a special case of the family of Binet-Cauchy kernels407

introduced in [64], and this might explain the effectiveness of the extensions of the408

Martin distance to higher dimensions.409

In summary, we should say that the extensions of the geometrical methods dis-410

cussed in this section to Pp for p > 1 do not seem obvious or otherwise they are411

computationally very expensive. Moreover, these approaches often yield extrinsic412

distances induced from infinite dimensional ambient spaces, which e.g., in the case413

of averaging LDSs of fixed order can be problematic.414

8.2.3 Control-Theoretic Approaches415

More relevant to us are [33, 46], where (intrinsic) state-space based Riemannian dis-416

tances between LDSs of fixed size and fixed order have been studied. Such approaches417

ideally suit Problem 1, but they are computationally demanding. More recently, in [1]418

and subsequently in [2, 3] we introduced group action induced distances on certain419

spaces of LDSs of fixed size and order. As it becomes clear in the following, an420

important feature of this approach is that the LDS order is explicit in the construc-421

tion of the distance, and the state-space parameters appear in the distance in a simple422

form. These features make certain related calculations (e.g., optimization) much423

more convenient (compared with other methods). Another aspect of our approach is424

that, contrary to most of the distances discussed so far which compare the PSDs or

8 It is interesting to note that by a simple modification some of the spectral-ratio based distances

can attain this property, e.g., by modifying dR in (8.8) as d2
RI( y1, y2) =

∫ (
log

( Py1

Py2

))2dω −
( ∫

log
( Py1

Py2

)
dω

)2 (see also [9, 25, 49]).
9 This and the results in [53] underline the fact that defining distances on Pp for p > 1 may
be challenging, not only from a computational point of view but also from a theoretical one. In
particular, certain nice properties in 1D do not automatically carry over to higher dimensions by
simple extension of definitions in 1D.
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8 Distances on Spaces of High-Dimensional Linear Stochastic Processes 13

the canonical factors directly, our approach amounts to comparing the generative or425

the structural models of the processes or how they are generated. This feature also426

could be useful in designing more application-specific or structure-aware distances.427

8.3 Processes Generated by LDSs of Fixed Order428

Consider an LDS, M , of the form (8.1) with a realization R = (A, B, C, D) ∈429

S̃Lm,n,p.10 In the sequel, for various reasons, we will restrict ourselves to increasingly430

smaller submanifolds of S̃Lm,n,p which will be denoted by additional superscripts.431

Recall that the p × m matrix transfer function is T (z) = D + C(In − z−1 A)−1 B,432

where z ∈ C and In is the n-dimensional identity matrix. We assume that all LDSs are433

excited by the standard white Gaussian process. Hence, the output PSD matrix (in the434

z-domain) is the p × p matrix function P(z) = T (z)T ⊤(z−1). The PSD is a rational435

matrix function of z whose rank (a.k.a. normal rank) is constant almost everywhere436

in C. Stationarity of the output process is guaranteed if M is asymptotically stable.437

We denote the submanifold of such realizations by S̃La
m,n,p ⊂ S̃Lm,n,p.438

8.3.1 Embedding Stochastic Processes in LDS Spaces439

Two (stochastic) LDSs are indistinguishable if their output PSDs are equal. Using this440

equivalence on the entire set of LDSs is not useful, because, as mentioned earlier two441

transfer functions which differ by an all-pass filter result in the same PSD. Therefore,442

the equivalence relation could induce a complicated many-to-one correspondence443

between the LDSs and the subspace of stochastic processes they generate. However, if444

we restrict ourselves to the subspace of minimum phase LDSs the situation improves.445

Let us denote the subspace of minimum-phase realizations by S̃La,mp
m,n,p ⊂ S̃La

m,n,p.446

This is clearly an open submanifold of S̃La
m,n,p. In S̃La,mp

m,n,p, the canonical spectral447

factorization of the output PSD is unique up to an orthogonal matrix [6, 62, 65]: let448

T1(z) and T2(z)have realizations in S̃La,mp
m,n,p and let T1(z)T ⊤

1 (z−1) = T2(z)T ⊤
2 (z−1),449

then T1(z) = T2(z)Θ for a unique Θ ∈ O(m), where O(m) is the Lie group of m×m450

orthogonal matrices. Therefore, any p-dimensional processes with PSD of normal451

rank m can be identified with a simple equivalent class of stable and minimum-phase452

transfer functions and the corresponding LDSs.11
453

10 It is crucial to have in mind that we explicitly distinguish between the LDS, M , and its
realization R, which is not unique. As it becomes clear soon, an LDS has an equivalent class
of realizations.
11 These rank conditions, interestingly, have differential geometric significance in yielding nice
quotient spaces, see Sect. 8.4.
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14 B. Afsari and R. Vidal

8.3.2 Equivalent Realizations Under Internal and External454

Symmetries455

A fundamental fact is that there are symmetries or invariances due to certain Lie group456

actions in the model (8.1). Let GL(n) denote the Lie group of n × n non-singular457

(real) matrices. We say that the Lie group GL(n) × O(m) acts on the realization458

space S̃Lm,n,p (or its subspaces) via the action • defined as12
459

(P,Θ) • (A, B, C, D) = (P−1 AP, P−1 BΘ, C P, DΘ). (8.12)460

One can easily verify that under this action the output covariance sequence (or PSD)461

remains invariant. In general, the converse is not true. That is, two output covariance462

sequences might be equal while their corresponding realizations are not related via463

• (due to non-minimum phase and the action not being free [47], also see below).464

Recall that the action of a group on a set is called free if every element of the set is465

only fixed by the identity element of the group. For the converse to hold we need to466

impose further rank conditions, as we see next.467

8.3.3 From Processes to Realizations (The Rank Conditions)468

Now, we study some rank conditions (i.e., submanifolds of S̃Lm,n,p on) which • is469

a free action.470

8.3.3.1 Observable, Controllable, and Minimal Realizations471

Recall that controllability and observability matrices of order k are defined as472

Ck = [B, AB, . . . , Ak−1 B] and Ok = [C⊤, (C A)⊤, . . . , (C Ak−1)⊤]⊤, respectively.473

A realization is called controllable (resp. observable) if Ck (resp. Ok) is of rank n474

for k = n. We denote the subspace of controllable (resp. observable) realizations475

by S̃Lco
m,n,p (resp. S̃Lob

m,n,p). The space S̃Lmin
m,n,p = S̃Lco

m,n,p ∩ S̃Lob
m,n,p is called476

the space of minimal realizations. An important fact is that we cannot reduce the477

order (i.e., the size of A) of a minimal realization without changing its input-output478

behavior.479

8.3.3.2 Tall, Full Rank LDSs480

Another (less studied) rank condition is when C is of rank n (here p ≥ n is required).481

Denote by S̃LtC
m,n,p ⊂ S̃Lob

m,n,p the subspace of such realizations and call a corre-482

sponding LDS tall and full-rank. Such LDSs are closely related to generalized linear483

12 Strictly speaking • is a right action; however, it is notationally convenient to write it as a left
action in (8.12).
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8 Distances on Spaces of High-Dimensional Linear Stochastic Processes 15

dynamic factor models for (very) high-dimensional time series [20] and also appear in484

video sequence modeling [1, 12, 60]. It is easy to verify that all the above realization485

spaces are smooth open submanifolds of S̃Lm,n,p. Their corresponding submanifolds486

of stable or minimum-phase LDSs (e.g., S̃La,mp,co
m,n,p ) are defined in an obvious way.487

The following proposition forms the basis of our approach to defining distances488

between processes: any distance on the space of LDSs with realizations in the above489

submanifolds (with rank condition) can be used to define a distance on the space of490

processes generated by those LDSs.491

Proposition 1 Let Σ̃m,n,p be S̃La,mp,co
m,n,p , S̃La,mp,ob

m,n,p , S̃La,mp,min
m,n,p , or S̃La,mp,tC

m,n,p .492

Consider two realizations R1, R2 ∈ Σ̃m,n,p excited by the standard white Gaussian493

process. Then we have:494

1. If (P,Θ)• R1 = R2 for some (P,Θ) ∈ GL(n)× O(m), then the two realizations495

generate the same (stationary) generate output process (i.e., outputs have the same496

PSD matrices).497

2. Conversely, if the outputs of the two realizations are equal (i.e., have the same498

PSD), then there exists a unique (P,Θ) ∈ GL(n) × O(m) such that (P,Θ) •499

R1 = R2.500

8.4 Principal Fiber Bundle Structures Over Spaces of LDSs501

As explained above, an LDS, M , has an equivalent class of realizations related by502

the action •. Hence, M sits naturally in a quotient space, namely S̃Lm,n,p/(GL(n)×503

O(m)). However, this quotient space is not smooth or even Hausdorff. Recall that if504

a Lie group G acts on a manifold smoothly, properly, and freely, then the quotient505

space has the structure of a smooth manifold [47]. Smoothness of • is obvious. In506

general, the action of a non-compact group such as GL(n) × O(m) is not proper.507

However, one can verify that the rank conditions we imposed in Proposition 1 are508

enough to make • both a proper and free action on the realization submanifolds509

(see [2] for a proof). The resulting quotient manifolds are denoted by dropping the510

superscript ∼, e.g., SLa,mp,min
m,n,p . The next theorem, which is an extension of existing511

results, e.g., in [33] shows that, in fact, we have a principal fiber bundle structure.512

Theorem 1 Let Σ̃m,n,p be as in Proposition1 and Σm,n,p = Σ̃m,n,p/(GL(n) ×513

O(m)) be the corresponding quotient LDS space. The realization-system pair514

(Σ̃m,n,p,Σm,n,p) has the structure of a smooth principal fiber bundle with structure515

group GL(n) × O(m). In the case of SLa,mp,tC
m,n,p the bundle is trivial (i.e., diffeomor-516

phic to a product), otherwise it is trivial only when m = 1 or n = 1.517

The last part of the theorem has an important consequence. Recall that a principal518

bundle is trivial if it diffeomorphic to global product of its base space and its structure519

group. Equivalently, this means that a trivial bundle admits a global smooth cross520
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16 B. Afsari and R. Vidal

section or what is known as a smooth canonical form in the case of LDSs, i.e.,521

a globally smooth mapping s : Σm,n,p → Σ̃m,n,p. This theorem implies that the522

minimality condition is a complicated nonlinear constraint, in the sense that it makes523

the bundle twisted and nontrivial for which no continuous canonical form exists.524

Establishing this obstruction put an end to control theorists’ search for canonical525

forms for MIMO LDSs in the 1970s and explained why system identification for526

MIMO LDSs is a challenging task [11, 15, 36].527

On the other hand, one can verify that (S̃La,mp,tC
m,n,p ,SLa,mp,tC

m,n,p ) is a trivial bundle.528

Therefore, for such systems global canonical forms exist and they can be used to529

define distances, i.e., if s : SLa,mp,tC
m,n,p → S̃La,mp,tC

m,n,p is such a canonical form then530

dSLa,mp,tC
m,n,p

(M1, M2) = d̃S̃La,mp,tC
m,n,p

(s(M1), s(M2)) defines a distance on SLa,mp,tC
m,n,p for531

any distance d̃S̃La,mp,tC
m,n,p

on the realization space. In general, unless one has some532

specific knowledge there is no preferred choice for section or canonical form. If one533

has a group-invariant distance on the realization space, then the distance induced534

from using a cross section might be inferior to the group action induced distance, in535

the sense it may result in artificially larger distance. In the next section we review536

the basic idea behind group action induced distances in our application.537

8.4.1 Group Action Induced Distances538

Figure 8.1a schematically shows a realization bundle Σ̃ and its base LDS space539

Σ . Systems M1, M2 ∈ Σ have realizations R1 and R2 in Σ̃ , respectively. Let us540

assume that a G = GL(n)× O(n)-invariant distance d̃G on the realization bundle is541

given. The realizations, R1 and R2, in general, are not aligned with each other, i.e.,542

d̃G(R1, R2) can be still reduced by sliding one realization along its fiber as depicted543

in Fig. 8.1b. This leads to the definition of the group action induced distance:13
544

dΣ (M1, M2) = inf(P,Θ)∈Gd̃Σ̃ ((P,Θ) • R1, R2) (8.13)545

In fact, one can show that dΣ (·, ·) is a true distance on Σ , i.e., it is symmetric and546

positive definite and obeys the triangle inequality (see e.g., [66]).14
547

The main challenge in the above approach is the fact that, due to non-compactness548

of GL(n), constructing a GL(n) × O(n)-invariant distance is computationally dif-549

ficult. The construction of such a distance can essentially be accomplished by550

defining a GL(n)× O(n)-invariant Riemannian on the realization space and solving551

13 We may call this an alignment distance. However, based on the same principle in Sect. 8.5 we
define another group action induced distance, which we explicitly call the alignment distance. Since
our main object of interest is that distance, we prefer not to call the distance in (8.13) an alignment
distance.
14 It is interesting to note that some of the good properties of the k-nearest neighborhood algorithms
on a general metric space depend on the triangle inequality [21].
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(a) (b)

Fig. 8.1 Over each LDS in Σ sits a realization fiber. The fibers together form the realization space
(bundle) Σ̃ . If given a G-invariant distance on the realization bundle, then one can define a distance
on the LDS space by aligning any realizations R1, R2 of the two LDSs M1, M2 as in (8.13)

the corresponding geodesic equation, as well as searching for global minimizers.15
552

Such a Riemannian metric for deterministic LDSs was proposed in [45, 46]. One553

could also start from (an already invariant) distance on a large ambient space such554

as Pp and specialize it to the desired submanifold Σ of LDSs to get a Riemannian555

manifold on Σ and then thereon solve geodesic equations, etc. to get an intrinsic dis-556

tance (e.g., as reported in [33, 34]). Both of these approaches seem very complicated557

to implement for the case of very high-dimensional LDSs. Instead, our approach558

is to use extrinsic group action induced distances, which are induced from unitary-559

invariant distances on the realization space. For that we recall the notion of reduction560

of structure group on a principal fiber bundle.561

8.4.2 Standardization: Reduction of the Structure Group562

Next, we recall the notion of reducing a bundle with non-compact structure group563

to one with a compact structure group. This will be useful in our geometrization564

approach in the next section. Interestingly, bundle reduction also appears in statistical565

analysis of shapes under the name of standardization [43]. The basic fact is that any566

principal fiber G-bundle (Σ̃,Σ) can be reduced to an OG-subbundle ÕΣ ⊂ Σ̃ ,567

where OG is the maximal compact subgroup of G [44]. This reduction means that568

Σ is diffeomorphic to ÕΣ/OG (i.e., no topological information is lost by going to569

the subbundle and the subgroup). Therefore, in our cases of interest we can reduce570

a GL(n) × O(m)-bundle to an OG(n, m) = O(n) × O(m)-subbundle. We call571

such a subbundle a standardized realization space or (sub)bundle. One can perform572

reduction to various standardized subbundles and there is no canonical reduction.573

15 This problem, in general, is difficult, among other things, because it is a non-convex (infinite-
dimensional) variational problem. Recall that in Riemannian geometry the non-convexity of the arc
length variational problem can be related to the non-trivial topology of the manifold (see e.g., [17]).
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(a) (b)

Fig. 8.2 A standardized subbundle ÕΣm,n,p of Σ̃m,n,p is a subbundle on which G acts via its
compact subgroup OG. The quotient space ÕΣm,n,p/OG still is diffeomorphic to the base space
Σ̃m,n,p . One can define an alignment distance on the base space by aligning realizations R1, R2 ∈
ÕΣm,n,p of M1, M2 ∈ Σm,n,p as (8.15)

However, in each application one can choose an interesting one. A reduction is in574

spirit similar to the Gram-Schmidt orthonormalization [44, Chap. 1]. Figure 8.2a575

shows a standardized subbundle ÕΣ in the realization bundle Σ̃ .576

8.4.3 Examples of Realization Standardization577

As an example consider R = (A, B, C, D) ∈ S̃La,mp,tC
m,n,p , and let C = U P be578

an orthonormalization of C , where U⊤U = In and P ∈ GL(n). Now the new579

realization R̂ = (P−1, Im) • R belongs to the O(n)-subbundle ÕSL
a,mp,tC
m,n,p = {R ∈580

S̃La,mp,tC
m,n,p |C⊤C = In}.581

Other forms of bundle reduction, e.g., in the case of the nontrivial bundle582

S̃La,mp,min
m,n,p are possible. In particular, via a process known as realization balanc-583

ing (see [2, 37]), we can construct a large family of standardized subbundles. For584

example, a more sophisticated one is in the case of S̃La,mp,min
m,n,p via the notion of585

(internal) balancing. Consider the symmetric n × n matrices Wc = C∞C⊤
∞ and586

Wo = O⊤
∞O∞, which are called controllability and observability Gramians, respec-587

tively, and where C∞ and O∞ are called extended controllability and observability588

matrices, respectively (see the definitions in Sect. 8.3.3.1 with k = ∞). Due to the589

minimality assumption, both Wo and Wc are positive definite. Notice that under the590

action •, Wc transforms to P−1Wc P−⊤ and Wo to P⊤Wo P . Consider the function591

h : GL(n) → R defined as h(P) = trace(P−1Wc P−⊤ + P⊤Wo P). It is easy to see592

that h is invariant on O(n). More importantly, it can be shown that any critical point593

P1 of h is global minimizer and if P2 is any other minimizer then P1 = P2 Q for some594

Q ∈ O(n) [37]. Minimizing h is called balancing (in the sense of Helmke). One can595

show that balancing is, in fact, a standardization in the sense that we defined (a proof596
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8 Distances on Spaces of High-Dimensional Linear Stochastic Processes 19

of this fact will appear elsewhere). Note that a more specific form of balancing called597

diagonal balancing (due to Moore [52]) is more common in the control literature,598

however, that cannot be considered as a form of reduction of the structure group.599

The interesting intuitive reason is that it tries to reduce the structure group beyond600

the orthogonal group to the identity element, i.e., to get a canonical form (see also601

[55]). However, it fails in the sense that, as mentioned above, it cannot give a smooth602

canonical form, i.e., a section which is diffeomorphic to SLa,mp,min
m,n,p .603

8.5 Extrinsic Quotient Geometry and the Alignment Distance604

In this section, we propose to use the large class of extrinsic unitary invariant distances605

on a standardized realization subbundle to build distances on the LDS base space.606

The main benefits are that such distances are abundant, the ambient space is not607

too large (e.g., not infinite dimensional), and calculating the distance in the base608

space boils down to a static optimization problem (albeit non-convex). Specifically,609

let d̃̃OΣm,n,p
be a unitary invariant distance on a standardized realization subbundle610

ÕΣm,n,p with the base Σm,n,p (as in Theorem 1). One example of such a distance is611

d̃2
ÕΣm,n,p

(
R1,R2)=λA∥A1− A2∥2

F + λB∥B1−B2∥2
F + λC∥C1−C2∥2

F + λD∥D1−D2∥2
F ,

(8.14)

612

613

where λA,λB,λC ,λD > 0 are constants and ∥ · ∥F is the matrix Frobenius norm.614

A group action induced distance (called the alignment distance) between two LDSs615

M1, M2 ∈ Σm,n,p with realizations R1, R2 ∈ ÕΣm,n,p is found by solving the616

realization alignment problem (see Fig. 8.2b)617

d2
Σm,n,p

(M1, M2) = min
(Q,Θ)∈O(n)×O(m)

d̃2
ÕΣm,n,p

(
(Q,Θ) • R1, R2

)
. (8.15)618

In [39] a fast algorithm is developed which (with little modification) can be used to619

compute this distance.620

Remark 4 We stress that, via the identification of a process with its canonical spec-621

tral factors (Proposition 1 and Theorem 1), dΣm,n,p (·, ·) is (or induces) a distance on622

the space of processes generated by the LDSs in Σm,n,p. Therefore, in the sprit623

of distances studied in Sect. 8.2 we could have written dΣm,n,p ( y1, y2) instead of624

dΣm,n,p (M1, M2), where y1 and y2 are the processes generated by M1 and M2 when625

excited by the standard Gaussian process. However, the chosen notation seems more626

convenient.627

Remark 5 Calling the static global minimization problem (8.15) “easy” in an628

absolute term is oversimplification. However, even this global minimization over629

orthogonal matrices is definitely simpler than solving the nonlinear geodesic ODEs630
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and finding shortest geodesics globally (an infinite-dimensional dynamic631

programming problem). It is our ongoing research to develop fast and reliable algo-632

rithms to solve (8.15). Our experiments indicate that the Jacobi algorithm in [39] is633

quite effective in finding global minimizers.634

In [1], this distance was first introduced on SLa,mp,tC
m,n,p with the standardized635

subbundle ÕSL
a,mp,tC
m,n,p . The distance was used for efficient video sequence clas-636

sification (using 1-nearest neighborhood and nearest mean methods) and clustering637

(e.g., via defining averages or a k-means like algorithm). However, it should be men-638

tioned that in video applications (for reasons which are not completely understood)639

the comparison of LDSs based on the (A, C) part in (8.1) has proven quite effective640

(in fact, such distances are more commonly used than distances based on comparing641

the full model). Theretofore, in [1], the alignment distance (8.15) with parameters642

λB = λD = 0 was used, see (8.14). An algorithm called the align and average is643

developed to do averaging on SLa,mp,tC
m,n,p (see also [2]). One defines the average M̄ of644

LDSs {Mi }N
i=1 ⊂ SLa,mp,tC

m,n,p (the so-called Fréchet mean or average) as a minimizer645

of the sum of the squares of distances:646

M̄ = argminM

N∑

i=1

d2
SLa,mp,tC

m,n,p
(M, Mi ). (8.16)647

The align and average algorithm is essentially and alternative minimization algorithm648

to find a solution. As a result, in each step it aligns the realizations of the LDSs Mi649

to that of the current estimated average, then a Euclidean average of the aligned650

realizations is found and afterwards the found C matrix is orthonormalized, and the651

algorithm iterates these steps till convergence (see [1, 2] for more details). A nice652

feature of this algorithms is that (generically) the average LDS M̄ by construction will653

be of order n and minimum phase (and under certain conditions stable). An interesting654

question is whether the average model found this way is asymptotically stable, by655

construction. The answer most likely, in general, is negative. However, in a special656

case it can be positive. Let ∥A∥2 denote the 2-norm (i.e., the largest singular value)657

of the matrix A. In the case the standardized realizations Ri ∈ ÕSL
a,mp,tC
m,n,p , (1 ≤658

i ≤ N ) are such that ∥Ai∥2 < 1(1 ≤ i ≤ N ), then by construction the 2-norm of659

the A matrix of the average LDS will also be less than 1. Hence, the average LDS660

will be asymptotically stable. Moreover, as mentioned in Sect. 8.4.3, in the case of661

SLa,mp,min
m,n,p we may employ the subbundle of balanced realizations as the standardized662

subbundle. It turns out that in this case preserving stability (by construction) can be663

easier, but the averaging algorithm gets more involved (see [2] for some more details).664

Obviously, the above alignment distance based on (8.14) is only an example. In a665

pattern recognition application, a large class of such distances can be constructed and666

among them a suitable one can be chosen or they can be combined in a machine learn-667

ing framework (such distances may even correspond to different standardizations).668
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8.5.1 Extensions669

Now, we briefly point to some possible directions along which this basic idea can670

be extended (see also [2]). First, note that the Frobenius norm in (8.14) can be671

replaced by any other unitary invariant matrix norm (e.g., the nuclear norm). A less672

trivial extension is to get rid of O(m) in (8.15) by passing to covariance matri-673

ces. For example, in the case of ÕSL
a,mp,tC
m,n,p it is easy to verify that SLa,mp,tC

m,n,p =674

ÕSL
a,mp,tC,cv
m,n,p /(O(n)× Im), where ÕSL

a,mp,tC,cv
m,n,p = {(A, Z , C, S)|(A, B, C, D) ∈675

ÕSL
a,mp,tC
m,n,p , Z = B B⊤, S = DD⊤}. On this standardized subspace one only has the676

action of O(n) which we denote as Q ⋆ (A, Z , C, S) = (Q⊤ AQ, Q⊤Z Q, C Q, S).677

One can use the same ambient distance on this space as in (8.14) and get678

d2
Σm,n,p

(M1, M2) = min
Q∈O(n)

d̃2
ÕΣm,n,p

(
Q ⋆ R1, R2

)
, (8.17)679

for realizations R1, R2 ∈ ÕSL
a,mp,tC,cv
m,n,p . One could also replace the ∥ · ∥F in the680

terms associated with B and D in (8.14) with some known distances in the spaces681

of positive definite matrices or positive-semi-definite matrices of fixed rank (see682

e.g., [14, 63]). Another possible extension is, e.g., to consider other submanifolds683

of ÕSL
a,mp,tC
m,n,p , e.g., a submanifold where ∥C∥F = ∥B∥F = 1. In this case the684

corresponding alignment distance is essentially a scale invariant distance, i.e., two685

processes which are scaled version of one another will have zero distance. A more686

significant and subtle extension is to extend the underlying space of LDSs of fixed687

size and order n to that of fixed size but (minimal) order not larger than n. The details688

of this approach will appear a later work.689

8.6 Conclusion690

In this paper our focus was the geometrization of spaces of stochastic processes691

generated by LDSs of fixed size and order, for use in pattern recognition of high-692

dimensional time-series data (e.g., in the prototype Problem 1). We reviewed some693

of the existing approaches. We then studied the newly developed class of group694

action induced distances called the alignment distances. The approach is a general695

and flexible geometrization framework, based on the quotient structure of the space696

of such LDSs, which leads to a large class of extrinsic distances. The theory of697

alignment distances and their properties is still in early stages of development and698

we are hopeful to be able to tackle some interesting problems in control theory as699

well as pattern recognition in time-series data.700
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