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Abstract. We study the problem of finding the global Riemannian center of mass of a set of
data points on a Riemannian manifold. Specifically, we investigate the convergence of constant step-
size gradient descent algorithms for solving this problem. The challenge is that often the underlying
cost function is neither globally differentiable nor convex, and despite this one would like to have
guaranteed convergence to the global minimizer. After some necessary preparations we state a
conjecture which, we argue is the best convergence condition (in a specific described sense) that
one can hope for. The conjecture specifies conditions on the spread of the data points, step-size
range, and the location of the initial condition (i.e., the region of convergence) of the algorithm.
These conditions depend on the topology and the curvature of the manifold and can be conveniently
described in terms of the injectivity radius and the sectional curvatures of the manifold. For 2-
dimensional manifolds of nonnegative curvature and manifolds of constant nonnegative curvature
(e.g., the sphere in Rn and the rotation group in R3) we show that the conjecture holds true. For
more general manifolds we prove convergence results which are weaker than the conjectured one (but
still superior over the available results). We also briefly study the effect of the configuration of the
data points on the speed of convergence. Finally, we study the global behavior of the algorithm on
certain manifolds proving (generic) convergence of the algorithm to a local center of mass with an
arbitrary initial condition. An important aspect of our presentation is our emphasize on the effect
of curvature and topology of the manifold on the behavior of the algorithm.
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1. Introduction. The (global) Riemannian center of mass (a.k.a. Riemannian
mean or average or Fréchet mean)1 of a set of data points {xi}Ni=1 in a Riemannian
manifold M is defined as the set of points which minimize the sum of squares of
geodesic distances to the data points. This notion and its variants have a long history
with several applications in pure mathematics (see e.g., [8, 25, 28, 30] and also [3] for a
brief history and some new results). More recently, statistical analysis on Riemannian
manifolds and, in particular, the Riemannian center of mass have found applications
in many applied fields. These include fields such as computer vision (see e.g., [48, 47]),
statistical analysis of shapes (see e.g., [29, 33, 10, 24, 9]), medical imaging (see e.g.,
[21, 38]), and sensor networks (see e.g., [46, 43]) and many other general data analysis
applications (see e.g., [31, 2, 12, 37]). In these applied settings one often needs to
numerically locate or compute the Riemannian center of mass of a set of data points
lying on a Riemannian manifold.

∗This work supported in part by grants NSF CAREER # 0447739, NSF CNS # 0834470, ONR
# N00014-05-10836, ONR # N00014-09-1-0084, and # NSF ECCS-0941463.

†Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA (email: {bijan,
rvidal}@ cis.jhu.ed).

‡GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA (email: tron@seas.upenn.edu).
This work was done while Roberto Tron was with the Center for Imaging Science at Johns Hopkins.

1For most of this paper we are mainly interested in the “global” Riemannian center of mass,
hence in reference to it very often we drop the term “global” and simply use “Riemannian center
of mass,” etc. If need arises we explicitly use the term “local” in reference to a center which is not
global, necessarily (see Definition 2.5).

1



2 B. Afsari, R. Tron, and R. Vidal

If the data points are localized enough, then their global Riemannian center of
mass is a unique point x̄ ∈ M , which is also close to the data points. One can think of
locating x̄ using a constant step-size (intrinsic) gradient descent algorithm, which is
the most popular and easiest version of gradient descent method. The main challenge,
here, is that the underlying cost function is usually neither globally differentiable 2

nor globally convex on the manifold.3 In fact, as it can be shown by simple examples,
the cost function can have local minimizers, which are not of interest and should be
avoided. Nevertheless, we expect and hope that if the algorithm is initialized close
enough to the (unknown) global Riemannian center of mass x̄ and the step-size is
small enough, then the algorithm should converge to the center. One would like to
have the step-size small enough so that the cost is reduced at each step and at the
same time the iterates do not leave a neighborhood around x̄ in which x̄ is the only
zero of the gradient of the cost function (recall that a gradient descent algorithm, at
best, can only locate a zero of the gradient vector field of the cost function). On the
other hand, one would like to have large enough step-size so that the convergence is
fast. The interplay between these three constraints is important in determining the
conditions guaranteeing convergence as well as the speed of convergence. The goal of
this paper is to give accurate conditions that guarantee convergence of the constant
step-size gradient algorithm to the global Riemannian center of mass of a set of data
points.

1.1. Outline. In §2, we first briefly give the necessary backgrounds on the Rie-
mannian center of mass and the gradient descent algorithm for finding it, these in-
clude the notions of convex functions and sets in §2.1.2, differentiability and convexity
properties of the Riemannian distance function and bounds on its Hessian in §2.1.3,
Riemannian center of mass and its properties in §2.1.4, a general convergence the-
orem for gradient descent in §2.1.5, a convergence theorem estimating the speed of
convergence and the best step-size in §2.1.6, a comment on the role of contraction
mapping in the convergence of the algorithm in §2.1.7. Following that, in §2.2, we
state Conjecture 2.15 in which we specify the best “condition for convergence” one can
hope for (in a sense to be described). Specifically, we specify a bound on the radius
of any ball around the data points in which the algorithm can be initialized together
with an interval of allowable step-sizes so that the algorithm converges to the global
center of mass x̄. The significant point is that for convergence, the radius of the ball
does not need to be any smaller than what ensures existence and uniqueness of the
center. Moreover, the step-size can be chosen equal to the best (in a specific described
sense) step-size under the extra assumption that the iterates stay in that ball; 4 and
it is conjectured that, indeed, the iterates stay in the ball. 5 Knowing the conjecture
helps us to compare and evaluate the existing results mentioned in §2.3 as well as the
results derived in this paper. In §3 (Theorem 3.7), we prove Conjecture 2.15 for the
case of manifolds of constant nonnegative curvature as well as 2-dimensional mani-

2For us global differentiability means differentiability everywhere on the manifold; however, we
use the term “global” to remind ourselves that our functions of interest (e.g., the Riemannian distance
from a point) may lose differentiability at faraway distances.

3In fact, it is well known that on a compact Riemannian manifold the only globally continuous
convex functions are constant functions (see Theorem 2.2 and [51]).

4This step-size, in general, depends on an upper bound on the sectional curvatures of the manifold
and the radius of the mentioned ball. However, interestingly, for a manifold of nonnegative curvature
it is simply 1 (see Conjecture 2.15).

5The main challenge in proving this conjecture is to prove that the iterates stay in the ball
containing the data points.
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folds of nonnegative curvature. In our developments in this section, we first prove
comparison Theorem 3.1 in §3.1. This comparison result (which differs from standard
comparison theorems in some aspects) most likely has been known among geometers,
but we could find neither its statement nor a proof for it in the literature. In §3.2 we
make sense of an intuitive notion of Riemannian convex combination of a set of data
points in the mentioned manifolds and we explore its relation to the convex hull of the
data points. These prepare us to prove the main theorem of the section, Theorem 3.7,
in §3.3. Although limited in scope, this result covers some very important manifolds
of practical interest: Sn the unit sphere in R

n+1, SO(3) the group of rotations in R
3,

and RP
n the real projective space in R

n+1. In Section §4, for more general manifolds,
we derive two classes of sub-optimal convergence conditions: In §4.1 we give a result
(Theorem 4.1) in which convergence is guaranteed at the expense of smaller spread
of data points, whereas in §4.2 (Theorem 4.2) the allowable step-size is compromised
to guarantee convergence. In §5 we study how (as a result of curvature) for data
points having an elongated configuration the convergence can be slow. Finally, in §6,
we slightly deviate from the main theme of the paper and study global convergence
(i.e., with arbitrary initial condition) of the algorithm. In this case guaranteed con-
vergence to the global center is out of question and the difficulties associated with
non-differentiability of the cost function become more visible. Nevertheless, for certain
manifolds (e.g., Sn and SO(3)) we show that the constant step-size gradient descent
algorithm behaves (more or less) desirably and under generic conditions converges to
a local center of mass.

2. Preliminaries, a conjecture, and prior work.

2.1. Preliminaries on the Riemannian Center of Mass and the Gradient
Descent Algorithm.

2.1.1. Notations and Conventions. Let M be an n-dimensional complete6

Riemannian manifold with distance function d.7 In view of the Hopf-Rinow Theorem
[42, p. 84], by “complete” more precisely we mean complete and connected. We denote
the tangent space at x ∈ M by TxM and by 〈·, ·〉 and ‖ · ‖ we mean the Riemannian
structure and the corresponding norm, respectively (dependence on the base point is
implicit and clear from the context). By a Ck function in a subset of M we mean
a continuous function which is kth order continuously differentiable in the subset as
commonly understood in differential geometry. For a function f : M → R, ∇f denotes
its gradient vector field with respect to 〈·, ·〉. By eigenvalues of the Hessian of f at
x we mean the eigenvalues of its Hessian -a bilinear form in TxM - represented by
a symmetric matrix in an orthogonal basis of TxM .8 We assume that the sectional
curvatures of M are bounded from above and below by ∆ and δ, respectively. The
exponential map of M at x ∈ M is denoted by expx(·) : TxM → M and its inverse
(wherever defined) is denoted by exp−1

x (·). The injectivity radius of M is denoted by
injM and we assume injM > 0. An open ball with center o ∈ M and radius ρ is

6Completeness of the manifold is not necessary for most of our results (since they are local) and
our results could be easily adapted to e.g., non-singular regions of a singular manifold. However, for
this purpose the statements of our results could become rather cumbersome.

7In our definitions relating to Riemannian manifolds we mainly follow [42].
8While in (Euclidean) optimization literature “an eigenvalue of the Hessian” is a familiar term, in

Riemannian geometry literature this term is not used since the quantity it refers to is not intrinsically
defined (because it is only invariant under orthogonal change of coordinates in the tangent space and
not more general linear change of coordinates). However, in this paper, considering the possible
background of our readers, we prefer to use this term (with careful attention to its exact meaning).



4 B. Afsari, R. Tron, and R. Vidal

denoted by B(o, ρ) and its closure by B̄(o, ρ). By X>, ‖X‖F , and ‖X‖2 for a matrix
X we mean its transpose, Frobenius norm, and 2-norm, respectively.

2.1.2. Convex functions and sets in Riemannian manifolds. Convexity
plays an important role in our developments and we have the following definition:

Definition 2.1. Let A be an open subset of M such that every two points in A
can be connected by at least one geodesic of M such that this geodesic lies entirely in
A. Assume that f : A → R is a continuous function. Then f is called (strictly) convex
if the composition f ◦γ : [0, 1] → R is (strictly) convex for any geodesic γ : [0, 1] → A.
We say that f is globally (strictly) convex if it is (strictly) convex in M .

If f is C2 in A, then convexity (strict convexity) of f is equivalent to d
2

dt2
f(γ(t))|t=0 ≥

0 (> 0), where γ : [0, 1] → A is any geodesic in A.
An insightful fact is the following [51]:
Theorem 2.2. The only globally convex function in a compact Riemannian

manifold is a constant function.
Therefore, at least on compact manifolds, we have no hope in building globally

convex functions. However, if we restrict ourselves to smaller subsets of M , we can
build nontrivial convex functions. For that purpose, strongly convex subsets of M are
particularly suitable, because they are quite similar to standard convex sets in R

n:
Definition 2.3. A set A ⊂ M is called strongly convex if any two points in A

can be connected by a unique minimizing geodesic in M and the geodesic segment lies
entirely in A.

Define

rcx =
1

2
min{injM,

π√
∆
}, (2.1)

with the convention that 1√
∆

= ∞ for ∆ ≤ 0. An open ball B(o, ρ) with ρ ≤ rcx is

strongly convex in M ; the same holds for any closed ball B̄(o, ρ) if ρ < rcx (see e.g.,
[42, p. 404] and [14, pp. 168-9]). In fact, B(o, ρ) with ρ ≤ rcx is even more similar to
a convex set in Euclidean space: for any x, y ∈ B(o, ρ) the minimal geodesic from x
to y is the only geodesic connecting them which lies entirely in B(o, ρ).

2.1.3. Differentiability and convexity properties of the distance func-
tion and estimates on its Hessian. Now, we briefly give some facts about the
Riemannian distance function which will be used throughout the paper. Let y ∈ M .
The function x 7→ d(x, y) is continuous for every x ∈ M and it is differentiable (in
fact C∞) in M \ ({y}∪Cy), where Cy is the cut locus of y (see e.g., [42, pp. 108-110]).

We recall the notion of cut locus: Let D̃y ∈ TyM be the largest (star-shaped) domain

containing the origin of TyM in which expy : Ty → M is a diffeomorphism, and let C̃y

be the boundary of D̃y. Then Cy = expy(C̃y) is called the cut locus of y and x ∈ Cy is

called a cut point of y. One has M = expy(D̃y∪ C̃y) (see e.g., [14, pp. 117-118] or [42,
p. 104]). The distance between y and Cy is called the injectivity radius of y denoted
by injy, and by definition injM = infy∈M injy. It is well known that Cy is a closed set
in M of measure zero; therefore, the distance function is smooth almost everywhere in
M and it is Lipschitz continuous in M . In a general manifold M the differentiability
property of x 7→ d(x, y) at x = y is similar to the case where M = R

n equipped
with the standard Euclidean metric; in particular, x 7→ 1

2d
2(x, y) is a C∞ function

in M \ Cy. However, the behavior at far away points (namely, close to the cut locus)
is of substantially different nature and depends on the topology and curvature of M
(recall that in Euclidean space the cut locus of every point is empty). As a matter
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of fact, the cut locus of any point contains all information about the topology of M .
Understanding the cut locus is difficult in general, but it is known that there are two
types of cut points: ordinary and singular [11]. Let x ∈ Cy, then x is an ordinary cut
point of y if there are at least two minimal geodesics from x to y, otherwise x is called
a singular cut point. For example, on the unit sphere S

n the cut locus of every point
is its antipode which is an ordinary cut point. It is known that ordinary cut points
of y are dense in Cy. The distance function clearly is not differentiable at an ordinary
cut point, but in general it can be C1 (but not C2) at a singular cut point [11].

Next, we recall some useful estimates about the Hessian of the Riemannian dis-
tance function. We adopt the following definitions:

snκ(l) =











1√
κ
sin(

√
κl) κ > 0

l κ = 0
1√
|κ|

sinh(
√

|κ|l) κ < 0
ctκ(l) =







√
κ cot(

√
κl) κ > 0

1
l

κ = 0
√

|κ| coth(
√

|κ|l) κ < 0,

(2.2)
and

bκ(l) =

{ √
κl cot(

√
κl) κ ≥ 0

1 κ < 0
cκ(l) =

{

1 κ ≥ 0
√

|κ|l coth(
√

|κ|l) κ < 0.
(2.3)

Assume that x ∈ M (distinct from y) is such that d(x, y) < min{injy, π√
∆
}.9

Furthermore, assume that t 7→ γ(t) with γ(0) = x is a unit speed geodesic making, at
x, an angle β with the minimal geodesic from y to x. It can be proved that (see e.g.,
[42, pp. 152-154])

ct∆(d(x, y)) sin
2 β ≤ d2

dt2
d(γ(t), y)

∣

∣

t=0
≤ ctδ(d(x, y)) sin

2 β, (2.4)

where ctκ is defined in (2.2). Based on the above one can verify that

b∆(d(x, y)) ≤
d2

dt2
(1

2
d2(γ(t), y)

)∣

∣

t=0
≤ cδ(d(x, y)), (2.5)

and more generally that

d
p−2(x, y)min{p−1,b∆(d(x, y))} ≤

d2

dt2
(1

p
d
p(γ(t), y)

)∣

∣

t=0
≤ d

p−2(x, y)max{p−1, cδ(d(x, y))}.

(2.6)

We will use these two relations very often; in doing so it is useful to have in mind
that bκ(l) and cκ(l), respectively, are decreasing and increasing in l.

Remark 2.4. We emphasize that although in the left hand side of the above
bounds only ∆ appears explicitly both the curvature and topology ofM determine the
convexity properties of the distance function. Specifically, the requirement d(x, y) <
injy should not be overlooked (in particular, since at a cut point the distance function
often becomes non-differentiable). Notice that ∆ gives (some) information about the
Riemannian curvature tensor of M and injy (or injM) gives (some) information about
the topology of M . For example, R and the unit circle S

1 both have zero sectional
curvature, while injS1 = π and the injectivity radius of R is infinity. Now obviously
x 7→ 1

2d
2(x, y) in R is globally convex, while in S

1 it is not (as seen directly or as a

9Instead of this condition, it is often more convenient to require d(x, y) < min{injM, π√
∆
}, which

is a more conservative yet global version of the condition.
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consequence of Theorem 2.2). The interesting fact is that x 7→ 1
2d

2(x, y) has positive
definite Hessian in S

1 \ {y′}, where y′ is the antipodal point of y, but since at y′ it is
not differentiable, it is not (globally) convex over S1.

2.1.4. Riemannian Lp center of mass. We start by the following definition:
Definition 2.5. The (global) Riemannian Lp center of mass or mean (a.k.a.

Fréchet mean) of the data set {xi}Ni=1 ⊂ M with respect to weights 0 ≤ wi ≤ 1

(
∑N

i=1 wi = 1) is defined as the minimizer(s) of

fp(x) =

{

1
p

∑N
i=1 wid

p(x, xi) 1 ≤ p < ∞
maxi d(x, xi) p = ∞,

(2.7)

in M . We denote the center by x̄p. We call a local minimizer of fp a local center of
mass of the data set with respect to the weights.10

The reader is referred to [3] for details and other related definitions. As a conven-
tion when referring to the center of mass of some data points we usually do not refer
to explicit weights unless needed. As another convention when p is not specified we
assume p = 2, which is the most commonly used case. Although p = 1 and p = ∞ are
also used often, in this paper our focus is limited to 2 ≤ p < ∞. The reason is that
in our analysis we require fp to be twice-continuously differentiable (in a small region
at least) and we determine the constant step-size of the gradient algorithm in terms
of the upper bounds on the eigenvalues Hessian of fp. As in the Euclidean case, in
the more general Riemannian case also one can see from (2.6) that for 1 ≤ p < 2 the
Hessian of fp might be unbounded. It is known that Lipschitz continuous gradient
(in particular bounded Hessian) is necessary for the convergence of a gradient descent
method with constant-step size [41].

Although fp : M → R is a globally convex function when M is a Euclidean space
(or more generally an Hadamard manifold) it is not globally convex when M is an
arbitrary manifold. In particular, the center of mass might not be unique; however,
if the data points are close enough, then the center is unique. The following theorem
gives sufficient conditions for existence and uniqueness of the Riemannian center of
mass.

Theorem 2.6. Let 2 < p < ∞. Consider {xi}Ni=1 ⊂ B(o, ρ) and assume 0 ≤
wi ≤ 1 with

∑N
i=1 wi = 1. If ρ ≤ rcx, then the Riemannian Lp center of mass x̄p is

unique, is inside B(o, ρ), and is the unique zero of the gradient vector field ∇fp in
B̄(o, ρ). Moreover if no data point has weight 1, then x̄p is a non-degenerate critical
point of fp (i.e., the Hessian of fp at x̄p is positive-definite). 11

10Overall, there is no consensus among authors about the terminology and we find it more con-
venient to use “local” and “global” Riemannian center of mass as defined here. A local minimizer
of fp in M is sometimes called a Karcher mean, although this definition bears little relation with
the way Grove and Karcher [25] or Karcher [28] originally defined what they called the Riemannian
center of mass (see also [3] for more details). Given {xi}Ni=1

⊂ B(o, ρ) with small enough ρ those
authors defined the center of mass as a zero of ∇f2 in B̄(o, ρ) or alternatively as a local minimizer
of f2 in B̄(o, ρ). Notice that since f2 might not be differentiable at the cut locus of each data point
it is not a-priori clear that, in general, a local or global minimizer of f2 in M should coincide with
a zero of ∇f2. It is known that on the circle S

1 a local minimizer of f2 always coincides with a zero
of its gradient (i.e., it is a smooth critical point of f2, see e.g., [27, 13] and also our Theorem 6.3).

11In Theorem 2.1 in [3], the condition on ρ is stated as ρ < rcx, but since we have a finite number
of data points the current version follows immediately. Also from the statement of the theorem, x̄p

is the only zero of ∇fp in B(o, ρ), but from the proof of the it can be seen that the vector field −∇fp
is inward-pointing on the boundary of B(o, ρ), and hence x̄p is the only zero in the entire B̄(o, ρ).
Similarly, the fact about non-degeneracy is not present in the statement of the theorem, however, it
is proved in its proof.
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For a proof see [3]. Also for 1 ≤ p < 2 and p = ∞ see [3] and [50]. We refer the
reader to [50, 26, 20] and [7] for algorithms for p = 1 and p = ∞, respectively.

2.1.5. Gradient descent algorithm for finding the Riemannian center
of mass. For later reference we derive the intrinsic gradient descent algorithm for
locating the Riemannian Lp center of mass (see [1] or [49] for an introduction to
optimization on Riemannian manifolds). One can check that

∇fp(x) = −
N
∑

i=1

wid
p−2(x, xi) exp

−1
x xi, (2.8)

for any x ∈ M as long as it is not in the cut locus of any of the data points. In
particular, if {xi}Ni=1 ⊂ B(o, ρ), where ρ < injM

2 , then for any x ∈ B(o, ρ) the above
expression is well defined in the classical sense (i.e., it is uniquely defined, cf. §6.2).
Notice that the above expression is well defined for almost every x ∈ M , because
the set at which fp is not differentiable has measure zero (for p > 1 this set is ∪iCxi

and for p = 1 it is ∪iCxi
∪ {xi}i). As we will see this non-differentiability has severe

implications on the behavior of the constant step-size gradient descent.
Algorithm 1 is a gradient descent algorithm for locating the Riemannian Lp center

of mass of {xi}Ni=1.

1. Consider {xi}Ni=1 ⊂ B(o, ρ) ⊂ M and weights {wi}Ni=1

(0 ≤ wi ≤ 1,
∑N

i w=1). Choose x0 ∈ M .
2. if ∇fp(x

k) = 0 then stop, else set

xk+1 = expxk(−tk∇fp(x
k)) (2.9)

where tk > 0 is an “appropriate” step-size and ∇fp(·) is
defined in (2.8).

3. goto step 2.

Algorithm 1: Gradient descent for finding the Riemannian Lp center of mass.

Besides practical considerations (e.g., stopping criterion), at least two important
issues are left unspecified in Algorithm 1, namely, how to choose x0 and how to choose
tk for each k. The most natural choice for x0 is one point in B(o, ρ), say one of the
data points (unless when p = 1). Note that in practice o and the exact value of ρ
might not be known.

The choice of tk is more complicated. The next general proposition gives a pre-
scription for a step-size interval which ensures reducing the cost function at an itera-
tion of a the algorithm, provided one knows an upper bound on the eigenvalues of the
Hessian of the cost function in a region in which the iterates live. The proof of this
proposition follows from the second order Taylor series expansion (with remainder).

Proposition 2.7. Let x ∈ M and consider an open neighborhood S ⊂ M con-
taining x. Let f : M → R be a function whose restriction to S is twice-continuously
differentiable and let the real number HS be an upper bound on the eigenvalues of
the Hessian of f in S. There exists tx,S > 0 such that for all t ∈ [0, tx,S) the curve
t 7→ expx(−t∇f(x)) does not leave S and

f(expx(−t∇f(x))) ≤ f(x)− ‖∇f(x)‖2t+ HS‖∇f(x)‖2
2

t2. (2.10)
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For t ∈ (0,min{tx,S, 2
HS

}), with the convention that 1
HS

= +∞ for HS ≤ 0, we have
f(expx(−t∇f(x))) ≤ f(x) with equality only if x is a critical point of f . Moreover,
when HS > 0 the right hand side of (2.10) is minimized for t = 1

HS
.

Notice that the fact that for t ∈ [0, tx,S) the curve t 7→ expx(−t∇f(x)) stays in S
is crucial in enabling us to use the upper bound HS and derive (2.10). This concept
appears frequently in our analysis and it is useful to have the following definition:

Definition 2.8. Let xk ∈ S ⊂ M . We say that iterate xk+1 of Algorithm 1 stays
in S if xk+1 = expxk(−tk∇fp(x

k)) ∈ S. We say that the iterate xk+1 of Algorithm
1 continuously stays in S if expxk(−s∇fp(x

k)) ∈ S for s ∈ [0, tk]. Obviously,
continuously staying in S is stronger than staying in S. However, they are equivalent
under some conditions:

Proposition 2.9. If S is a strongly convex set and tk‖∇fp(x
k)‖ < injM for

every k ≥ 0, then for the iterates of Algorithm 1 staying in S implies (and hence is
equivalent to) continuously staying in S.

Proof. Assume that xk and xk+1 both belong to S. Recall that t 7→expx(−t∇fp(xk))
for t ∈ [0, tk] is a minimizing geodesic if tk‖∇fp(x

k)‖ < injM . Therefore, by strong
convexity of S, t 7→ expx(−t∇fp(x

k)) for t ∈ [0, tk] must be the only minimizing
geodesic between xk and xk+1 and must lie in S entirely.

The following convergence result is a standard one when the cost is C2 (or at
least has Lipschitz gradient) and is globally convex; however, our version is adapted
to fp which, in general, is neither globally C2 nor convex. The assumption of the
theorem that each iterate of the algorithm continuously stays in a neighborhood S of
x̄p, in which x̄p is the only zero of ∇fp, is a crucial enabling ingredient of the proof.
In fact, our goal in §3 and §4 is essentially to identify such a neighborhood (under
certain conditions).

Theorem 2.10. Let 2 ≤ p < ∞ and assume that x̄p is the center of mass of
{xi}Ni=1 ⊂ B(o, ρ), where ρ ≤ rcx. Let S be a bounded open neighborhood of x̄p such
that fp is C2 in S and C1 in S̄, the closure of S. Furthermore, assume that x̄p is the
only zero of the vector field ∇fp in S̄. Let HS be an upper bound on the eigenvalues
of the Hessian of fp in S. In Algorithm 1 choose tk = t ∈ (0, 2

HS
). If starting from

x0 ∈ S, each iterate of Algorithm 1 continuously stays in S, then fp(x
k+1) ≤ fp(x

k)
for k ≥ 0 with equality only if xk = x̄p, and xk converges to x̄p.

Proof. Since by assumption xk ∈ S for k ≥ 0 and S̄ is compact, there is a
subsequence 〈xkj 〉kj

converging to a point x∗ ∈ S̄. By Proposition 2.7 we have
fp(x

k+1) ≤ fp(x
k) with equality only if xk = x̄p, and furthermore

t(1− HSt

2
)

k
∑

j=1

‖∇fp(x
j)‖2 ≤ fp(x

k+1)− fp(x
0), (2.11)

for every k ≥ 0. Since 〈fp(xk)〉k is a bounded sequence, the above implies that
‖∇fp(x

k)‖ → 0; hence, by continuity of ∇fp we have ‖∇fp(x
∗)‖ = 0, that is, x∗ is a

zero of ∇fp in S̄. But by the assumption about S this means that x∗ coincides with x̄p

and therefore xkj → x̄p. Notice that by the same argument any infinite subsequence
of 〈xk〉k has a subsequence which converges to x̄p. But that is enough to complete the
proof, because if 〈xk〉k does not converge to x̄p, there must be an ε > 0 and an infinite
subsequence of 〈xk〉k which stays away from B(x̄p, ε), and that cannot happen.

Next, we give a very simple but insightful example.
Example 2.11 (Finding the mean of two points on the unit circle S1). LetM be the

unit circle S
1 centered at the origin (0, 0) and equipped with the standard arc length
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distance d. Recall that ∆ = 0 and injM = π. Let o denote the point (1, 0) (see Figure
2.1). We consider two data points x1, x2 ∈ S

1 represented as xi = (cos θi, sin θi)
(i = 1, 2) where 0 < θ1 < ρ ≤ π

2 and θ2 = −θ1. We specify the weights and θ1
later. Under the mentioned assumption that ρ ≤ π

2 , Theorem 2.6 guarantees that
the center of mass x̄ is unique and in fact one can see that x̄ = (cos θ̄, sin θ̄) where
θ̄ = w1θ1 + w2θ2. More importantly, it also follows that x̄ is the unique zero of ∇f2
in B(o, ρ) (as well as B(o, π

2 )). Notice that f2 is smooth within B(o, π − θ1) (it does
not follow from Theorem 2.6 but it is an easily verifiable fact that x̄ is the unique
zero of ∇f2 in B(o, π − θ1)). On the other hand, f2 is not differentiable at x′

1 and
x′
2, the antipodal points of x1 and x2, respectively. Furthermore, in S

1 \ {x′
1, x

′
2}

the Hessian of f2 is defined and is equal to 1, hence the largest possible range of the
constant step-size tk = t is the interval (0, 2). Next, we see under what conditions
Theorem 2.10 applies. It is easy to check that, independent of the weights, with
x0 ∈ B(o, ρ) and step-size tk = t ∈ (0, 1] the iterates of Algorithm 1 continuously stay
in B(o, ρ). Therefore, an acceptable S is the ball B(o, ρ) and Theorem 2.10 ensures
convergence to the global center x̄ provided step-size t is in the interval (0, 1]. This
result is essentially not different from what we have in R. However, the situation for
t ∈ (1, 2) is rather subtle since with a large step-size the iterates might leave the ball
B(o, ρ) or even B(o, π − θ1) and enter a region in which there is another zero of ∇f2.
To be specific notice that f2 can be parameterized with θ ∈ (−π,+π] as

f2(θ) =
1

2







w1(θ − θ1 − 2π)2 + w2(θ − θ2)
2 −π < θ ≤ θ1 − π

w1(θ − θ1)
2 + w2(θ − θ2)

2 θ1 − π ≤ θ ≤ θ2 + π
w1(θ − θ1)

2 + w2(θ − θ2 + 2π)2 θ2 + π ≤ θ ≤ π.
(2.12)

Now, let us fix θ1 = 2π
5 (and θ2 = − 2π

5 ). First, let w1 = 1
10 and w2 = 9

10 . The solid
curve in the right panel in Figure 2.1 shows the graph of f2(θ). The two cranks in the
curve at θ′1 = −3π

5 and θ′2 = 3π
5 are due to the non-differentiability of f2 at antipodal

points of x1 and x2. If we run Algorithm 1 with x0 = x1 and step-size t = 25
18 we have

x1 = x′
1, thus x

1 coincides with a non-differentiable critical point of f2 at which the
algorithm is, in fact, not well defined. In the generic setting the probability of this
happening is zero; however, for larger t, x1 will leave B(o, π− θ1). It can be seen that
for this specific pair of weights ∇f2 has only one zero in S

1. Consequently, in practice,
Algorithm 1 for almost every initial condition in S

1 and step-size tk = t in the interval
(0, 2) will find the global center of mass x̄ = (cos θ̄, sin θ̄), where θ̄ = −8π

25 (this fact
does not follow from Theorem 2.10 but is not difficult to verify in this special case,
see also §6 and Corollary 6.7). But we might not be this lucky always! For example,
let w1 = 1

4 and w2 = 3
4 . The dashed curve in Figure 2.1 shows f2(θ) for this pair

of weights. One can verify that in addition to the global minimizer θ̄ = −π
5 , this

time, f2(θ) has a local minimizer (which is not global) at θ̄′ = −7π
10 . Now if we run

Algorithm 1 with x0 = x1 and constant step-size tk = t, where t = 11
6 , then we have

x1 = −7π
10 , i.e., the next iterate coincides with the local center x̄′ = (cos θ̄′, sin θ̄′)

and the algorithm gets stuck at the wrong center! For values of t slightly smaller or
larger than 11

6 the algorithm still converges to x̄′. Notice that this happens despite
the fact that the cost is reduced at each iteration.12 This simple example only shows
the difficulties stemming from the topology of a manifold and not from its curvature.

12It would be interesting to see whether an example exists in which due to the non-differentiability
of f2, we have f2(x1) > f2(x0) if x1 does not continuously stay in S. Such a phenomenon could
lead to an oscillatory behavior (see §6). In §6.2 we show that in S1 and certain other manifolds this
situation cannot happen.
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Nevertheless, it should be clear that in order for Algorithm 1 to have a predictable or
desirable behavior which is as data-independent as possible it is important to identify
conditions under which the assumptions of Theorem 2.10 are satisfied (mainly that
the iterates continuously stay in a candidate S).

• •

••

x
′
1 x2

x
′
2

x̄

o = (0, 1)

x̄
′

•

x1••

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

θ/π

f
2
(θ)

 

 

w
1
=1/10,w

2
=9/10

w
1
=1/4,w

2
=3/4

Fig. 2.1: The left panel shows the configuration of data points x1 and x2 in Example
2.11 and the right panel is the graph of f2(θ) for two different pairs of weights. The
function f2 is non-differentiable at x′

1 and x′
2, the antipodal points of x1 and x2.

The example shows that if the step-size is large the iterates might leave the region in
which f2 is smooth and the algorithm might converge to x̄′, a local center of x1 and
x2, instead of the global center x̄ (despite the fact that the cost is reduced at each
step). Notice that the correct way of thinking about the plotted graphs it to visualize
them while identifying points θ = −π and θ = +π or to think of them as periodic
graphs with period 2π.

2.1.6. Speed of convergence and the best step-size. In Proposition 2.7,
t = 1

HS
is the best step-size in the sense that in each iteration it causes the largest

decrease in the upper bound of fp(x
k+1) described in the right hand side of (2.10).

The following theorem relates this choice to the speed of convergence of the algorithm.
The proof of the theorem is adopted from [49, p. 266, Theorem 4.2] where a proof
is given for a globally convex C2 function. Here, we adapt that proof to constant
step-size gradient descent for minimizing fp (which is only locally C2 and convex).

Theorem 2.12. Let 2 ≤ p < ∞. Let x̄p be the Lp center of mass of {xi}Ni=1 ⊂
B(o, ρ) ⊂ M , where ρ ≤ rcx. Suppose that S is a strongly convex neighborhood around
x̄p in which fp is twice-continuously differentiable, and let hS and HS, respectively,
denote a lower and upper bound on the eigenvalues of the Hessian of fp in S. Further-
more, assume that S is small enough such that one can choose hS > 0. In Algorithm
1 choose a constant step-size tk = t ∈ (0, 2

HS
). If after a finite number of iterations

k′ each iterate continuously stays in S, then for k ≥ k′ we have

d(xk, x̄p) ≤ Kq
k−k′

2 . (2.13)

In the above K and q are defined as

K =

(

2(fp(x
k′

)− fp(x̄p))

hS

)
1
2

and q = 1− α(1− α

2
)
hS

HS

(1 +
hS

HS

), (2.14)
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where α = tHS. In particular, 0 ≤ q < 1 and xk → x̄p as k → ∞.
Proof. Let γ(t) = expx(t exp

−1
x x̄p) be the minimal geodesic from x ∈ S to x̄p.

Note that γ(t) ∈ S for t ∈ [0, 1] due to strong convexity of S. After writing the
second order Taylor’s series of t 7→ fp(γ(t)) around t = 0 and using the bounds on
the Hessian of fp one gets

−d(x, x̄p)‖∇fp(x)‖+
hS

2
d2(x, x̄p) ≤ fp(x̄p)−fp(x) ≤ d(x, x̄p)‖∇fp(x)‖+

HS

2
d2(x, x̄p).

(2.15)
Similarly by expansion of t 7→ fp(γ(t)) around t = 1 one gets

hS

2
d2(x, x̄p) ≤ fp(x)− fp(x̄p) ≤

HS

2
d2(x, x̄p) (2.16)

Also notice that by the first order Taylor series expansion of t 7→ ∇fp(γ(t)) around
t = 1 we have

hSd(x, x̄p) ≤ ‖∇fp(x)‖ ≤ HSd(x, x̄p) (2.17)

Next, we plug the lower bound on d2(x, x̄p), from the right inequality in (2.16), into
the left inequality in (2.15). Hence, (after reordering) we have

fp(x)− fp(x̄p) ≤ d(x, x̄p)‖∇fp(x)‖ −
hS

HS

(fp(x) − fp(x̄p)). (2.18)

Combining this with the left inequality in (2.17) results in

hS(1 +
hS

HS

)
(

fp(x)− fp(x̄p)
)

≤ ‖∇fp(x)‖2. (2.19)

Now assume k ≥ k′ so xk, xk+1 ∈ S. Then subtracting fp(x̄p) from both sides of
(2.10) and using (2.19) both at x = xk yield

fp(x
k+1)− fp(x̄p) ≤ q

(

fp(x
k)− fp(x̄p)

)

. (2.20)

Therefore, we have

fp(x
k)− fp(x̄p) ≤

(

fp(x
k′

)− fp(x̄p)
)

qk−k′

, (2.21)

for k ≥ k′. Now combining this with the left inequality in (2.16) yields (2.13).
This theorem predicts a lower bound on the speed of convergence (i.e., the actual

convergence is not worse than what the theorem predicts). The accuracy of this
prediction, in part, depends on the accuracy of our estimates of the lower and upper
bounds on the eigenvalues of the Hessian. Observe that when we are only given HS ,
α = 1 (i.e., tk = 1

HS
) gives the smallest a-priori q. We call tk = 1

HS
the best a-priori

step-size given HS .
Remark 2.13 (Asymptotic q). Notice that a strongly convex S which works in

Theorem 2.10 might not work in Theorem 2.12 (since the assumption hS > 0 might
not hold true) and a smaller S might be needed for this theorem. Nevertheless, if
we start with an S (and a corresponding HS) for which Theorem 2.10 holds, then
there exists a smaller strongly convex S′(⊂ S) for which hS′ > 0 and Theorem 2.12
holds. HS is still an upper bound on the eigenvalues of the Hessian of fp in S′ and in
lack of any knowledge about S′ still t = 1

HS
is the best a-priori step-size. The actual
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asymptotic speed of convergence is determined by q in a very small neighborhood
S′ of x̄p. In fact, in the limit hS′ and HS′ converge, respectively, to λ′

min and λ′
max

the smallest and largest eigenvalues of the Hessian of fp at x̄p. Therefore, for any
step-size t ∈ (0, 2

λ′

max
), we define the associated asymptotic q, denoted by q′, where

in (2.14), hS , HS , and α are replaced, respectively, by λ′
min, λ

′
max, and α′ = tλ′

max.
Notice that if t = 1

HS
, then α′ ≤ 1 and the smaller the HS the smaller the q′ will be.

In general, “smaller HS” means that either we make S smaller or we choose a more
accurate upper bound on the eigenvalues of the Hessian of fp in S.

2.1.7. Relation to contraction mapping. Some parts of convergence analysis
in Theorem 2.12 and in particular (2.13) are reminiscent of the behavior of contraction
mapping iterations. Ideally one would like to have the map Fp : S → M defined by
Fp(x) = expx(−t∇fp(x)) to be a contraction mapping. Recall that a map F : S → M
is a contraction mapping on S ⊂ M if for all x, y ∈ S we have d(F (x), F (y)) ≤ κd(x, y)
with κ < 1 and F (S) ⊂ S (i.e., F preserves S). Then F has a unique fixed point in
S to which the iterates xk+1 = F (xk) converge with x0 ∈ S. In particular, we have
d(F (xk+1), x̄) ≤ κd(xk, x̄) and a similar convergence rate as (2.13) would result. It is
interesting to note that from (2.20) and (2.16) we get

d(xk+1, x̄p) ≤
√

q
HS

hS

d(xk, x̄p). (2.22)

Note that
√

qHS

hS
is not necessarily smaller than 1. However, the next result shows that

ultimately, when the iterates get close enough to a non-degenerate local minimizer,
then the gradient descent iteration acts as a contraction mapping.

Proposition 2.14 (Asymptotic stability of a non-degenerate local minimizer
via contraction mapping). Let x̄ be a non-degenerate local minimizer of f : M →
R. Assume that f is C2 is an open ball around x̄. Let t ∈ (0, 2

H x̄
), where Hx̄ is

the largest eigenvalue of the Hessian of f at x̄. Then for small enough r the map
F (x) = expx(−t∇f(x)) is a contraction mapping in B(x̄, r) with unique fixed point
x̄. In particular, a gradient descent algorithm with step-size t and starting in B(x̄, r)
will converge to x̄.

Proof. Let us denote the derivative of F : M → M at x by F∗x. Now in an
orthonormal basis in Tx̄M we have F∗x̄ = In − tHessf , where Hessf is the matrix
representation of the Hessian of f (this relation is intuitively obvious and its exact
proof follows e.g., from derivations in [23, §2]). Now for the 2-norm of Hessf we have
κ = ‖F∗x‖2 = |1 − thx̄| < 1, where hx̄ > 0 is the smallest eigenvalue of Hessf . But
since f is C2 (and hence F∗x is continuous in x), we see that for small enough r we
can find κ′ where κ ≤ κ′ < 1 such that ‖F∗x‖2 ≤ κ′ < 1 for all x ∈ B(x̄, r) (we
can make r small enough to make sure that the ball is strongly convex too). Now let
γ : [0, 1] → M be the minimal geodesic from x∗ to x ∈ B, then F (γ(s)) is a curve
from x̄ to F (x) whose speed is not larger than that of γ at very s ∈ [0, 1], hence
length(F (γ([0, s]))) ≤ length(γ([0, s])) for s ∈ [0, 1]. This implies that d(x̄, F (x)) ≤
d(x̄, x) and F (x) ∈ B for x ∈ B(x̄, r). Consequently, now, if η : [0, 1] → M is the
minimal geodesic from x ∈ B to y ∈ B, we have F (η(s)) ∈ B, and we see that
length(F (η([0, s]))) ≤ κ′length(η([0, s])). This implies that d(F (x), F (y)) ≤ κ′d(x, y).

The above proof would have been considerably more difficult if we wanted to
give explicit (sharp) bounds on r or if we wanted to show that F is a contraction
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mapping in a ball with a center different from the fixed point of F (see [33, 23] and
our discussion in §2.3).

2.2. A Conjecture: The best convergence condition. As mentioned before,
reducing the cost at each iteration is not enough to guarantee the convergence of
Algorithm 1 to the global center of mass. Nevertheless, we conjecture that if the
constant step-size is chosen not too large and the initial condition is not far from x̄p

(as specified next), then the cost fp can be reduced at each iteration, the iterates stay
close to x̄p and converge to it .

Conjecture 2.15. Let p = 2 and assume that x̄2 is the L2 center of mass of
{xi}Ni=1 ⊂ B(o, ρ) ⊂ M where ρ ≤ rcx. Let HB(o,ρ) = cδ(2ρ), where cκ is defined in
(2.3). In Algorithm 1, assume x0 ∈ B(o, ρ) and choose a constant step-size tk = t,
for some t ∈ (0, 1

HB(o,ρ)
]. Then we have the following: Each iterate continuously stays

in B(o, ρ) (and hence the algorithm will be well defined for every k ≥ 0), f2(x
k+1) ≤

f2(x
k) (k ≥ 0) with equality only if xk = x̄2, and xk → x̄2 as k → ∞. More

generally, for 2 ≤ p < ∞ the same results hold if t ∈ (0, 1
HB(o,ρ),p

], where HB(o,ρ),p =

(2ρ)p−2 max{p− 1, cδ(2ρ)}.
Now we explain the sense in which this conjecture is the best result one can hope

for. We narrow down our desired class of convergence conditions to a class which
gives conditions that are uniform in the data sets and in the initial condition. More
specifically, we consider the following general and natural class of conditions:

Convergence Condition Class (C): Consider Algorithm 1 and fix 2 ≤
p < ∞, and let δ and ∆, respectively, be a lower and upper bound on
sectional curvatures of M . Specify the largest ρ̄ (0 < ρ̄ ≤ rcx) such
that for every ρ ≤ ρ̄ there are
1. a number ρ′δ,∆,ρ,p (ρ ≤ ρ′δ,∆,ρ,p ≤ rcx) depending only on δ, ∆,

ρ, and p; and
2. another number tδ,∆,ρ,ρ′,p depending only on δ, ∆, ρ, p, and

ρ′δ,∆,ρ,p,
for which the following holds: for every ball B(o, ρ) ⊂ M , for every
set of data points in B(o, ρ), for every set of weights in (2.7), for
every initial condition in B(o, ρ), and for every constant step-size
tk = t ∈ (0, tδ,∆,ρ,ρ′,p], each iterate of Algorithm 1 continuously stays
in B(o, ρ′δ,∆,ρ,p), and xk → x̄p.

First, notice that with ρ̄ > rcx there is no hope to have convergence to the global
center (in this class), since the global center might not lie in B(o, ρ̄) and in general∇fp
might have more than one zero in B(o, ρ̄). Next, observe that Conjecture 2.15 belongs
to this class of conditions and it claims that ρ̄ = rcx is achievable; therefore, in this
sense the conjecture claims the best possible condition in this class. In particular, this
means that the conjecture gives the best possible spread of data points and the largest
region of convergence, i.e., it allows both {xi}Ni=1 ⊂ B(o, rcx) and x0 ∈ B(o, rcx).

Now let us see in what sense the step-size interval in Conjecture 2.15 is optimal.
One can verify that HB(o,ρ),p in Conjecture 2.15 is the smallest uniform upper bound
on the eigenvalues of the Hessian of fp in B(o, ρ). Here, by a uniform bound we mean a
bound which is independent of the data points, the weights, and o. Based on Remark
2.13, if we know that each iterate continuously stays in B(o, ρ′δ,∆,ρ,p) and further if

we only know HB(o,ρ′),p, then from Theorem 2.12 we see that tk = 1
HB(o,ρ′),p

is the

best uniform a-priori step-size (in the sense that it yields the smallest uniform a-priori
q). Next, notice that, with this tk, the smaller the ρ′, the smaller the HB(o,ρ′),p and
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hence the smaller the q′ (the asymptotic q) will be, see Remark 2.13. Consequently,
tk = 1

HB(o,ρ′),p
at ρ′ = ρ gives the smallest asymptotic q among all best uniform a-priori

step-sizes tk = 1
HB(o,ρ′),p

, where ρ ≤ ρ′ ≤ rcx. Conjecture 2.15 claims that, indeed,

ρ′δ,∆,ρ,p can be as small as ρ (independent of δ,∆, p). Therefore, in summary, among

all conditions in class (C), the sub-class which prescribes tδ,∆,ρ,ρ′,p = 1
HB(o,ρ′

δ,∆,ρ,p
),p

allows to have the smallest uniform a-priori q (by choosing tk = 1
HB(o,ρ′

δ,∆,ρ,p
),p

), and

in this sub-class, Conjecture 2.15 gives the largest tδ,∆,ρ,ρ′,p, therefore it allows for the
largest step-size and hence the smallest uniform asymptotic q in this sub-class. We
stress that this sense of optimality of the step-size interval should not be constructed
as giving the best speed of convergence for any actual data configuration; rather it
gives the best uniform lower bound on the speed of convergence in Theorem 2.12.
This means that for all data configurations, weights, and initial conditions in B(o, ρ)
the actual speed of convergence will not be worse than the one predicted by Theorem
2.12 where the associated q in (2.14) is the best uniform a-priori q. Quite similarly,
one could argue that the step-size interval in Conjecture 2.15 is optimal in the sense
that it allows for the largest decrease per iteration in the upper bound given in (2.10)
of Proposition 2.7.

The proof of the conjecture in the case of manifolds with zero curvature is quite
easy and straightforward. However, the general case seems to be difficult. The main
difficulty in proving Conjecture 2.15 is in proving that the iterates continuously stay
in B(o, ρ). Nevertheless, in Theorem 3.7 we prove the conjecture for manifolds of
constant nonnegative curvature and 2-dimensional manifolds of variable nonnegative
curvature. As this proof suggests, we believe that the difficulty in proving this conjec-
ture has more to do with geometry (than optimization) and the need of good estimates
(which currently seem not to exist) about the behavior of the exponential map in a
manifold. Our proof of Theorem 3.7 certainly constitutes some strong evidence that
the conjecture also is true for more manifolds of nonnegative curvature. For manifolds
with negative curvature we have also some evidence that the conjecture is true. For
example, the conjecture is trivially true if all the data points are concentrated at a
single point in B(o, ρ), and by continuity, it is also true if all the data points are
concentrated enough around a single point in B(o, ρ). Weaker convergence results
can be established with some efforts. For example, in §4, we derive weaker conver-
gence results in Theorems 4.1 and 4.2. As a comparison, Theorem 4.1 gives smaller
allowable spread and smaller region of convergence than Conjecture 2.15. Theorem
4.2, on the other hand, gives allowable spread and region of convergence which could
be very close to B(o, rcx), but the allowable step-size is restricted significantly in this
theorem.

Remark 2.16 (Related to Remark 2.13). It is useful to put this conjecture in some
context, especially in view of Theorems 2.10 and 2.12 and Remark 2.13. It should be
clear from our discussions in §2.1.4 and Remark 2.13, that when ∆ > 0, the conjecture
claims convergence for initial conditions in regions in which the Hessian of fp is not
necessarily positive-definite. Therefore, what really could help us in proving this result
is Theorem 2.10 and not Theorem 2.12. Although, already assured of convergence,
we can use Theorem 2.12 to give us an asymptotic behavior of the algorithm. All
our proved convergence theorems (which are Theorems 3.7, 4.1, and 4.2) are proved
using Theorem 2.10. In Theorems 3.7 and 4.1 both the initial conditions and the
trajectories of the algorithm can lie in regions in which only this theorem applies.
The case of Theorem 4.1 is rather interesting. Under the conditions of Theorem 4.1
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the initial condition must lie in a region in which fp happens to be strictly convex
(since 1

3rcx < π

4
√
∆
, see §2.1.4), however, the trajectory of the algorithm can visit a

region in which the Hessian of fp is not positive-definite.

2.3. Prior work. There are not many accurate and correctly proven 13results
available about the convergence of gradient descent (and more specifically constant-
step-size) for locating the Riemannian center of mass. For constant step-size algo-
rithms, the most accurate and useful results are due to Le [33] and Groisser [23, 24]
for the L2 mean. In view of Proposition 2.14, we put Le’s and Groisser’s approaches
in further context. Given {xi}Ni=1 ⊂ B(o, ρ), Le gives an explicit bound on ρ such that
F2(x) = expx(−∇f2(x)) is a contraction mapping in B(x̄2, ρ), hence she proves that
with x0 = o the iterates converge to x̄2. Groisser on the other hand gives an explicit
bound on ρ such that F2 is a contraction mapping in B(o, ρ), hence he proves the
convergence of the algorithm and also gives a constructive proof for the uniqueness
of the center of mass. Groisser’s results are more general and allow to analyze both
Newton’s method and the gradient descent method, while Le’s result gives a slightly
better bound on the allowable spread of the data points. In particular, Le shows
that when M is a locally symmetric manifold of nonnegative sectional curvature and
ρ ≤ 3

10rcx, F2 is a contraction mapping when restricted to B(x̄2, ρ) provided x0 = o.
Since x̄2 is a fixed point of F2, starting from o the iterates will not leave B(x̄2, ρ).
Le’s result leaves room for significant improvement in the allowable spread of data
points compared to our Conjecture 2.15. Notice that Le’s result can be used to deduce
convergence for an arbitrary initial condition in B(o, ρ) assuming a ρ half as before,
that is ρ ≤ 3

20rcx. This is obviously a more practical scenario. On the other hand,
both Theorem 2.10 and Theorem 2.12 show that gradient descent can converge for
initial conditions outside the (relatively small) region in which it acts as a contraction
mapping. In particular, by using Theorem 2.10 we manage to prove larger domains
of convergence than those provided by Le and Groisser. However, it should be noted
in such larger domains, in general, the algorithm might be slow since initially no
contraction property exists and moreover with larger data spread the asymptotic q
might be smaller (since the the convexity of the cost function at x̄2 might be less).
Our Theorem 4.1 (which needs only ρ ≤ 1

3rcx and does not require local symmetry
or nonnegative curvature) is a considerable improvement over Le’s result. Still our
Theorem 3.7, which is the best one can hope for in the case of manifolds of constant
nonnegative curvature, is an even further improvement over Le’s result (when applied
to these manifolds).

In [34] a convergence result is given for a (hard-to-implement) gradient method
which varies the step-size in order to confine the iterates to a small ball. A result in
[31] is somewhat similar in nature to our Theorem 4.1, yet it does not yield an explicit
convergence condition. Local convergence of Algorithm 1 with tk = 1 on S

n under the
generic condition of “x0 being close enough to the center” is argued in [12]; however,
such a condition is of little practical use. A few authors have also studied other
related problems and methods e.g., stochastic gradient methods [5], projected gradient
methods [32], Newton’s method [12, 23], and variable step-size gradient algorithm for
the L1 mean or median [50, 26]. We add that distance based definition is not the only

13A mistake made by some authors (see e.g., [35] and [20]) in proving such results has been to
wrongly assume that fp : M → R is globally convex (or strictly convex) if the data points are in a
small enough ball, which in general is not true, e.g., if M is compact (see Theorem 2.2). In particular,
in [35] or [20] no effort has been made to show that the iterates continuously stay in a region in which
the global center of mass is the only local minimizer of fp.
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way to define averages and other authors also have considered special group theoretic
or algebraic structures in defining averages, see e.g., [19, 18, 39, 22] or [16, Ch. 20].

3. Convergence on Manifolds of Constant Nonnegative Curvature and
2-Dimensional Manifolds of Nonnegative Curvature (An Optimal Result).
In this section, we prove Theorem 3.7 which is essentially Conjecture 2.15 for the
spacial case of a 2-dimensional manifold of nonnegative curvature or a manifold of
constant nonnegative curvature.

3.1. A useful triangle secant comparison result. Here, we prove a compar-
ison result used to prove Theorem 3.7 (see Figure 3.1 and Theorem 3.4).

Theorem 3.1. Let M be a 2-dimensional manifold of nonnegative curvature or
an n-dimensional manifold of constant nonnegative curvature (n ≥ 2). Let x, y1, y2 ∈
M be three points that lie in a ball of radius rcx defined in (2.1). Assume that the
internal angle ∠y1xy2 is equal to α (0 < α ≤ π). Consider another triangle in R

2

(or R
n) with vertices x̃, ỹ1, ỹ2 and assume that the internal angles at x and x̃ and

their corresponding sides are equal in the two triangles. Consider a geodesic γ in M
passing through x and making angles α1 > 0 and α2 > 0 (α1 + α2 = α) with minimal
geodesic sides xy1 and xy2, respectively. Denote by m the point where γ meets the
minimal geodesic side y1y2 for the first time. Similarly, let a secant line of triangle
ỹ1x̃ỹ2 passing through x̃ make angles α1 and α2 with sides x̃ỹ1 and x̃ỹ2, respectively,
and denote by m̃ the point where this secant line meets the side ỹ1ỹ2. Then the secant
segment xm is not smaller than the secant segment x̃m̃, moreover, it is longer than
the secant segment x̃m̃ if M is of constant positive curvature.

Before proving the theorem, we remark that this comparison is only meaningful
when M is either 2-dimensional or of constant curvature, because otherwise there is no
guarantee that the geodesic from x would meet the opposite geodesic side. In the case
of a constant curvature manifold M the enabling property is the well-known axiom of
plane: Let x ∈ M and assume that W ⊂ TxM is a k-dimensional subspace of TxM ,
then the set expx(W ∩B(0x, ρ)) is a totally geodesic submanifold of M . Here B(0x, ρ)
is the open ball of radius ρ around the origin of TxM and 0 < ρ < injM (see e.g.,
[42, p. 136]). In a 2-dimensional manifold the geodesic from x meeting the opposite
is obvious. However, in both cases, in fact, we need an extra size condition which
ensures that the geodesics are unique and that is why the assumption on x, y1, y2
being inside a ball of radius rcx is made.

Now, we prove the theorem. We give two proofs: The first one is a direct one
using direct computation and applies only to the constant curvature case, the second
one is indirect but more general and uses Toponogov’s comparison theorem. This
proof is mostly due to Marc Arnaudon [4].

Proof. First proof (sketch, only for constant nonnegative curvature): The case of

constant zero curvature is obvious. We prove the theorem for S
2 (where ∆ = 1 and

injM = π), the more general case of constant positive curvature follows immediately
(especially by including the extra size restriction due to finite injectivity radius of
M). Let us denote the lengths of minimal geodesic sides xy1, xy2, y1y2 by b, c, and a
respectively. Denote the length of the geodesic secant segment xm by z(b, c;α1, α2).
Using spherical trigonometric identities (e.g., [36, p. 53]) one can show that (see also
[36, p. 55])

cot z(b, c;α1, α2) =
cot b sinα2 + cot c sinα1

sin(α1 + α2)
. (3.1)
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α1α2
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y2

m̃
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ỹ2 m

x̃ x

y1

•
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•

α1

Fig. 3.1: 4y1xy2 is a triangle in a manifold of constant positive curvature (or a
2-dimensional manifold of nonnegative curvature) and 4ỹ1x̃ỹ2 is the corresponding
triangle in Euclidean space. Corresponding equal angles and sides are marked. Ac-
cording to Theorem 3.1, the geodesic secant xm is longer than the secant x̃m̃.

Similarly, denote the length of the secant segment x̃m̃ by z̃(b, c, α1, α2). It is easy to
see that

z̃(b, c;α1, α2) =
bc sin(α1 + α2)

b sinα1 + c sinα2
, (3.2)

where in both relations α1 + α2 = α. Note that z and z̃ are both smaller than π and
therefore to show z(b, c;α1, α2) > z̃(b, c;α1, α2) we could show cot z(b, c;α1, α2) <
cot z̃(b, c;α1, α2) with α1 + α2 = α (see (3.1) and (3.2)). The result then, essentially,
follows from strict concavity of t 7→ g(t) = cot 1

t
in the interval ( 1

π
,∞).

Second Proof [4]: We first prove the following angle comparison result [4]:
Lemma 3.2. We have ∠xy1y2 ≥ ∠x̃ỹ1ỹ2 or ∠xy2y1 ≥ ∠x̃ỹ2ỹ1 with strict inequal-

ity in the case of positive constant curvature.
Proof. This can be proved using the triangle version of Toponogov’s comparison

theorem with lower curvature bound (see e.g., [40, p. 337-8]). It is more convenient
to use Figure 3.2 for this purpose. In this figure the first triangle is 4y1xy2 in
M and the second triangle is the auxiliary triangle 4ỹ′1x̃ỹ2 in R

2 whose sides are
correspondingly equal to those of 4y1xy2 (corresponding equal sides and angles are
marked). From Toponogov’s theorem we have ∠y1xy2 ≥ ∠ỹ′1x̃ỹ

′
2, ∠xy1y2 ≥ ∠x̃ỹ′1ỹ

′
2,

and ∠xy2y1 ≥ ∠x̃ỹ′2ỹ
′
1 with strict inequality in the constant curvature case with

∆ > 0. Now comparing4ỹ1x̃ỹ2 with4ỹ′1x̃ỹ
′
2 (both in R

2), we see that since ∠ỹ1x̃ỹ2 =
α ≥ ∠ỹ′1x̃ỹ

′
2, we must have ∠x̃ỹ′1ỹ

′
2 ≥ ∠x̃ỹ1ỹ2 or ∠x̃ỹ′2ỹ

′
1 ≥ ∠x̃ỹ2ỹ1; and therefore,

∠xy1y2 ≥ ∠x̃ỹ1ỹ2 or ∠xy2y1 ≥ ∠x̃ỹ2ỹ1, with strict inequality in the constant positive
curvature case.

x̃
x

y1

ỹ
′
2

ỹ
′
1

ỹ1

ỹ2

y2

α α

x̃

• •

•

•

•

•

•

•

•

Fig. 3.2: Lemma 3.2 is proved using Toponogov’s triangle comparison theorem via
the auxiliary triangle 4x̃ỹ′1ỹ

′
2.

Next, we use an infinitesimal argument. Let us assume ∠xy1y2 ≥ ∠x̃ỹ1ỹ2. Con-
sider the minimal geodesic side η : [0, α] → M (resp. η̃ : [0, α] → M) from y1 to y2
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(resp. ỹ1 to ỹ2) with η(0) = y1 and η(α) = y2 (resp. η̃(0) = ỹ1 and η̃(α) = ỹ2).
Denote the distance functions in M and R

2, by d and d̃, respectively. The claim
is equivalent to d(η(t), x) ≥ d̃(η̃(t), x̃) for every t ∈ (0, α) with strict inequality in
the constant positive curvature case. This is clearly true for small enough t, because
∠xy1y2 ≥ ∠x̃ỹ1ỹ2. Let t0 be the first time after which this relation is violated. Then
we must have

d(η(t0), x) = d̃(η̃(t0), x̃) and ∠xη(t0)y2 < ∠x̃η̃(t0)ỹ2. (3.3)

Now by applying Lemma 3.2 to the triangles 4xη(t0)y2 and 4x̃η̃(t0)ỹ2, we must have
∠xy2y1 ≥ ∠x̃ỹ2ỹ1, which requires d(η(t)), x) ≥ d̃(η̃(t), x̃) for t close to α. Then by
continuity, this implies that for some t1 ((t0 < t1 < α))

d(η(t1)), x) = d̃(η̃(t1), x̃) and ∠xη(t1)η(t0) < ∠x̃η̃(t1)η̃(t0). (3.4)

But (3.3) and (3.4) in the triangles 4xη(t0)η(t1) and 4x̃η̃(t0)η̃(t1) contradict Lemma
3.2, hence ∠xη(t0)y2 ≥ ∠x̃η̃(t0)ỹ2 and the claim must hold, at least, with non-strict
inequality. However, a careful look at the proof reveals that the same proof can be
used to prove the claim for the positive constant curvature case.

3.2. Riemannian pointed convex combinations. Intuitively, one would like
to think of expx(

∑N
i=1 wi exp

−1
x xi) as a Riemannian convex combination with sim-

ilar properties as the Euclidean convex combination. We call this a Riemannian
pointed convex combination of {xi}Ni=1 ⊂ M with respect to x ∈ M and with weights

(w1, . . . , wN ) (
∑N

i=1 wi = 1). 14 For the case of a manifold of constant nonnegative
curvature or a 2-dimensional manifold of nonnegative curvature we show that this
is a valid definition. The following general proposition is useful in making sense of
Riemannian pointed convex combinations as well as proving Theorem 3.7.

Proposition 3.3. Let S ⊂ M be a strongly convex set containing {xi}Ni=1 and let
x ∈ S. Assume that for arbitrary weights 0 ≤ w1, w2 ≤ 1 (with w1 + w2 = 1) and for
any y1, y2 ∈ S, expx

(

t(w1 exp
−1
x y1 + w2 exp

−1
x y2)

)

∈ S for t ∈ [0, 1]. Then for every
set of points {xi}Ni=1 ⊂ S and corresponding weights 0 ≤ wi ≤ 1 (with

∑

iwi = 1),

expx(t
∑N

i=1 wi exp
−1
x xi) also belongs to S for t ∈ [0, 1].

Proof. We prove the claim for N = 3 and for larger N it follows by induction.
Let y(t) = expx(t

∑3
i=1 wi exp

−1
x xi). Note that we can write

y(t) = expx

(

t

(

w1 exp
−1
x x1 + (1− w1)

( w2

w2 + w3
exp−1

x x2 +
w3

w2 + w3
exp−1

x x3

)

))

.

(3.5)
Since by assumption x̃2 = expx(

w2

w2+w3
exp−1

x x2 + w3

w2+w3
exp−1

x x3) belongs to S,

there exists a unique minimizing geodesic between x and x̃2. Therefore, exp−1
x x̃2

is well defined and belongs to the injectivity domain of expx and we have exp−1
x x̃2 =

w2

w2+w3
exp−1

x x2 + w3

w2+w3
exp−1

x x3. Since expx
(

t(w1 exp
−1
x x1 + (1 − w1) exp

−1
x x̃2)

)

belongs to S (by our assumption) we must have y(t) ∈ S for t ∈ [0, 1].
An example of such a set S is the convex hull of {xi}Ni=1. Recall that the convex

hull of A ⊂ M (if it exists) is defined as the smallest strongly convex set containing

14Notice that if M = R
n, expx(

∑N
i=1

wi exp
−1
x xi) translates to x +

∑N
i=1

wi(xi − x), which is
independent of x. In a nonlinear space the pointed convex combination does not enjoy this base-point
independence, and that is why we have been explicit in calling expx(

∑N
i=1

wi exp−1
x xi) a pointed

convex combination with respect to x. Moreover, to have “nice” properties, x cannot be arbitrary
and must belong to the convex hull of {xi}Ni=1

, as explained in Remark 3.5.
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A. If A lies in a strongly convex set obviously its convex hull exists. It is known that
the convex hull of a finite set of points in a constant curvature manifold is a closed
set. Also in a manifold of constant curvature the Lp center of mass (1 < p < ∞)
of {xi}Ni=1 with weights wi ≥ 0 belongs to the convex hull of {xi}Ni=1 and if wi > 0
for every i, it belongs to the interior of the hull [3]. The next theorem describes the
relation between the Riemannian pointed convex combination and the convex hull:

Theorem 3.4. Let M be a Riemannian manifold of constant non-negative cur-
vature or a 2-dimensional manifold of nonnegative curvature. Let S be a strongly
convex set containing {xi}Ni=1. Assume that S lies in a ball of radius of at most

rcx. For every x ∈ S and arbitrary weights wi ≥ 0 (with
∑N

i=1 wi = 1), we have

expx(t
∑N

i=1 wi exp
−1
x xi) ∈ S for t ∈ [0, 1]. In particular, if S is the convex hull of

{xi}Ni=1, then the convex combination expx(
∑N

i=1 wi exp
−1
x xi) belongs to S for every

x ∈ S.

Proof. By Proposition 3.3, it suffices to show that for arbitrary y1, y2 ∈ S
and weights (w1, w2) with w1 + w2 = 1 we have ˜̃m(t) = expx

(

t(w1 exp
−1
x y1 +

w2 exp
−1
x y2)

)

∈ S for ∈ [0, 1]. This follows from comparison Theorem 3.1. To see
this, first note that, in triangle 4xy1y2 in Figure 3.1, there is a 1− 1 correspondence
between the weight pairs (w1, w2) and the angle pairs (α1, α2), where α1 + α2 = α.
If x, y1, y2 ∈ S, then by strong convexity of S we have m ∈ S. Since the distance
between x and ˜̃m(1) is nothing but the length of secant x̃m̃ in triangle 4x̃ỹ1ỹ2, it
follows from Theorem 3.1 that ˜̃m(t) must belong to S for t ∈ [0, 1].

Remark 3.5. Notice that it follows from Theorem 3.1 that, if x is not in the con-
vex hull of {xi}Ni=1, then expx(

∑N
i=1 wi exp

−1
x xi) does not, necessarily, belong to the

convex hull. Hence, having x in the convex hull is necessary in the above proposition.
We also mention that Buss and Fillmore, define the notion of (spherical) Riemannian
convex combination, as the Riemannian center of mass of the data points x̄2, when
the weights wi’s vary [12]. We have used the term “pointed convex combination” to
distinguish our definition from Buss and Fillmore’s. Buss and Fillmore show that, in
S
n, the convex combination defined in this fashion fills the convex hull of the data

points as the weights are varied. However, from Theorem 3.1 we see that the pointed
convex combination (while x is fixed) does not enjoy this property. In that sense the
pointed convex combination is a weak “convex combination.”

Remark 3.6. One might wonder in what directions the above theorem can be
extended. One can show that in a manifold of constant negative curvature or in a 2-
dimensional manifold of negative curvature the inequality in Theorem 3.1 holds in the
reverse direction, that is, the secant in the manifold is shorter than the corresponding
secant in R

n. This by itself implies that, in a manifold of constant negative curvature,
expx(

∑N
i=1 wi exp

−1
x xi) does not, necessarily, belong to the convex hull of {xi}Ni=1; and

one needs to scale down the tangent vector
∑N

i=1 wi exp
−1
x xi to ensure that it belongs

to the convex hull. This scaling somehow should be related to the size of the convex
hull or the minimal ball of {xi}Ni=1 (see Conjecture 2.15 and Remark 3.8). Recall
that the minimal ball of {xi}Ni=1 ⊂ M is a closed ball of minimum radius containing
{xi}Ni=1 (see [3] for more on the minimal ball). Furthermore, even for nonnegative

variable curvature in dimension higher than 2, expx(
∑N

i=1 wi exp
−1
x xi) belonging to

the convex hull of {xi}Ni=1 seems implausible. However, in this case, we conjecture

that expx(
∑N

i=1 wi exp
−1
x xi) belongs to the minimal ball of {xi}Ni=1.

3.3. Convergence result. We are now ready to state and prove the main the-
orem of the section.
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Theorem 3.7. Assume that M is either a manifold of constant nonnegative cur-
vature ∆ ≥ 0 or a 2-dimensional manifold with nonnegative curvature upper bounded
by ∆ ≥ 0 . Let p = 2 and {xi}Ni=1 ⊂ B(o, ρ), where ρ ≤ rcx (see (2.1)). In Algo-
rithm 1, choose an initial point x0 ∈ B(o, ρ) and a constant step-size tk = t, where
t ∈ (0, 1]. Then we have: The algorithm is well-defined for every k ≥ 0, each iterate
continuously stays in B(o, ρ), f2(x

k+1) ≤ f2(x
k) with equality only if xk = x̄2, and

xk → x̄2 as k → ∞. Moreover, if for some k′ ≥ 0, xk′

belongs to the convex hull
of {xi}Ni=1, then xk also belongs to the convex hull for k ≥ k′. More generally, for
2 ≤ p < ∞ the same results hold if we take t ∈ (0, tρ,p] with tρ,p = 1

HB(o,ρ),p
where

HB(o,ρ),p = (p− 1)
(

2ρ
)p−2

.

Proof. The fact that each iterate continuously stays in B(o, ρ) follows from The-
orem 3.4. The same argument shows that if xk′

is in the convex hull of {xi}Ni=1, then
xk also belongs to the hull for k ≥ k′. By Proposition 2.7, step-size tk = t at each
step results in strict reduction of f2 unless at x̄2. Next, the iterates converging to
x̄2 follows from Theorem 2.10 by taking S as B(o, ρ) or the convex hull of {xi}Ni=1.

For the general p, we notice that −1
HB(o,ρ),p

∇fp(x) can be written as
∑N

i=1 w̃i exp
−1
x xi,

where
∑N

i=1 w̃i ≤ 1 and w̃i ≥ 0. Therefore, again we can use Theorem 3.4, and the
rest of the claims follow similarly.

Remark 3.8. In [23], Groisser introduced the notion of tethering: A map Ψ : M →
M is called tethered to {xi}Ni=1 if for every strongly convex regular geodesic ball B
containing {xi}Ni=1, Ψ is defined on B and Ψ(B) ⊂ B. To avoid technical difficulties
which probably have little to do with the essence of the property of tethering, we
replace “every strongly convex regular geodesic ball” with “every ball of radius less
than or equal to rcx.” Groisser’s definition is more general than ours. Groisser
conjectured that tethering “might occur fairly generally.” Several results in [23] can
be strengthened if the tethering assumption holds (even in this weaker sense). In the
above theorem, we proved that for t ∈ [0, 1], the map x 7→ expx(−t∇f2(x)) is tethered
to {xi}Ni=1 in manifolds of constant nonnegative curvature or 2-dimensional manifolds
of nonnegative curvature. We conjecture that the same holds for higher dimensional
manifolds of nonnegative variable curvature. However, based on the discussion in
Remark 3.6, we conjecture that tethering in manifolds of negative curvature does
not hold. As mentioned in Remark 3.6 (and also expressed in Conjecture 2.15),
we conjecture that in order for x 7→ expx(−t∇f2(x)) to map B(o, ρ) ⊃ {xi}Ni=1 to
itself, t should be smaller than 1. More specifically, we conjecture that t cannot be
independent of ρ, and t ∈ [0, 1

cδ(2ρ)
] suffices.

4. Convergence Results for More General Manifolds. Here, we prove two
classes of results which are sub-optimal compared to Conjecture 2.15. In the first class
the spread of data points is compromised to guarantee convergence. In the second
class, the step-size is restricted more than the optimal one to ensure that the iterates
do not leave a neighborhood in which x̄2 is the only zero of ∇f2.

4.1. Compromising the spread of data points. The following theorem is
based on the the simple observation that fp takes larger values outside of B(o, 3ρ)
than inside of B(o, ρ).

Theorem 4.1. Let p = 2 and assume that x̄2 is the L2 center of mass of
{xi}Ni=1 ⊂ B(o, ρ) ⊂ M , where ρ ≤ 1

3rcx. Define tδ,ρ = 1
HB(o,3ρ)

, where HB(o,3ρ) =

cδ(4ρ) and cκ is defined in (2.3). In Algorithm 1 assume that x0 ∈ B(o, ρ) and for
every k ≥ 0 choose tk = t, where t ∈ (0, 2tδ,ρ). Then we have the following: The algo-
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rithm is well-defined for all k ≥ 0 and each iterate of the algorithm continuously stays
in B(o, 3ρ), f2(x

k+1) ≤ f2(x
k) for k ≥ 0 (with equality only if xk = x̄2), and xk → x̄2

as k → ∞. Moreover, if x0 coincides with o, then ρ ≤ 1
2rcx is enough to guaran-

tee the convergence, in which case each iterate of the algorithm continuously stays in
B(o, 2ρ) and we can take tδ,ρ = 1

HB(o,2ρ)
where HB(o,2ρ) = cδ(3ρ). More generally, for

2 ≤ p < ∞ the same results hold if we replace HB(o,3ρ) and HB(o,2ρ), respectively, with
HB(o,3ρ),p = (4ρ)p−2 max{p−1, cδ(4ρ)} and HB(o,2ρ),p = (3ρ)p−2 max{p−1, cδ(3ρ)}.

Proof. For any x ∈ M \ B(o, 3ρ) we have f2(x) > 2ρ2 > f2(x
0) (see (2.7)).

From (2.5) and (2.3) and that {xi}Ni=1 ⊂ B(o, ρ), one sees that HB(o,3ρ) = cδ(4ρ) is
an upper bound on the eigenvalues of the Hessian of f2 in B(o, 3ρ). Moreover, by
Proposition 2.7, for small enough t ∈ (0, 2tδ,ρ), s 7→ expx0(−s∇f2(x

0)) does not leave
B(o, 3ρ) for s ∈ [0, t], and we have f(expx0(−t∇f2(x

0)) ≤ f(x0), with equality only
if x0 is the unique zero of ∇f2 in B(o, 3ρ). However, s 7→ expx0(−s∇f2(x

0)) must
lie in B(o, ρ) for all s in (0, 2tδ,ρ), since on the boundary of B(o, 3ρ), f is larger than
f(x0) and by continuity s 7→ expx0(−s∇f2(x

0)) cannot leave B(o, 3ρ) without making
f2
(

expx0(−s∇f2(x
0))

)

larger than f2(x
0) inside B(o, 3ρ), which is a contradiction.

Therefore, for any t ∈ (0, 2tδ,ρ), the iterate x
1 = expx0(−t∇f2(x

0)) continuously stays
in B(o, 3ρ) and f2(x

1) ≤ f2(x
0), with equality only if x0 = x̄2. A similar argument

shows that for any y ∈ B(o, 3ρ) such that f2(y) ≤ f2(x
0), f(expy(−s∇f2(y))) for

s ∈ [0, t] belongs to B(o, 3ρ) and f(expy(−t∇f2(y))) ≤ f(y) with equality only if y =

x̄2. In particular, assuming xk ∈ B(o, 3ρ) and f2(x
k) ≤ f2(x

0), by setting y = xk ∈
B(o, 3ρ), we conclude that xk+1 continuously stays in B(o, 3ρ) and f(xk+1) ≤ f(xk)
with equality only if x̄k = x̄2. Note that for any point y in B(o, 3ρ) \ B(o, ρ) we
have d(y, xi) < 4ρ < 2

3 injM for 1 ≤ i ≤ n; therefore, ∇f2(y) in (2.8) and hence (2.9)
in Algorithm 1 are well-defined. Next, by taking B(o, 3ρ) as S in Theorem 2.10, we
conclude that xk → x̄2 as k → ∞. To see the claim about B(o, 2ρ), note that if x0

coincides with o, then we have f2(x) >
1
2ρ

2 > f2(x
0) for any x out of B(o, 2ρ) and the

derived conclusions hold with B(o, 2ρ). The claims about 2 ≤ p < ∞ follow similarly
by further using (2.6).

4.2. Compromising the step-size. Here, given ρ and ρ′ where ρ < ρ′ ≤ rcx
and assuming the data points lie in B(o, ρ), by restricting the step-size we want to
make sure that, starting from B(o, ρ′), the iterates do not leave the larger ball B(o, ρ′).
A rather similar idea has been used in [5] and [50], and here we partially follow the
methodology in [50].

For x inside B(o, ρ), let tx > 0 denote the first time t 7→ γx(t) = expx(−t∇f2(x))
hits the boundary of B(o, ρ′). Note that supB(o,ρ) ||∇f2(x)|| < 2ρ, therefore we must

have tx > tinx where

tinx =
infx∈B(o,ρ),y∈M\B(o,ρ′) d(x, y)

2ρ
=

ρ′ − ρ

2ρ
. (4.1)

Similarly, for y in the annular region between B(o, ρ′) and B(o, ρ), let ty > 0 denote
the first time t 7→ γy(t) = expy(−t∇f2(y)) hits the boundary of B(o, ρ′). For t 7→
1
2d

2(o, γy(t)) one writes the second order Taylor’s series expansion in the interval [0, ty]
as:

1

2
d2(o, γy(ty)) =

1

2
ρ′2 =

1

2
d2(o, y)+〈−∇f2(y),− exp−1

y o〉ty+
1

2

d2f2,o(t)

dt2
∣

∣

t=s
t2y, (4.2)

where s is in the interval (0, ty). Next, using (2.5) and noting that ρ2 − d2(o, y) > 0
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we verify that

ty >
2〈−∇f2(y), exp

−1
y o〉

cδ(ρ′)
, (4.3)

where cδ is defined in (2.3). Denote by ∠xiyo the angle, at y, between the minimal
geodesics from y to xi and from y to o. It is shown in Lemma 10 in [50] that

cos∠xiyo ≥ sn∆(d(y, o) − ρ)

sn∆(d(y, o) + ρ)
, (4.4)

where sn∆ is defined in (2.2). Using this and observing that ‖∇f2(y)‖ ≥ d(y, o) − ρ
we have ty > tout,1y , where

tout,1y =
2

cδ(ρ′)
× d(y, o)×

(

d(y, o)− ρ
)

× sn∆(d(y, o)− ρ)

sn∆(d(y, o) + ρ)
. (4.5)

Also observe that (trivially) we must have ty > tout,2y , where

tout,2y =
ρ′ − d(y, o)

ρ+ d(y, o)
. (4.6)

Obviously, ty must satisfy ty > max{tout,1y , tout,2y }. Define

texit = min{tin, inf
y:ρ≤d(y,o)<ρ′

max{tout,1y , tout,2y }} (4.7)

where tin, tout,1y , and tout,2y are defined in (4.1), (4.5), and (4.6), respectively, with
the assumption ρ < ρ′ ≤ rcx. We see that for any z ∈ B(o, ρ′) and any t ∈ [0, texit],
expz(−t∇f2(z)) belongs to B(o, ρ′). Notice that t = texit is indeed acceptable. Also
observe that texit is larger than zero; since otherwise it can be zero only if for z in
the region B(o, ρ′) \ B(o, ρ) and very close to the boundaries of the region tout,1z and
tout,2z both become arbitrary close to zero, which obviously cannot happen. Based on
this analysis we have the following theorem.

Theorem 4.2. Let p = 2, {xi}Ni=1 ⊂ B(o, ρ) and assume ρ < ρ′ ≤ rcx. Define
HB(o,ρ′) = cδ(ρ

′ + ρ) and set

t∗δ,∆,ρ,ρ′ = min{texit,
1

HB(o,ρ′)
}, (4.8)

where texit is defined in (4.7). In Algorithm 1, choose an initial condition x0 ∈ B(o, ρ)
15 and step-size tk = t, where t ∈ (0, 2t∗δ,∆,ρ,ρ′)∩ [0, texit]. Then we have the following:
The algorithm is well-defined for every k ≥ 0, each iterate continuously stays in
B(o, ρ′), f2(xk+1) ≤ f2(x

k) with equality only if xk = x̄2, and xk → x̄2 as k → ∞.
Proof. The fact that each iterate continuously stays in B(o, ρ′) follows from

preceding arguments. From this it we see that d(xk, xi) < injM for every k ≥ 0 and
1 ≤ i ≤ N , and hence the algorithm is well-defined for k ≥ 0. The rest of the claims
follow from Theorem 2.10.

Next, we give some numerical examples about the interplay between ρ, ρ′, and the
step-sizes according to Theorem 4.2 and compare that with step-size and allowable

15In fact, according to the derivations, one could choose x0 ∈ B(o, ρ′).
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spread from Conjecture 2.15 and Theorem 4.1. First, let δ = 0 and ∆ > 0 and let
ρ′ = rcx. To have tk = 1 we need to have ρ ≤ r1 ≈ 0.0303rcx, while Theorem 4.1 gives
much larger ρ, i.e., ρ ≤ 1

3rcx. We can increase ρ and further restrict the step-size: If
we set ρ = 1

3rcx, then we get t∗δ,∆,ρ,ρ′ ≈ 0.3965, if ρ = 9
10rcx we get t∗δ,∆,ρ,ρ′ = 0.0353,

and finally when ρ = 0.99rcx we get t∗δ,∆,ρ,ρ′ = 0.0033, all of which are considerably
smaller than the optimal step-size of 1 in Conjecture 2.15. Yet, the added value is
that we have convergence for more spread-out data points (i.e., going from ρ ≤ 1

3rcx
to almost ρ ≤ rcx). Next, let δ < 0, ∆ = 0, and ρ′ = π

2

√
−δ (this is just an arbitrary

number). To get the optimal step-size in Theorem 2.12 which is 1
HB(o,ρ′)

and is equal

to 1
cδ(ρ+ρ′) , we need ρ ≤ r2 ≈ 0.1950ρ′. Therefore, the t∗δ,∆,ρ,ρ′ from Theorem 4.2

cannot be larger than the tδ,ρ from Theorem 4.1. In fact, if we set ρ = 1
3ρ

′, then we
need t∗δ,∆,ρ,ρ′ = 0.3022 according to Theorem 4.2, while we have tδ,ρ = 0.4632 from
Theorem 4.1.

Finer analysis could yield a larger estimate for the exit time than (4.7). However,
since cδ(2ρ) is an upper bound on the eigenvalues of the Hessian of f2 in B(o, ρ), such
an improvement will not result in an optimal step-size better than tk = ctδ(2ρ)

−1 (cf.
(4.8) and Conjecture 2.15).

5. On the configuration of data points and the local rate of conver-
gence. Here, we limit ourselves to p = 2. In this section, we see how (because of
the curvature) the speed of convergence in locating the center of mass depends on
the configuration of the data points (this phenomenon is not present in a Euclidean
space, see below). In particular, we give a (partial) qualitative answer to the follow-
ing question:“For which configurations of data points does Algorithm 1 converge very
fast? very slowly?”

From Theorem 2.12 and the definition of q in (2.14) it is clear that in addition to
α, the ratio hS

HS
is also important in determining the speed of convergence, and the

asymptotic speed of convergence depends on the ratio hS

HS
in a very small neighborhood

S around x̄. In the Euclidean case the ratio is 1 and with α = 1 we have q = 0;
therefore, Algorithm 1 finds the center of mass in one step! See (2.13) and (2.14).
However, in a curved manifold the ratio hS

HS
can be very small, due to drastic difference

in the behavior of the Hessian of the distance function along different directions. Next
we give simple examples that demonstrate this fact.

We consider the case of constant curvature, since in this case the eigenvalues
of the Hessian of the distance function are the same along all directions but the
radial direction. Furthermore, let us assume M is a 2-dimensional simply connected
manifolds with constant curvature, that is M = S

2
∆ where ∆ = 1 or ∆ = −1 (with the

convention S
2
1 ≡ S

2). We construct two simple configurations for which Algorithm 1
converges very fast and very slowly, respectively. Consider four data points {xi}4i=1

and the closed ball B̄(o, ρ) ⊂ M , where ρ < rcx. Assume x1 and x2 are on the
boundary of the ball in antipodal positions and that x3 and x4 are also in antipodal
positions such that the geodesic γox1 from o to x1 and the geodesic γo,x3 from o to
x3 are perpendicular at o. We denote this configuration by ••••. Obviously, x̄ = o
is the center of mass of {xi}4i=1 with equal weights. It is easy to verify that for the
•••• configuration the Hessian of f2 at x = o both along γox1 and along γox3 has
eigenvalue 1

2 (ρct∆(ρ) + 1). Consequently, at o the ratio of the smallest and largest

eigenvalue is 1, hence hS

HS
≈ 1 around x̄ = o; and therefore, one expects that the local

rate of convergence will be very fast. The opposite configuration is •
•, that is, when

x3 and x4 coincide with x1 and x2, respectively. In this case, at x = o along γox1 the
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Hessian of f2 has eigenvalue of 1 and in the perpendicular direction it has eigenvalue
ρct∆(ρ). Therefore, if ∆ = 1, we have hS

HS
≈ ρ cotρ around o which, in particular,

can be very small if ρ is close to π
2 . If ∆ = −1, we have hS

HS
≈ (ρ coth ρ)−1, which

again can be small if ρ is large. It is well known that the shape of the level sets of a
function in a neighborhood of a minimizer is related to the ratio hS

HS
. If the level sets

are very elongated or thin, this means that the Hessian has very small eigenvalues
along longitudinal directions and very large eigenvalues along the lateral directions
and hence hS

HS
can be very small. For our two configurations, we encourage the reader

to compare the shapes of the level sets of f2 in B(o, ρ) ⊂ S
2 for levels close to f2(o)

(especially when ρ is close to π
2 ) with the level sets of f2 in B(o, ρ) ⊂ S

2
−1 for levels

close to f2(o) when ρ is very large).

As a tangible example, on the standard unit sphere S
2 we run Algorithm 1 for

both the configurations with two different values of ρ ≈ 0.35π and ρ ≈ 0.47π. The
initial condition is chosen randomly. The step-size is chosen as tk = 1. Figure 5.1
shows the distance d(xk, x̄) in terms of the iteration index k. It is clear that for the •

•
configuration the convergence is slower than the convergence for the •••• configuration,
and as ρ increases, convergence for both configurations becomes slower. However, for
the •

• configuration as ρ approaches π
2 , the convergence becomes extremely slow and

the •••• configuration is much more robust in that sense. Note that when ρ ≈ π
2 even

the center of mass of the •
• configuration is on the verge of non-uniqueness and this

causes further (error) sensitivity and hence poor convergence (see [2] on the issue of
high noise-sensitivity of the Riemannian mean in positively curved manifolds).

Although our example is rare in statistical applications, in a more general setting
also one expects that if the configuration of data points is such that the convex hull
of the data points has an elongated shape (especially if the length of the convex hull
is large), then locating the Riemannian center of mass becomes a difficult problem
(with the exception of the Euclidean case). Our analysis does not tell the whole story
in the case of variable curvature and we need more detailed analysis that takes into
account the variability of eigenvalues of the Hessian of the distance function along
non-radial directions, as well.
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Fig. 5.1: Convergence behavior of Algorithm 1 for locating the center of mass two
configurations denoted by •••• and •

• on the unit sphere S
2. The step-size is tk = 1

and the initial condition is chosen randomly.
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6. Global Convergence on SO(3), Sn and Similar Manifolds. So far, our
focus was on finding the global Riemannian center of mass using a constant step-size
gradient descent algorithm; hence, we only studied the local behavior of the algorithm
(albeit in relatively large domains). Studying the global behavior of the algorithm
(i.e., convergence for arbitrary initial conditions) is more subtle. Finding the global
center of mass by gradient descent under arbitrary initial condition is out of question
(in this case or a more general one where the data points are not localized one could
you stochastic global optimization methods e.g., [6] or (semi-) combinatorial methods
e.g., [27, 13]). Even convergence to a local center is not straightforward due to the
fact that fp is not differentiable globally. One can verify that fp is a locally Lipschitz
function and hence differentiable almost everywhere. In this section we want to see
to what extent simple constant step-size gradient descent (with as little modification
as possible) still could work and find a center of mass (local or global). Our approach
is partly based on our work [45], in which similar situations in a different application
were addressed. Our discussion is limited to p = 2.

6.1. Riemannian center of mass and the cut loci of data points. Under
certain conditions on the manifold M , it is easy to guarantee that the crucial relation
(2.10) holds. One example of such conditions is Condition (L):

Condition (L): M is compact and for every point y ∈ M every cut
point of y is a local maximizer of the distance function x 7→ d(x, y).

The reader can check that S
n, SO(3), the real projective plane RP

n, and the
n-torus Tn with their standard Riemannian metrics satisfy condition (L).

Remark 6.1. Recall that by the standard Riemannian metric on SO(3) we mean
the bi-invariant metric which at I3, the identity of SO(3), is defined as 〈X,Y 〉I3 =
1
2 trace(X

>Y ), where X,Y are (3 × 3 skew-symmetric) tangent vectors at I3. In this
metric the distance between x and y in SO(3) is d(x, y) = 1√

2
‖ logx>y‖F , where

log(·) denotes the matrix logarithm (if x>y has eigenvalues of −1, then d(x, y) = π
and x and y are cut points of each other). Moreover, in this metric injSO(3) = π and
δ = ∆ = 1

4 . Similarly, in the standard metric for the (unit radius) real projective plane
RP

n (n ≥ 2), we have δ = ∆ = 1 and injRPn = π
2 (for n = 1 obviously δ = ∆ = 0).

Also it is known that in its standard metric, SO(3) is isometric to the real projective
plane RP

3
1
4
, which is the real projective plane in R

4 with radius 2.

The main implication of Condition (L) is that the distance to y remains constant
in Cy and that, in fact, a cut point of y is a global maximizer of the distance function,
as the next proposition shows. The proof of the proposition requires some deep
results from Riemannian geometry, but it is easy to explicitly verify the proposition in
above manifolds. Most likely further detailed characterization of manifolds satisfying
Condition (L) is possible (or may exist in the literature), but that is beyond the scope
of this paper.

Proposition 6.2. Let M satisfy Condition (L). Then for every y ∈ M the
function x 7→ d(x, y) is constant on Cy. Therefore, any cut point of y is a global
maximizer of x 7→ d(x, y). Moreover, there are at least two minimal geodesics from y
to x ∈ Cy, and for any such geodesic there is another (mirror) one such that the two
fit smoothly together to form a closed geodesic.

Proof. It is known that for a compact manifold Cy is a connected set (see e.g.,
[15, p. 95] or [42, p. 208]). Therefore, since every x ∈ Cy is local maximizer of
x 7→ d(x, y), d(x, y) must remain constant on Cx. In fact, we have d(x, y) = injy on
Cy. It is also known that if x is a local maximizer of x 7→ d(x, y), then it is a critical
point (see [40, p. 355] for exact definition of a critical point, which is different from
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the standard definition in calculus), this implies that there are at least two minimal
geodesics from y to x (i.e., x is an ordinary cut point). Then it follows from a result
due to Klingenberg (see e.g. [40, p. 142, Lemma 16]) that for any such geodesic
there is another (mirror) one such that they fit each other smoothly to form a closed
geodesic.

At a point x ∈ Cxi
⊂ M we can group the terms in f2 in two groups: one which

is comprised of functions smooth at x denoted by f s
2 and one which is not smooth at

x denoted by fns
2 (this term simply is the term containing d2(x, xi)); and we write

f2 = fns
2 + f s

2. We call f s
2 the smooth part of f2 and fns

2 the nonsmooth part of f2
at x. In general, x can belong to more than one cut locus, but in that case also this
decomposition remains valid.

The following result shows that a cut point of a data point cannot be a local
(or global) center of mass in manifolds satisfying condition (L). It is an extension of
results in [13, 27].

Theorem 6.3. If M satisfies condition (L), then no local Riemannian center
of mass of {xi}Ni=1 belongs to the cut loci of the data points. In particular, any local
Riemannian center of mass of {xi}Ni=1 is a zero of the gradient of f2.

Proof. Let x̄ be a local minimizer of f2 which belongs to the cut loci of the data
points. First, let us assume that x̄ belongs to the cut locus of exactly one of the data
points, say x1. We can write f2 = fns

2 + f s
2, where f s

2 is smooth at x̄ and fns
2 is non-

differentiable at x̄ but has directional derivatives and has a maximizer at x̄. Notice
that fns

2 has negative directional derivative in some directions leaving x̄ (e.g., along
the two directions to x1). Now x̄ being a local minimizer of f2 requires the gradient of
the smooth part f s

2 be zero, but that is not enough to balance the negative directional
derivatives of the non-smooth part fns

2 , hence, x̄ cannot be a local minimizer of f2.
The same argument applies if x̄ belongs to more than one cut locus.

6.2. Almost gradients. If x belongs to the cut locus of xi, Cxi
, then according

to the standard definition, exp−1
x xi is not defined. However, under Condition (L) we

can define exp−1
x xi in such a way that a well-defined algorithm results. By Proposition

6.2, there are more than one minimal geodesics from x to xi. Let γxxi
: [0, 1] → M

be one such geodesic (note that γxxi
(0) = x and γxxi

(1) = xi). We call the negative
of the initial velocity of this geodesic, namely −γ̇xxi

(0+), an almost gradient of z 7→
1
2d

2(z, xi) at z = x ∈ Cxi
.16 Recall that z 7→ 1

2d
2(z, xi) is smooth in M/Cxi

, and notice
that an almost gradient at x ∈ Cxi

is, in fact, the limit of a sequence of gradients of
z 7→ 1

2d
2(z, xi) evaluated at 〈xk〉k, where 〈xk〉k is a sequence of points in M/Cxi

converging to x ∈ Cxi
. Obviously, by replacing exp−1

x xi in (2.8) with −γ̇xxi
(0+) we

can define an almost gradient for f2 at x ∈ Cxi
.

Due to Condition (L) there is a mirror geodesic to γxxi
, namely γ̃xxi

: [0, 1] → M ,
where γ̃xxi

(0) = x, γ̃xxi
(1) = xi, and ˙̃γxxi

(0+) = −γ̇xxi
(0+). There is a possibility

that with the choice exp−1
x xi = −γ̇xxi

(0+) in (2.8), ∇f2(x) becomes zero (note that

16Generalizations of the notion of gradient have appeared in the literature on nonsmooth opti-
mization under various names and forms. Our definition is essentially the same as the almost gradient
introduced by Shor [44]. The notion of almost gradient differs from that of generalized gradient [17],
which is the convex hull of almost gradients. For our current application, we find almost gradients
more convenient than generalized gradients. In Riemannian geometry literature also the term “gen-
eralized gradient” is often used to denote a set of vectors and not a single vector [40, Ch. 11]. It is
interesting to mention that in Riemannian geometry, the powerful theory of critical points of distance
functions, which has brought about some profound results, is essentially the study of the generalized
gradient of the Riemannian distance function on a manifold and its relation to the topology of the
manifold (see [40, Ch. 11]).
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this does not contradict Theorem 6.3). As an example, in Example 2.11 with w1 = 3
8 ,

this situation happens at x = x′
1 for the clockwise geodesic from x′

1 to x1 (see Figure
2.1). In such a case, we can simply choose exp−1

x xi = − ˙̃γxxi
(0), which obviously

results in non-zero ∇f2(x). Notice that ∇f2(x), defined in this fashion, is clearly a
descent direction at x. If x belongs to more than one cut locus, our definition extends
similarly. We call ∇f2(x), defined in this fashion, a preferred almost gradient of f2
at x. In the sequel, unless mentioned explicitly, by ∇f2 at a cut point we mean a
preferred almost gradient (i.e., one that is not zero), and we implement Algorithm
1 with such ∇f2. Therefore, we have defined descent directions on the entire M .
However, note that the caveat is that ∇f2 is not continuous at a cut point and that
is a major obstacle in our algorithm having a completely desirable behavior. Also
note that the discontinuity is the result of the inherent non-uniqueness of almost
gradients and not our preferred choice. We could implement Algorithm 1 with any
almost gradient, but there is a chance that the algorithm would stop at a cut point of
a data point in finite steps (although in a generic case the chance of this happening is
zero). However, with the preferred almost gradient this possibility is removed, which
is conceptually desirable.

Now, we verify that (2.10) remains valid under Condition (L). First, we show that
the s 7→ expx(−s∇f(x)) meets any cut locus Cxi

in a well-behaved manner.

Proposition 6.4. Let M satisfy Condition (L) and define c(s)=expx(−s∇f(x))
where s ∈ [0, t]. The set I = {s ∈ (0, t)|c(s) /∈ Cxi

} is a union of (at most) countable
disjoint open subintervals of [0, t].

Proof. Consider the continuous function z(s) = d(xi, c(s)). Due to condition (L)
we have c(s) /∈ Cxi

if and only if z(s) < injxi. This implies that I is an open set in
(0, t). The claim follows from a well-known result about open sets in R.

Proposition 6.5. Let M satisfy Condition (L) and {xi}Ni=1 ⊂ M be a given
set of data points (not necessarily localized in a small region). Let HM be an upper
bound on the eigenvalues of the Hessian of x 7→ 1

2d
2(x, xi) (wherever defined) for

every i. (HM is automatically an upper bound on the eigenvalues of the Hessian of
f2 (wherever defined) and if ∆ ≥ 0 then we can take HM = 1.) In Algorithm 1 with
the preferred almost gradient at cut loci of the data points choose t ∈ (0, 2

HM
). Then

for f2 relation (2.10) holds (with HS = HM), with equality only if x is a zero of the
gradient of f2.

Proof. For convenience we replace the role of t in (2.10) with s ∈ [0, t]. Set
c(s) = expx(−s∇f2(x)) and denote the left hand and right hand sides of (2.10) by
f2(s;x) and f̃2(s;x), respectively (note that f2(s;x) = f2(c(s))). For now assume
that x does not belong to any cut loci of the data points. Assume that c(s) meets
at least one cut locus, otherwise (2.10) holds trivially. For now assume that c(s)
only meets Cx1 . In particular, (by Proposition 6.4) let s1 be the first point such that
c(s1) ∈ Cx1 . In (0, s1), (2.10) holds true and f2(s;x) is C

2. Note that by Proposition
6.4 either c(s) leaves Cx1 immediately, that is, c((s1, s2)) /∈ Cx1 for a (maximal)
s2 > s1 or it stays in Cx1 , that is, c([s1, s2]) ∈ Cx1 for a (maximal) s2 > s1. A
relation not explicit in Proposition 2.7 is between the derivatives of f2 and f̃2, namely
that f ′

2(s;x) ≤ f̃ ′
2(s;x) for s ∈ (0, s1). Having this in mind, in the first mentioned

case we have f2(s
−
1 ;x) ≤ f̃2(s

−
1 ;x), f ′

2(s
+
1 ;x) ≤ f ′

2(s
−
1 ;x) ≤ f̃ ′

2(s
−
1 ;x) = f̃ ′

2(s
+
1 ;x)

(because of Condition (L)), and f ′′
2 (s

+
1 ;x) ≤ HM . Therefore clearly the relation

f2(s;x) ≤ f̃2(s;x) holds for s ∈ (s1, s2). In the second case, the nonsmooth part of
f2(s;x) remains constant in Cx1 so we clearly have f

′ns
2 (s−1 ;x) > f

′ns
2 (s+1 ;x) = 0 and

hence again f ′
2(s

+
1 ;x) ≤ f ′

2(s
−
1 ;x) ≤ f̃ ′

2(s
−
1 ;x) = f̃ ′

2(s
+
1 ;x). Moreover, for s ∈ (s1, s2)
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we can assume that f
′ns
2 (s;x) is (constant) smooth, hence f2(s;x) can be assumed

smooth in (s1, s2) with f ′′
2 (s;x) ≤ HM . This again implies f2(s2;x) ≤ f̃2(s2;x) and

f ′
2(s

−
2 ;x) ≤ f̃2(s2;x). Because of Condition (L) we must have f ′

2(s
+
2 ;x) ≤ f ′

2(s
−
2 ;x)

and hence f2(s;x) ≤ f̃2(s;x) for s ∈ (s2, s3) where s3 ≤ t is the next time c(s) enters
Cx1 . This argument can be repeated if c(s) meets Cx1 more. Moreover, the same
argument can be extended to the case where c(s) meets more than one cut locus or if
x belongs to a cut locus (in which a preferred almost is employed).

6.3. Global convergence. Now we prove our global convergence result, which
states that any accumulation point of the algorithm is either a zero of ∇f2 (at which
f2 is smooth) or a cut point at which an almost gradient is zero. This latter scenario
is a rather peculiar (and rare) scenario stemming from discontinuity of ∇f2 at cut
points. In the proof, we use the fact that if x ∈ M does not belong to any of the cut
loci, then for small r, B(x, r) also does not intersect any of the cut loci.

Theorem 6.6. Assume p = 2 and let M satisfy Condition (L) and let {xi}Ni=1 ⊂
M be a set of data points (not necessarily localized in a small region). Let tk = t ∈
(0, 2

HM
) be the step-size. Then any accumulation point of Algorithm 1 implemented

with the preferred almost gradient is either a zero of the gradient of f2 (in particular f2
is smooth at such a point) or a cut point of one of the data points at which at least one
almost gradient of f2 is zero. However, such a cut point is neither a local minimizer
of f2 nor a fixed point of the algorithm, hence it is an unstable accumulation point,
in the sense that with small random noise added to the iterates, that point will not be
an accumulation point anymore.

Proof. Since relation (2.10) holds, the proof is essentially the same as the first
part of the proof of Theorem 2.10, except that from ‖∇f2(x

kj )‖ → 0 we conclude
that either x∗ is a zero of the gradient of f2 or it is a cut point at which an almost
gradient is zero. To see this note that if x∗ is not a cut point of any data point, then
∇f2 is continuous in a neighborhood of x∗, hence we must have ∇f2(x

∗) = 0. If x∗

is a cut point, then ‖∇f2(x
kj )‖ → 0 exactly means that an almost gradient at x∗ is

zero. The statement about instability is obvious.
For an almost gradient to be zero at a given cut point there must be a relation

between the data points and the weights wi’s (we see this in the above example in
relation to Example 2.11). Therefore, generically (i.e., arbitrary data points and
arbitrary weights), the probability of an almost gradient at a cut point being zero is
diminished. Hence, generically, one expects that all accumulations points are zeros of
the gradient of f2.

Corollary 6.7. Let M be either SO(3), RPn, or Tn. Furthermore, assume that
no cut point of the data points has a zero almost gradient. Then the iterates converge
to a local Riemannian center of mass.

Proof. In view of Theorem 6.6 and Proposition 2.14, it suffices to show that any
zero of ∇f2 is a non-degenerate local minimizer. By Theorem 6.3, a local minimizer of
f2 is not a cut locus. Let x̄ be an accumulation point, clearly x̄must be zero of gradient
∇f2 and not a cut point of any of data points. This means that {xi}Ni=1 ⊂ B(x̄, ρ),
where for SO(3), RPn, and T

n we have ρ < π, ρ < π
2 , ρ < π, respectively. Notice that

f2 is C2 in B(x̄, ε) for small ε. It follows from (2.5) that, in each case, f2 is strictly
convex in B(x̄, ε), hence x̄ must be a non-degenerate local minimizer. (In fact, there
is hρ > 0 for which the eigenvalues of the Hessian of f2 at x̄ are not smaller than hρ:
For SO(3), RPn(n > 2), and T

n we have hρ = ρ
2 cot

ρ
2 , ρ cot ρ, and 1, respectively.

For RP1 we have hρ = 1.) Since x̄ is an accumulation point, by Proposition 2.14 (or
similar results), this is enough to guarantee that the iterates converge to x̄.
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