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Abstract—This paper introduces a large class of differential-
geometric distances between finite-dimensional linear dynamical
systems, collectively called the alignment distance. Contrary to
the existing distances, the alignment distance is based on the state-
space description of dynamical systems, and is defined on mani-
folds of systems of fixed order and fixed input-output dimension
under a matrix rank constraint (e.g., minimality, controllability,
or observability). While the quotient topology and principal
fiber bundle structure associated with such manifolds have been
known since the early days of modern control theory, distances
natural to this structure have not been studied. The starting
point for defining such a distance is to identify a linear system
of order n with its equivalence class of state-space realizations,
all related by the so-called similarity action, i.e., state-space
change of basis under GL(n), the Lie group of nonsingular
n × n matrices. The main idea of the alignment distance is
to first find the best state-space change of basis that brings a
realization of a system “as close as possible” to a realization
of another system (the alignment step), and then compare the
aligned realizations. A direct implementation of this idea, due
to noncompactness of GL(n), is complicated. However, using
the notion of “reduction of the structure group” of a principal
bundle, we show that the change of basis can be restricted to an
orthogonal change of basis, provided one uses realizations in a
reduced subbundle. This key observation brings about significant
computational benefits. As a technical contribution (possibly of
independent interest), we show that several forms of realization
balancing available in the control literature have differential-
geometric significance, and are, indeed, examples of reducing
the structure group from GL(n) to its subgroup of orthogonal
matrices O(n). The alignment distance can be defined for stable
and unstable systems, discrete or continuous-time, and stochastic
systems.

Index Terms—Linear dynamical systems, State-space descrip-
tion, manifolds, order, principal fiber bundles, balanced realiza-
tions, distances, quotient topology, Riemannian manifolds.

I. INTRODUCTION

THE notion of a distance between linear dynamical sys-
tems is fundamental in control theory. A distance appears

directly or indirectly in many basic control problems. The
notable examples are the problems of robust control and model
order reduction. Closely related to the notion of a distance is
the notion of a space of systems and its geometrization.

The starting point in studying spaces of linear dynami-
cal systems and their geometries is the basic question of
mathematical description of systems.1 Since the early days
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1To avoid any confusion, unless otherwise indicated, by a “system” we

exclusively mean a (finite-dimensional LTI) “dynamical system” as in [1],
also called a “state-space system” [2].

of modern control theory two competing —but not exactly
equivalent—formulations for describing physical dynamical
systems have existed: First, what Kalman in his seminal
paper [1] calls “the old approach,” namely, the input-output,
operator theoretic, transfer function, or external description
of a dynamical system; and, second, what he calls “the new
approach,” which is the state-space, differential equation (or
difference equation), or internal description of a dynamical
system. However, when it comes to distances between linear
dynamical systems, almost the entire literature is exclusively
devoted to distances based on the input-output description,
recall e.g., the Lp, H∞, Hankel-norm, and Gap distances [3],
[4]. Perhaps one reason for this monopoly is that the geometry
associated with the state-space description is nonlinear and
complicated —compared with the rather simple linear geom-
etry of the spaces of transfer functions.

In this paper, we introduce the (realization) alignment
distance, which is defined based on the state-space description
of linear systems. Recall that a linear system of order n has
an equivalence class of state-space realizations, all related via
the so-called similarity action, i.e., change of basis in the state
space by the Lie group of nonsingular n×n matrices, GL(n).
Formally, one says that GL(n) acts on the space of realizations
of order n and fixed input-output dimension, and the space of
systems of order n is the quotient space under this action
(with a natural quotient topology). The basic idea is to find
the “best” change of basis that brings given realizations of two
systems “as close as possible,” hence aligning them, and then
comparing the aligned realizations. There are theoretical and
computational challenges in materializing this idea, primarily
stemming from noncompactness of GL(n). For example, the
mentioned quotient space is non-metrizable; however, it does
have nice subsets, e.g., the manifolds of minimal, controllable,
or observable systems, which descend from respective realiza-
tion manifolds. Such a realization-system manifold pair forms
a GL(n)-principal fiber bundle. As we will show, on these
bundles, the action of GL(n) can be reduced (in an exact
differential-geometric sense) to the action of its subgroup of
orthogonal matrices, O(n). This helps us to convert our basic
idea into a computationally-friendly distance that matches the
quotient topology of the system manifolds.

A. A Informal Tour of our Results and the Alignment Distance

It is useful to have an example of the alignment distance
early in the paper to give the reader a better sense of the
developments to come and perhaps entice questions. We
intentionally omit some details. Consider the manifold of
asymptotically stable (a.s.), minimal, discrete-time, linear time
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invariant (LTI), deterministic systems of order n and input-
output size (m, p), denoted by Σmin,a

m,n,p. Take two systems
M1,M2 ∈ Σmin,a

m,n,p with their respective minimal state-space
realizations Ri = (Ai, Bi, Ci) (see the state-space equation
(4)). First, we transform Ri to a balanced realization Rbl

i , i.e.,
one for which the controllability and observability Gramians
are equal, see (15). Such realizations always exist but are
unique only up to an orthogonal state-space change of basis.
We call this step bundle reduction or standardization. The key
point is that while the full internal symmetry group is GL(n),
by the reduction step it is reduced to O(n); this reduction does
have an exact differential-geometric meaning (see Definition
7). The alignment distance dF associated with the Frobenius
norm ‖·‖F and the reduced subbundle of balanced realizations
(see § II-D, § IV, and § V) is defined as

d2
F (M1,M2) = min

Q∈O(n)
‖Q>Abl

1Q−Abl
2 ‖2F (1)

+ ‖Q>Bbl
1 −Bbl

2 ‖2F + ‖Cbl
1 Q− Cbl

2 ‖2F ,

where > denotes the matrix transpose. This minimization is
called the realization alignment problem; it is a non-convex
problem for which, in general, no closed-form solution is
known, but for moderate n it can be solved quite efficiently
(see e.g., [5]). The bulk of this paper is devoted to showing (by
differential-geometric tools) that (1) and a large family of such
definitions are, in fact, distances that match the natural quotient
topology of the respective system spaces (here, Σmin,a

m,n,p). The
term “the alignment distance” will be used in a generic sense,
but it is understood that there is a family of such distances.
As is obvious from this example, an alignment distance is
associated with a reduced realization subbundle and a distance
between realizations (see Definition 18).

B. A Historical Perspective

Kalman’s work [6] is perhaps the first to examine the
algebraic-geometric properties of the quotient spaces of min-
imal, observable, and controllable systems of fixed order
and input-output size. It became clear that, interestingly, the
notions of observability and controllability are relevant in
guaranteeing that the quotient space has certain nice topo-
logical properties (such as being a quasi-projective variety in
the language of algebraic-geometry and a smooth manifold in
the language of differential geometry, see § III). The works by
Hazewinkel and Kalman [7]–[10], Brockett [11], Clark [12],
Krishnaprasad [13], Byrnes and Hunt [14], Delchamps [15],
[16], and others furthered our understanding of the topological
properties of the space of fixed order and size systems. There
have been two parallel but analogous paths to analyze these
quotient system spaces: the algebraic-geometric path and the
differential-geometric one. Our choice, here, is the differential-
geometric path, because it is more easily amenable to defining
distances and computations. We should stress again that in
(almost) all such works in the 1970s and 1980s no attempt was
made to define distances naturally associated with the quotient
structure. The only exception we have found is the works by
Krishnaprasad and Martin [13], [17], where a Riemannian
metric that can be related to the alignment distance was
proposed (see § V-B1).

C. Broader Context, Significance, and Possible Applications

The spaces on which the alignment distance can be defined
are the manifolds of systems of fixed order and fixed size
together with appropriate matrix rank constraints. The rank
constrains essentially ensure the manifold structure. Examples
include the manifolds of minimal systems of order n and
input-output size (m, p) denoted by Σmin

m,n,p, or Σco
m,n,p and

Σob
m,n,p which are the manifolds of controllable and observable

systems of order n and size (m, p), respectively. On the other
hand, the input-output based distances are naturally defined
on the infinite dimensional linear spaces of transfer functions
or operators of fixed input-output size (m, p). By identifying
a minimal system in Σmin

m,n,p with its transfer function matrix
of McMillan degree n, an input-output distance may be used
to define an induced distance on Σmin

m,n,p. Such an induced
distance is an extrinsic distance on Σmin

m,n,p. The alignment
distance also can be either intrinsic (e.g., Riemannian) or
extrinsic (such as dF in (1)). An extrinsic alignment distance,
however, is computationally much cheaper to calculate. An
important distinction with an extrinsic distance induced by an
input-output distance on Σmin

m,n,p is that, an extrinsic alignment
distance is induced from a finite dimensional ambient space.
Another interesting point is that input-output based distances
cannot be defined on spaces of non-minimal systems such as
Σco
m,n,p and Σob

m,n,p, and they cannot account for the effect of
the initial state of systems (at least directly).

An important question is: In what applications do the spaces
or families of LTI systems of fixed order and fixed input-
output size appear naturally? An immediate example is the
problem of system identification, where as soon as one fixes
the order of the system to be identified, the problem will be
essentially a search on the manifold Σmin

m,n,p (see [18], [19]).
In the Linear Parameter Varying (LPV) modeling of nonlinear
and time-varying systems, one basically has a parameterized
family of LTI dynamical systems of fixed order and size to
model a nonlinear or time-varying system [20]. Here, one may
need to interpolate between two systems associated with two
parameter values by generating new systems of the same order
associated with the in-between parameter values. Similarly in
the framework of switched linear systems one has a curve
(parameterized by time) on the space of systems of fixed order
and size to model time-varying systems. In the framework
of multiple model control also one might have a set systems
in Σmin

m,n,p. As a less traditional application, we also add
that in problems related to modeling and classification of
video sequences of human actions (or more generally, high-
dimensional time-series data), MIMO LTI models of the same
order and size have been used to model video sequences (see
[21] and reference therein). An interesting problem, here, is
the problem of averaging a very large number of systems of
the same size and order for classification purposes. Simple
Euclidean averaging of the respective transfer functions, ob-
viously, gives a system with a huge order, whereas using the
alignment distance (by minimizing the sum-of-the-squares-of-
distances) one can get an average or representative system of
the same order naturally (see [21], [22]). This is expected,
since the alignment distance is a distance defined on the
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manifolds of systems of fixed order and size.
A more general framework could be to consider the space

of systems of fixed input-output size but order not larger than
a fixed number. A prominent example is the problem of model
order reduction, which could be roughly phrased as: Find
a system on the boundary of Σmin

m,n,p closest (in appropriate
sense) to a given system in Σmin

m,n,p. Note that the boundary
points correspond to systems of minimal order smaller than
n. As our recent work [23] shows the alignment distance can
be naturally extended to formulate and solve this problem. In
the current paper, however, we will be concerned only with
the manifolds of systems of fixed order and size.

Our goal, in this paper, is to introduce the alignment
distance as a new tool to the toolbox of control engineers
with emphasis on its novelty and natural properties. Such
aspects can be summarized as follows: The main feature of
the alignment distance is that it is a family of distances based
on the state-space description of linear systems; as such, it
is a topologically and methodologically natural distance (see
Remark 23). In applications where one has a set of systems
of the same order and size, and the order is an important
feature, the alignment distance can be potentially useful. From
the example above, it is clear that, despite some differential-
geometric jargon, the definition of the alignment distance is
quite intuitive and even elementary. This contrasts with a
distance such as the gap metric, whose starting point (the graph
of a functional) is not intuitive or elementary. The alignment
distance is a general framework that can be seamlessly defined
for SISO/MIMO, stable/unstable, and deterministic/stochastic
systems (see [24] and § VI-B). Moreover, since it is based
on the state-space description, the alignment distance can
potentially be extended to time-varying, LPV and switched
linear system (see [25], [26]), or nonlinear systems. Finally,
as a reader familiar with the statistical analysis of shapes [27],
[28] would notice, the mathematical constructions presented in
this paper are, partly, inspired by those in that field; and such
a connection can be enriching to both fields.

D. Scope, Contributions, and Outline of the Paper

This paper is wholly devoted to theoretical foundations
of the alignment distance. The basic idea of the alignment
distance was introduced in [21], [22], [24]. This paper serves
as a complete form of [22], in particular, containing proofs,
detailed discussions, as well as new results. Mathematical
preliminaries including group action induced distances and
principal fiber bundles are introduced in § II. We try to
be self-contained, but some basic familiarity with general
topology, manifolds, and Lie groups is assumed. In § III, the
principal fiber bundle structure of the manifolds of systems
and their associated topology are reviewed. Crucial in defining
the alignment distance is the (differential-geometric) step of
standardization or reduction of the structure group. The most
important technical results of the paper are in § IV, in which
we show that several classes of realization normalization and
balancing in the control literature are examples of reduction of
the structure group. In § V, the alignment distance is defined
and it is shown that its induced topology matches the natural
quotient topology of the system manifolds. Certain discussions

in relation to other problems in the literature are also included.
In § VI, extensions to include the initial state and stochastic
systems are considered, and § VII concludes the paper. Due
to space limitation, the reader is referred to our earlier papers
( [21]–[23]) and forthcoming ones for exemplary applications,
e.g., in a work under preparation the robustness of internal
stability under feedback in the alignment distance and its
implication for model order reduction are studied.

II. PRELIMINARIES: GROUP ACTION INDUCED
DISTANCES, PRINCIPAL FIBER BUNDLES AND

REDUCTION OF STRUCTURE GROUP

In this section, we shall review some preliminaries on group
actions on topological spaces, group action induced distances,
smooth principal fiber bundles, and reduction of the structure
group. General references on the topics are [28]–[32].

A. Actions of Topological Groups and the Quotient Topology

The following abstract definition of a group action and the
orbit or quotient space will be used concretely in the case of
state-space realizations of systems. For completeness, certain
topological facts are included in the definition.

Definition 1: Let G be a topological group and Σ̃ a topo-
logical space. We say that G acts on Σ̃ (from the right) if
there is a continuous function Φ : Σ̃ × G → Σ̃ such that for
∀R ∈ Σ̃ and ∀P1, P2 ∈ G the following hold:

Φ(R,P1P2) = Φ(Φ(R,P1), P2)) (2)
Φ(R, id) = R,

where id is the identity element of G. For convenience, we
denote the action by Φ(R, g) = g ◦ R, and may refer to ◦ as
the action.2 We denote the G-orbit (or the equivalence class)
of R ∈ Σ̃ by [R] = {g ◦ R|∀g ∈ G}. We denote the quotient
set of the action (i.e., the set comprised of all the orbits) by
Σ = Σ̃/G = {[R]|R ∈ Σ̃}. We may also call Σ̃ a G-space or
the top space and Σ the base or bottom space. The quotient
(projection) function π : Σ̃ → Σ is defined as π(R) = [R].
The quotient space Σ has a unique (natural) topology in which
a set U ⊂ Σ is open if and only if π−1(U) is open in Σ̃.
This topology is called the quotient topology. This is the finest
topology on Σ in which π is a continuous map.

The group action Φ (or ◦) induces an equivalence relation
on Σ̃, and the quotient space Σ is the set of all equivalence
classes. The important topological question is what properties
Σ will have or inherit from Σ̃. In general, Σ may be a
wild space, e.g., even though Σ̃ is a metric space, hence
Hausdorff, Σ may be non-Hausdorff, hence non-metrizable
(i.e., its topology cannot be generated by any distance). Our
main case of interest would be when Σ̃ is a smooth manifold,
G is a matrix Lie group, and Φ is a smooth action which
is in addition free and proper (see §II-C for the definitions),
in which case Σ will be a smooth manifold. In our setting,
Σ̃ and G both can be considered as submanifolds of certain
Euclidean spaces and hence the smoothness of Φ is studied in
the same way as in multivariable calculus.

2To be precise, and in accordance with most mathematical texts, since ◦ is
a right action, we should write R◦g. However, for convenience and aesthetics
we choose g ◦R.
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B. Metric Aspect: Group Action Induced Distances

Comparing the elements of a metric space under a group
action is the basis of pattern theory and statistical analysis
of shapes, and has been extensively used in image processing
for registration purposes and other applications [27], [28]. The
starting point is a group-invariant distance:

Definition 2: A distance d̃Σ̃ on a G-space Σ̃ is called G-
invariant if d̃Σ̃(P ◦R1, P ◦R2) = d̃Σ̃(R1, R2) for every P ∈ G
and R1, R2 ∈ Σ̃.

In this case G is a subgroup of the group of isometries of Σ̃.
Our goal is to compare elements in the quotient space (i.e., the
equivalence classes). We express the general construction of a
group action induced distance on the quotient space Σ = Σ̃/G.
Such a distance also is sometimes called a quotient or orbital
distance, but we use the terminology borrowed from [28, Ch.
12]. We gather some important (known) results, hard to find
in a single reference. For completeness, we give a proof in
Appendix (see e.g., [28, Ch. 12], [33] for more details):

Theorem 3: Let Σ̃ be a G-space with G-invariant distance
function d̃Σ̃. Then the following hold:

1) For any R1, R2 ∈ Σ̃, the quantity infP∈G d̃Σ̃(P ◦R1, R2)
depends only on M1 and M2, the equivalence classes
of R1 and R2. Define dΣ(M1,M2) = infP∈G d̃Σ̃(P ◦
R1, R2). Then dΣ is a pseudo-distance on the quotient
Σ̃/G, i.e., it is symmetric, obeys the triangle inequality, it
is positive semi-definite, but may not be positive definite.

2) If additionally the G-orbit of any R ∈ Σ̃ is a closed set
in Σ̃ (with respect to the topology induced by d̃Σ̃), then
dΣ(·, ·) is a distance on the quotient space Σ = Σ̃/G
and (Σ, dΣ) will be a metric space whose metric induced
topology coincides with its natural quotient topology.

3) If additionally G is compact or every closed and bounded
set in (Σ̃, d̃Σ̃) is compact, then the infimum is achieved
and we write:

dΣ(M1,M2) = min
P∈G

d̃Σ̃(P ◦R1, R2). (3)

The topologically important fact is that a group action
induced distance is not an arbitrary distance on the quotient
space Σ (considered as a set), rather it is a distance that
matches the unique natural quotient topology of Σ.

Part 3 with compact G is of main interest to us. The reason
is that for noncompact G, guaranteeing the existence or con-
struction of a group invariant distance d̃Σ̃ is quite complicated
(see [33] and § V-B1), and additionally the closedness of the
G-orbits in d̃Σ̃ needs extra provisions. These facts call for
a form of reduction of the action of a noncompact group to
a compact subgroup, something that will finally lead to the
alignment distance, see § II-D, § IV, and § V.

C. Smooth Quotient Spaces and Principal Fiber Bundles

The well-known quotient manifold theorem states that the
quotient space of a Lie group G acting smoothly, freely,
and properly on a smooth manifold is a smooth manifold of
dimension equal to the difference of the dimensions of the
original manifold and G (see e.g., [32], [30, pp.144-150]).
The freeness and properness properties are defined as follows:

Definition 4 (Free Action): Action ◦ on Σ̃ is free if for
every R ∈ Σ̃, P ◦R = R implies P = id.

Definition 5 (Proper Action): The smooth action ◦ of a Lie
group G on a smooth manifold M is called proper if the
following holds: If {Ri}i is a convergent sequence in M and
{Pi}i is a sequence in G such that {Pi ◦ Ri}i converges in
M, then a subsequence of {Pi}i converges in G.

Intuitively, properness (which only matters in the case of
noncompact groups) has to do with making the quotient space
a Hausdorff space and metrizable. Freeness has to do with the
smoothness of the quotient space (see [32]–[34]). The smooth
structure on the quotient space is determined uniquely from
the top space by the quotient-taking operation.

In the case we have a smooth, proper and free action, then
the pair (Σ̃,Σ) is called to form a principal fiber bundle with
structure group G. In some contexts the structure group G may
also be called the symmetry group. A principal fiber bundle
may be written as (Σ̃,Σ, G), and if the context is clear we
may refer to it as (Σ̃,Σ) or even Σ̃ (i.e., the group G and
the base Σ are assumed to be fixed). The set π−1(M) ⊂ Σ̃
which naturally is a closed submanifold of Σ̃ is called the fiber
above M . A fiber bundle is essentially a smooth parameterized
family of objects of a fixed kind such as a fixed Lie group
and a fixed vector space, respectively, in the case of principal
bundles and vector bundles.

It follows from the definitions that if (Σ̃,Σ) is a principal
fiber bundle with structure group G, then Σ̃ is locally dif-
feomorphic to the product Σ × G; that is, for every R ∈ Σ̃
one could find an open neighborhood Ũ 3 R diffeomorphic
to π(Ũ) × G. This is called local triviality of principal fiber
bundles. However, in general, Σ̃ is not globally diffeomorphic
to Σ×G, i.e., it is not (globally) trivial. What stops a principal
fiber bundle from being trivial is a phenomenon known as
twisting, similar to the famous Möbius band. An important fact
is that (Σ̃,Σ) is trivial if and only if it admits a smooth global
section. A global section is a smooth function s : Σ→ Σ̃ such
that π(s(M)) = M for every M ∈ Σ, i.e., it is a function from
the base space to the bundle space which smoothly assigns to
every equivalence class a representative in the class. (Although
smoothness is stronger than continuity, in this context both are
treated the same, since in most cases of interest non-trivial
bundles even do not admit continuous sections.) In control
theory, a smooth or continuous section is known as a (smooth
or continuous) canonical form (see Remark 11).

Remark 6 (Distances Induced by Sections): Let (Σ̃,Σ) be
a trivial bundle, and assume that we are given a global
continuous section s : Σ→ Σ̃ and a distance (not necessarily
group-invariant) d̃Σ̃ on Σ̃. One can define a distance on Σ as:
dΣ(M1,M2) = dΣ̃(s(M1), s(M2)) for every M1,M2 ∈ Σ.
We call dΣ the distance induced by section (or canonical
form) s. Since s is continuous the topology induced by dΣ

on Σ coincides with its natural quotient topology. Note that
if d̃Σ̃ is G-invariant, then dΣ might yield unrealistically large
distances between points on the base space (compared with the
group action induced distance, which includes an alignment or
optimal positioning step). If the bundle is non-trivial (as the
bundle of MIMO minimal systems is, see Remark 11 for more
details), then, at best, one can find a discontinuous section
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s′ : Σ→ Σ̃. In this case, one may want to define a “distance”
as dΣ̃(s′(M1), s′(M2)). However, such a “distance” is useless,
since it does not induce the same topology as the quotient
topology on Σ. For example, at a discontinuity point of s′, M ,
the distance between M and points in an arbitrary small open
neighborhood (in the quotient topology) around M , cannot be
decreased no matter how small the neighborhood is chosen.

D. Reduction of the Structure Group to the Orthogonal Group

We first define the notion of reduction of the structure group:
Definition 7 (Reduced or Standardized Subbundle): Let

(Σ̃,Σ) be a principal fiber bundle with structure group G and
let OG be a Lie subgroup of G. Assume that there exists an
embedded submanifold ÕΣ of Σ̃, on which OG acts via the
restriction of the action G on Σ̃. If (ÕΣ,Σ) is a principal
bundle with structure group OG, then we call (ÕΣ,Σ) or
ÕΣ a reduced, standardized, or OG- subbundle of (Σ̃,Σ),
and we say that the structure group of Σ̃ is reduced (from G)
to OG. We stress that ÕΣ/OG is not only equal to Σ as sets
but also diffeomorphic to it, and we write ÕΣ/OG

diff
= Σ.

We start by noting that the term “reduction of the structure
group” is the standard term in differential geometry for this
process. The term “standardization” is borrowed from the
literature on statistical analysis of shapes [27], where a similar
step is often used by which often reduction to a SO(3)-
subbundle is achieved (SO(3) being the group of rotations
in R3).

Intuitively, if a bundle is reducible, then we can consider a
smaller subbundle with a smaller structure group and still get
the same base space not only as sets but also topologically
and in the sense diffeomorphism. It is easy to see that for Σ̃
to be reducible the action of G restricted to ÕΣ must be only
through OG, that is ∀R ∈ ÕΣ, P ◦R ∈ ÕΣ⇔ P ∈ OG.

In general, reduction to an arbitrary (or small) subgroup may
be impossible due to topological obstructions. For example,
only in a trivial bundle the structure group can be reduced
to the trivial subgroup {id}. However, often it is possible to
reduce the noncompact structure group of a principal bundle
to its maximal compact subgroup.

Proposition 8: Let OG be a closed subgroup of G and
G/OG diffeomorphic to a Euclidean space, then any G-
bundle Σ̃ is reducible to an OG-bundle ÕΣ. In particular,
this holds when G = GL(n) and OG = O(n), the subgroup
of orthogonal matrices.

Proof: For the proof of the first statement see [29, p.
57, and 59]. The second statement follows from the polar
decomposition of matrices, which implies that the quotient
GL(n)/O(n) is (diffeomorphic to) S(n), the manifold of n×n
positive definite matrices, which in turn is diffeomorphic to the
Euclidean space of n×n symmetric matrices and in the matrix
exponential map and its inverse.

Notice that O(n) is a maximal compact subgroup of GL(n).
Although not of our direct interest, we should mention that
the essence of the (omitted) proof of this result is that, under
the assumption made, Σ̃/OG will be a vector bundle over Σ,
which contrary to a principal bundle always admits a global
section; and such a global section will be mapped back to a
reduced bundle (see [29, p. 57, and 59] for more details). A

variant of such an explicit construction of reduced subbundles
will be given in Proposition 13. As a matter of terminology, in
the rest of this paper by a “reduced subbundle,” we exclusively
mean an O(n)-subbundle, since it is our only case of interest.

Remark 9 (No canonical reduction): Proposition 8 estab-
lishes existence of a reduced subbundle, however, gives no
indication of uniqueness. An important point is that there
is no reduction or subbundle that can mathematically be
considered as natural or canonical. However, as shown in § IV,
in specific applications, there may exist subbundles that for
some theoretical, physical, or practical reasons stand out.

III. THE PRINCIPAL BUNDLE STRUCTURE OF MANIFOLDS
OF SYSTEMS OF FIXED SIZE AND ORDER

Our discussion will be limited to discrete-time, deterministic
systems with no direct input-output path. However, essen-
tially the same theory (with obvious modifications) applies to
continuous-time systems or systems with direct input-output
path. Consider the following state-space equation describing a
discrete-time LTI dynamical system of order n with m inputs
and p outputs (size (m, p)):

xt+1 = Axt +But
yt = Cxt,

(4)

where ut ∈ Rm, xt ∈ Rn, and yt ∈ Rp are input, state
and output vectors, respectively. The triplet R = (A,B,C) ∈
L̃m,n,p , Rn×n × Rn×m × Rp×n is called a (state-space)
realization of the system and L̃m,n,p the Euclidean realization
space. For convenience, we assume zero initial state (see
§ VI-A for the case of non-zero intial state). Recall that,
assuming zero initial state, the state-space equation (4) has
an internal symmetry; namely, a realization R = (A,B,C)
and any other realization of the form

P ◦R , (P−1AP,P−1B,CP ), (5)

where P ∈ GL(n), have the same input-output behavior.
The group GL(n) is sometimes called the internal symmetry
group of linear dynamical systems [35]. The transformation
◦ (sometimes called the similarity action or transformation)
corresponds to a change of basis in the state space of the form
x → P−1x. It is easy to verify that ◦ in (5) defines a right
smooth action by GL(n) on the space of realizations L̃m,n,p
(in its standard Euclidean topology and smooth structure). The
action ◦ induces an equivalence relation on L̃m,n,p, where the
equivalence class of a realization R ∈ L̃m,n,p is

M = [R] = {P ◦R|P ∈ GL(n)}. (6)

We call M a system; that is, a system is an equivalence class
of realizations under the action (5). We call this definition
of systems the state-space based or internal definition of a
system. We call the quotient Lm,n,p = L̃m,n,p/GL(n) the
space of systems of order n and input-output size (m, p). The
action ◦ is neither free nor proper on the entire of L̃m,n,p; but
we can pass to appropriate submanifolds of L̃m,n,p, where ◦
is free and proper, and get quotient manifolds.
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A. Rank Conditions and the Principal Bundle Structure

We establish some notation first. For a realization R =
(A,B,C) ∈ L̃m,n,p, denote by Ck = [B,AB, . . . , Ak−1B]
and Ok = [C>, (CA)>, . . . , (CAk−1)>]>, respectively, its
controllability and observability matrices of order k (n ≤
k ≤ ∞). These matrices are realization-dependent, and under
the similarity action (5) they transform as: Ck → P−1Ck and
Ok → OkP . Let Σ̃co

m,n,p and Σ̃ob
m,n,p denote, respectively, the

subsets of controllable and observable realizations in L̃m,n,p.
As a convention, we always denote a realization space by a
˜ and the corresponding system space (i.e., quotient space)
by dropping the ˜ (the symmetry group will be clear from
the context). For example, the controllable and observable
system spaces are denoted by Σco

m,n,p , Σ̃co
m,n,p/GL(n) and

Σob
m,n,p , Σ̃ob

m,n,p/GL(n). Let Σ̃min
m,n,p , Σ̃co

m,n,p ∩ Σ̃ob
m,n,p

and Σmin
m,n,p , Σ̃min

m,n,p/GL(n) denote the subspace of minimal
realizations and the corresponding system space. We denote by
Σ̃tC
m,n,p the set of realizations R where rank(C) = n. Here,

we obviously need to assume that p ≥ n (tC stands for “tall
C”). Such realizations appear as realizations of the so-called
tall transfer functions in modeling high-dimensional time-
series in econometrics as well as in modelling video sequence
data (see e.g., [21], [36] and references therein). We use the
superscript a over a set to denote its subset of a.s. realizations,
e.g., Σ̃co,a

m,n,p denotes the subset of a.s. realizations in Σ̃co
m,n,p.

Finally, we use the superscript mp to denote a respective subset
of minimum-phase realizations. A minimum-phase realization
is one whose transfer function matrix (a p ×m matrix) is of
full rank everywhere outside the unit circle in the complex
plane. For example, Σ̃min,a,mp

m,n,p denotes the set of minimal, a.s.,
and minimum-phase realizations in L̃m,n,p.

All the above realization subspaces are, in fact, open subsets
of L̃m,n,p, hence its submanifolds of dimension n2+nm+np.
The basic reason is that they are defined essentially by
inequality constraints on continuous functions (e.g., matrix
determinants, see also [37]). The next theorem shows that their
corresponding system spaces are smooth manifolds:

Theorem 10: Let Σ̃m,n,p be one of the manifolds Σ̃ob
m,n,p,

Σ̃co
m,n,p, Σ̃min

m,n,p, Σ̃tC
m,n,p, Σ̃tC,co

m,n,p, their a.s. or minimum phase
submanifolds, and let Σm,n,p be the respective quotient (sys-
tem) space under the GL(n) action (5). Then the followings
hold:

1) GL(n) acts smoothly, properly and freely on Σ̃m,n,p;
2) Σm,n,p is a smooth n(m+ p)-dimensional manifold and

the realization-system space pair (Σ̃m,n,p,Σm,n,p) forms
a smooth GL(n) principal fiber bundle. Here, the smooth
topological structure is the natural one induced by Lm,n,p.

Proof: We only prove the result for Σ̃ob
m,n,p, the rest are

similar. In view of the quotient manifold theorem, we just
need to prove the first part. To see that action is free, let
R ∈ Σ̃ob

m,n,p, and P ◦R = R for some P ∈ GL(n). It follows
that OP = O, where O is the observability matrix of order
n. This implies freeness of the action, because we must have
P = In since O is full rank.

To see properness, assume that {Ri}i is a sequence in
Σ̃ob
m,n,p converging to R ∈ Σ̃ob

m,n,p, and {Pi ◦ Ri}i with

Pi ∈ GL(n) is converging to R̄ ∈ Σ̃ob
m,n,p. We need to

show that there is a subsequence of {Pi}i converging in
GL(n). Since Σ̃ob

m,n,p is a submanifold of L̃m,n,p, without
loss of generality we can assume that all these convergences
are in the standard Euclidean distance. Next, with some
abuse of notation, let O, Oi, and Ō denote the observability
matrices of order n corresponding to realizations R, Ri, and
R̄, respectively. These assumptions on the realizations, in
an obvious way, translate to corresponding ones about the
observability matrices: {Oi}i converges to O and {OiPi}i
converges Ō. Let Pi = UiΛiV

>
i be an SVD of Pi. We

have ‖OiUiΛiV >i − Ō‖F = ‖OiUiΛi − ŌVi‖F → 0 as
i→∞. Since O(n) is compact, {(Ui, Vi)}i has a converging
subsequence (which we re-index as {(Ui, Vi)}i) with limit
(U, V ). Thus we can write ‖OiUiΛi − ŌV ‖F → 0 and
OiUi → OU as i→∞. Since OU is full-rank and bounded,
for large i, the norm of every column of OiUi will be
larger than ε and smaller than η, for some ε, η > 0. Now,
if any diagonal element of Λi tends to zero or infinity the
corresponding column in OiUiΛi will tend to zero or infinity,
which contradicts ‖OiUiΛi − ŌV ‖F → 0 (recall that ŌV
is full-rank too, and, in particular, none of its columns is
zero). Thus the diagonal elements of Λi must remain bounded
and away from zero. Hence, {Λi}i must have a converging
subsequence (re-indexed {Λi}i) with limit Λ (nonsingular).
Therefore, as i → ∞, UiΛiV >i → UΛV > ∈ GL(n), which
means that a subsequence of {Pi}i converges in GL(n).

The second part of this theorem (at least for controllable,
observable, or minimal systems) is a standard result, although
the proof (based on properness and freeness of the action) we
gave here is hard to find in the literature.

The main requirement in Theorem 10 is the existence of
at least one rank-n matrix that transforms via the action (5).
Thus the result holds for other submanifolds not mentioned
in the statement, e.g., Σ̃tC,co,a,mp

m,n,p . It is interesting to mention
that Σ̃min,a

m,n,p and Σ̃min
m,n,p are diffeomorphic, and both are

diffeomorphic to their continuous-time counterparts [38], [39].
Since Theorem 10 and many results in the rest of the paper
apply to numerous submanifolds of L̃m,n,p, it is convenient
to use (Σ̃m,n,p,Σm,n,p) to denote a generic realization-system
GL(n)-principal fiber bundle or briefly a realization bundle (a
terminology borrowed from [16]).

Remark 11 (On the Topology): The topology and parame-
terization of manifolds of linear dynamical have been studied
rather extensively in the literature, especially motivated by
the problem of system identification see e.g, [8], [9], [11],
[12], [14], [16], [40]–[44]. An important negative result is that
the realization bundles Σ̃min

m,n,p, Σ̃co
m,n,p, and Σ̃ob

m,n,p are non-
trivial, hence do not admit global continuous canonical forms
unless, respectively, min(m, p) = 1, m = 1, and p = 1. A
rigorous proof of this practically known fact ended the search
for continuous global canonical forms for MIMO system
identification in the 1970s (see [8], [9], [14] for proofs and
discussions). For us, the most relevant fact is that almost all the
system manifolds of interest have complicated non-Euclidean
topologies and do not admit global parameterizations. Thus,
in order to define distances that respect the topologies of the
system manifolds and are based on comparing realizations,
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one has to resort to local overlapping canonical forms and
switching between, which is quite complicated. In contrast,
the alignment distance which is still based on comparing
realizations, does not use overlapping canonical forms, i.e.,
does not fix a realization; rather the comparison is through an
optimization that finds a closest realization of one system to
a realization of another system.

IV. EXAMPLES OF REDUCTION OF REALIZATION
BUNDLES: NORMALIZATION AND BALANCING

In the control literature, to the best of our knowledge, the
notion of reducing the structure group (in its exact sense
with its differential geometric significance) has not received
much attention with the only exception being the works of
Delchamps [15], [16], [45]. Delchamps has used three specific
reductions of the structure group (from GL(n) to O(n)) in
order to define Riemannian metrics on the so-called abstract
state bundle and connections on the realization bundle to prove
certain global properties of system identification algorithms.
Such tools were primarily of theoretical interest as opposed to
computational. As we show in this section, several notions of
realization or Gramian balancing introduced in the literature
(e.g., [46], [47], [48], [49]) are closely related to reduction of
the structure group. We will distinguish between balancing and
the more often used but restricted diagonal balancing, since,
as will be seen shortly, the latter does not possess any useful
differential geometric meaning.

A. Realization Bundle Reduction Maps

A relatively simple technical tool exists to verify if a given
subset of a GL(n)-principal bundle is a reduced subbundle
(i.e., an O(n)-subbundle). To this end, we follow [30, p.149]
and first define the notion of an equivariant map:

Definition 12 (Equivariant Maps): Let X and Y be two
manifolds on which the Lie group G acts from the right.
Denote the actions by ◦X and ◦Y , respectively. We say that
the smooth map f : X → Y is an equivariant map if
f(P ◦XR) = P ◦Y f(R) for every P ∈ G and R ∈ X .

Proposition 13: Let (Σ̃m,n,p,Σm,n,p) be a realization-
system bundle (e.g., as in Theorem 10). Let S(n) denote the
manifold of n×n positive definite matrices. Consider the nat-
ural smooth right action of GL(n) on S(n) via S 7→ P>SP
for ∀P ∈ GL(n) and S ∈ S(n). Assume that there exists a
smooth equivariant map ν : Σ̃m,n,p → S(n), that is for every
P ∈ GL(n) and R ∈ Σ̃m,n,p one has

ν(P ◦R) = P>ν(R)P. (7)

Then ÕΣm,n,p = ν−1(In) is an O(n)-subbundle or reduced
subbundle of Σ̃m,n,p of dimension n(n−1)

2 +n(m+p). (Here,
ν−1(In) is the preimage of In under ν.)

Proof: First, note that given R ∈ Σ̃m,n,p, by choosing P
equal to the inverse of the (unique) symmetric square root of
ν(R) ∈ S(n), we get ν(P ◦R) = In from (7); thus, any system
M ∈ Σm,n,p has a realization R ∈ Σ̃m,n,p with ν(R) = In.
This means that the fiber over every system intersects ν−1(In).
Next, note that R ∈ ν−1(In) and P ◦R ∈ ν−1(In) if and only
if P ∈ O(n), which means that the action of GL(n) is through
O(n). These two facts imply that the quotient ÕΣm,n,p/O(n)

is equal to Σm,n,p as a set. Next, we show that ÕΣm,n,p =

ν−1(In) is an embedded submanifold of Σ̃m,n,p, which would
imply that ÕΣm,n,p/O(n) is smoothly embedded in Σm,n,p
as a smooth manifold, and therefore ÕΣm,n,p is an O(n)-
reduced subbundle of Σ̃m,n,p. That ν−1(In) is an embedded
submanifold, follows from the constant rank level set theorem
[32, p. 182]; to apply that theorem it suffices to show that
ν∗|R : TRΣ̃m,n,p → Tν(R)S(n), the derivative (tangent map)
of ν at R ∈ Σ̃m,n,p, is of constant rank for every R. The key
observation is that ν||∗|R , the derivative of ν along the fiber,

is of rank n(n+1)
2 , which is the maximum possible and equal

to the dimension of S(n), which in turn would imply that ν
is a submersion and the dimension of ν−1(In) is as claimed.
To see that ν||∗|R is of rank n(n+1)

2 , we identify the fiber at
R with GL(n), thus from ν(P ◦ R) = P>ν(R)P , we can
write ν||∗|R(X) = X>ν(R)P + P>ν(R)X , where X ∈ Rn×n
is a tangent vector along the fiber at R. Clearly, the kernel
of ν||∗|R is {X ∈ Rn×n|P>ν(R)X = skew symmetric} and is

of dimension n(n−1)
2 . Thus the rank of ν||∗|R is n(n+1)

2 , which
is the same as the dimension of S(n); and this allows us to
apply the constant rank level set theorem.

The reader might wonder why S(n) should appear in this
result. The answer is in the polar decomposition of matrices
and Proposition 8 (also recall our discussion following that
proposition). Indeed, the above proof can be considered as
a half-way constructive proof of Proposition 8 (for GL(n)
and O(n)); “half-way” because we are not establishing the
existence of ν. However, this is not an issue, because as to
seen soon, the existence of numerous instances of ν comes
immediately from control theory.

For ease of reference we define:
Definition 14 ((Realization Bundle) Reduction Map): We

call the map ν as in Proposition 13 a realization bundle
reduction map or simply a reduction map (on Σ̃m,n,p). We
denote a generic reduced realization subbundle as ÕΣm,n,p.
1) Geometric Mean of Bundle Reduction Maps

Proposition 13 gives an easy way to construct a reduced sub-
bundle when a reduction map is available; however, it is silent
on how to construct such a reduction map. Here, we introduce
a method to construct a new reduction map from old ones,
which is closely related to realization or Gramian balancing.
First, note that if ν1 and ν2 are reduction maps, so is ν1 + ν2,
as well as their average 1

2 (ν1 + ν2). Their matrix product,
however, is not necessarily a reduction map. But, interestingly,
a form of their geometric mean or average (specifically their
Riemannian mean) will be. We briefly describe the construc-
tion. For more complete exposition the reader is referred to
[50]–[52], [53, Ch. XII]. The manifold S(n) is equipped with a
natural Riemannian metric of non-positive curvature (see [53,
Ch. XII] and [51] for details). In this metric, the geodesic t 7→
S(t) starting from S(0) = S1 to S(1) = S2 can be expressed
as S(t) = S

1/2
1 et log(S

−1/2
1 S2S

−1/2
1 )S

1/2
1 and the corresponding

distance is dS(n)(S1, S2) = ‖ log(S
−1/2
1 S2S

−1/2
1 )‖F [51],

[53, Ch. XII], where eX and log(X) denote the standard
matrix exponential and logarithm of X , and S

1
2 ≡

√
S is
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the unique (matrix) square root of S ∈ S(n). The Riemannian
center of mass, Riemannian mean or average, or simply the
geometric mean of a set of points {Si}Ni=1 ⊂ S(n), denoted by
S̄, is defined as the global minimizer of S 7→∑

i d
2
S(n)(Si, S).

It can be shown that the geometric mean is unique and depends
smoothly on the points Si [50]–[52]. The geometric mean has
several interesting properties, of which the most relevant to
us is congruence invariance: if S̄ is the geometric mean of
{Si}Ni=1, then P>S̄P is the mean of {P>SiP}Ni=1 for any
P ∈ GL(n) [51]. For two pints S1 and S2, the average is
simply the midpoint on the geodesic connecting the two points,
i.e., S̄ = S( 1

2 ), and it is the unique solution to the equation:
S̄S−1

1 S̄ = S2 (see e.g., [51]). For reasons to become clear
soon, we call this equation a balancing equation. Notice that
this equation is symmetric with respect to S1 and S2. For
S(1) = R+, we get S̄ =

√
S1S2, which is the usual geometric

mean of S1 and S2. We add that, alternatively, the uniqueness
and smoothness of the solution to the balancing equation
can be shown by noting that it is, indeed, a continuous-
time algebraic Riccati equation for which uniqueness and
smoothness results are available (see e.g., [45]).

The next proposition shows that the geometric mean of two
reduction maps is a reduction map, and it will be the basis for
bundle reduction based on realization (or Gramian) balancing:

Proposition 15 (Geometric Mean of Reduction Maps):
Let ν1, ν2 : Σ̃m,n,p → S(n) be two reduction maps. Then
the following hold: (i) the (Riemannian) geometric mean of
ν1(R) and ν2(R) (also called the balancing reduction map
associated with ν1 and ν2), denoted by R 7→ ν̄(R), is a
(smooth) reduction map, and is the unique solution of the
balancing equation

ν̄(R)ν1(R)−1ν̄(R) = ν2(R). (8)

(ii) For every R ∈ Σ̃m,n,p, let P ∈ GL(n) be a solution to

ν1(P ◦R)−1 = ν2(P ◦R). (9)

Then P is of the form P = ν̄(R)−1/2Θ with Θ ∈ O(n), and
P ◦R ∈ ν̄−1(In). In particular, P = ν̄(R)−1/2 is the positive
definite balancing transformation.

Proof: (i) The fact that (8) has a unique solution ν̄(R)
in S(n) which depends smoothly on R follows from our
preceding discussion about geometric means. We just need
to show that R 7→ ν̄(R) is an equivariant map. But that
immediately follows from the congruence invariance property
of the geometric mean, because ν̄(P ◦ R) is nothing but the
geometric mean of P>ν1(R)P and P>ν2(R)P .

(ii) If P solves (9), then (PP>)−1ν1(R)−1(PP>)−1 =
ν2(R), hence (PP>)−1 = ν̄(R), and the stated form of P
follows immediately. Note that R ∈ ν̄−1(In) iff ν−1

1 (R) =
ν2(R); thus if P solves (9), then P ◦R ∈ ν̄−1(In).

This proposition essentially holds true for the geometric
mean of more than two reduction maps, except that the
respective balancing equation would different.

B. Reduction via Normalization and Balancing of Gramians

Given a realization R = (A,B,C) ∈ L̃m,n,p, let us denote
the observability and controllability Gramians of order k ≥ n

by Wo,k = O>k Ok and Wc,k = CkC>k , respectively. For
k = ∞, we write Wc,∞ ≡ Wc and Wo,∞ ≡ Wo, in which
case we assume that A is a.s. Under the similarity action
(5), these matrices transform as: Wc,k → P−1Wc,kP

−>

and Wo,k → P>Wo,kP . This means that the maps R 7→
νco,k(R) = W−1

c,k and R 7→ νob,k(R) = Wo,k are reduction
maps (recall Definition 14). The realization bundle can be
taken as various other related bundles such as Σ̃min

m,n,p or
Σ̃min,a
m,n,p (if k =∞). In the case of the manifold of tall systems

Σ̃tC
m,n,p, R 7→ νC(R) = C>C is a reduction map.
The simplest form of reduction is what we call normaliza-

tion, which refers to making a Gramian equal to identity. For
example, the input-normalized realization subbundle is defined
by constraining the controllability Gramian Wc,k to be the
identity matrix. Such a subbundle can be defined on the bundle
of controllable realizations, i.e.,

ÕΣ
co,in,k
m,n,p = {R ∈ Σ̃co

m,n,p|Wc,k = In}. (10)

To see that ÕΣ
co,in,k
m,n,p is a reduced subbundle of Σ̃co

m,n,p, in
view of Proposition 13, we just need to note that ÕΣ

co,in,k
m,n,p =

ν−1
co,k(In). It is useful to stress that by the very definition of

a reduced subbundle the quotient space ÕΣ
co,in,k
m,n,p/O(n) is

diffeomorphic to Σco
m,n,p. Obviously, the subbundle of input-

normalized realizations can be defined on the realization
bundle of controllable and a.s. realizations:

ÕΣ
co,a,in
m,n,p = {R ∈ Σ̃co,a

m,n,p|Wc = In}. (11)

Similarly, it can be defined for minimal realizations Σ̃min
m,n,p or

a.s. minimal realizations Σ̃min,a
m,n,p, in which case are denoted

by ÕΣ
min,in,k
m,n,p and ÕΣ

min,a,in
m,n,p , respectively. In the case of

controllable tall realizations Σ̃tC,co and Σ̃tC,co,a, the subbundles
ÕΣ

tC,co,in,k
m,n,p and ÕΣ

tC,co,a,in
m,n,p can be defined in obvious ways.

Subbundles of output-normalized realizations can be defined
by restricting the observability Gramian to the identity matrix
In. For example, we can define

ÕΣ
co,on,k
m,n,p = {R ∈ Σ̃ob

m,n,p|Wo,k = In}, (12)

which is a subbundle of the bundle of observable realiza-
tions Σ̃ob

m,n,p. In the same manner, the reduced subbundles
ÕΣ

min,on,k
m,n,p and ÕΣ

min,a,on
m,n,p can be defined, which are, re-

spectively, subbundles of Σ̃min
m,n,p and Σ̃min,a

m,n,p. Another form
of output normalization in the case of the bundle of tall
realizations Σ̃tC

m,n,p is

ÕΣ
tC,nC
m,n,p = {R ∈ Σ̃tC

m,n,p|C>C = In}, (13)

for which we can use the reduction map νC to show that
it is a reduced subbundle of Σ̃tC

m,n,p. Similar to the case
of observable or minimal realizations, subbundles such as
ÕΣ

tC,a,nC
m,n,p or ÕΣ

tC,co,a,nC
m,n,p can be defined in obvious ways.

Once one has two reduction maps, then one can combine
the two maps through the step of geometric averaging via the
balancing equation as in Proposition 15 and (8) to get a new
reduction map or reduced subbundle. An immediate example
is the controllability and observability reduction maps νco,k
and νob,k. In view of Proposition 15, let νbl be their geometric
mean or as we called the balancing reduction map associated
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with νco,k and νob,k. Then consider ν−1
bl,k(In) ⊂ Σ̃min

m,n,p. For
any realization R ∈ ν−1

bl,k(In), we have νob,k(R)−1 = νco,k(R),
which implies that Wc,k = Wo,k, i.e., for such a realization
the controllability and observability Gramians are equal. Thus,
we define the reduced subbundle of k-balanced realizations as

ÕΣ
min,bl,k
m,n,p = {R ∈ Σ̃min

m,n,p|Wc,k = Wo,k}. (14)

A similar argument shows that the subbundle of a.s. balanced
minimal realizations

ÕΣ
min,a,bl
m,n,p = {R ∈ Σ̃min,a

m,n,p|Wc = Wo}, (15)

is a reduced subbundle of Σ̃min,a
m,n,p. From part (ii) of Proposition

15, for a given R ∈ Σ̃min
m,n,p, the positive definite balancing

transformation P is the inverse of the square root of the
geometric mean of Wo,k and W−1

c,k , which can be expressed
explicitly as mentioned in § IV-A1 (see also [54, p. 232] where
the explicit formula is given but not in terms geometric means).

Balanced realizations have been of interest in the literature
due to their desirable or physically-meaningful properties (see
e.g., [46]–[48], [54]). In fact, Moore’s main idea for using
diagonally balanced realizations in [47], was the fact that the
numerical condition numbers of the Gramians Wc and Wo
can diverge significantly under the similarity action. Thus,
it was argued that the best situation to gain information
about minimality of a system (i.e., its level of simultaneous
observability and controllability) is to consider a realization
of the system for which both the Gramians are equal (see
Proposition 9 in [47]). Moore’s extra step of simultaneous
diagonalization of the (equal) Gramians by an orthogonal
matrix was mainly devised to facilitate model order reduction.
The reader is referred to [23], where model order reduction in
the alignment distance is shown to be an enhanced version of
Moore’s diagonally balanced truncation.

Interestingly, a large class of balancing transformations ap-
pear as optimal solutions to certain variational problems [46],
[48], [54], [55]. For example, given a realization R ∈ Σ̃min

m,n,p

consider the function hbl : GL(n)→ R defined as

hbl(P ;R) = tr
(
P−1Wc,kP

−> + P>Wo,kP
)
. (16)

Notice that hbl(ΘP ;R) = hbl(P ;R) for every Θ ∈ O(n),
i.e., hbl is constant on O(n). It can be shown that there is
a P which is unique up to a right orthogonal factor and
solves minP∈GL(n) hbl(R;P ), and such a solution satisfies the
balancing equation P−1Wc,kP

−> = P>Wo,kP [46].
For the bundle of controllable tall realizations Σ̃tC,co

m,n,p, we
can define the Ck-balanced realization subbundle as

ÕΣ
tC,co,Cbl,k
m,n,p = {R ∈ Σ̃tC,co

m,n,p|C>C = Wc,k}, (17)

and in the case of the bundle of a.s. controllable tall realiza-
tions Σ̃tC,co,a

m,n,p we define

ÕΣ
tC,co,a,Cbl
m,n,p = {R ∈ Σ̃tC,co,a

m,n,p|C>C = Wc}. (18)

Again, using Proposition 15 with νC and νco,k (and νco in the
case of Σ̃tC,co,a

m,n,p ) we see that ÕΣ
tC,co,Cbl,k
m,n,p and ÕΣ

tC,co,a,Cbl
m,n,p are

reduced subbundles of Σ̃tC,co
m,n,p and Σ̃tC,a,co

m,n,p, respectively.
We summarize the forgoing results:
Theorem 16: The following hold:

1) ÕΣ
co,in,k
m,n,p (resp. ÕΣ

co,a,in
m,n,p) is a standardized or reduced

subbundle of Σ̃co
m,n,p (resp. Σ̃co,a

m,n,p).
2) ÕΣ

ob,on,k
m,n,p (resp. ÕΣ

ob,a,on
m,n,p ) is a standardized or reduced

subbundle of Σ̃ob
m,n,p (resp. Σ̃ob,a

m,n,p).
3) The following are standardized or reduced subbundles

of Σ̃min
m,n,p (resp. Σ̃min,a

m,n,p): ÕΣ
min,in,k
m,n,p , ÕΣ

min,on,k
m,n,p , and

ÕΣ
min,bl,k
m,n,p (resp. ÕΣ

min,a,on
m,n,p , ÕΣ

min,a,in
m,n,p , and ÕΣ

min,a,bl
m,n,p ).

4) ÕΣ
tC,nC
m,n,p (resp. ÕΣ

tC,a,nC
m,n,p ) is a standardized or reduced

subbundle of Σ̃tC
m,n,p (resp. Σ̃tC,a

m,n,p); and ÕΣ
tC,co,Cbl,k
m,n,p

(resp. ÕΣ
tC,co,a,Cbl
m,n,p ) is a standardized or reduced subbun-

dle of Σ̃tC,co
m,n,p (resp. Σ̃tC,co,a

m,n,p ).

We remind the reader of the adopted convention that, e.g.,
by referring to the (full) bundle Σ̃co

m,n,p we mean the GL(n)-
principal bundle (Σ̃co

m,n,p,Σ
co
m,n,p, GL(n)), i.e., the structure

group is GL(n) and the base space is Σco
m,n,p. Recall that an

O would indicate an O(n)-subbundle.
We also add that in a more general context, equivariant

assignment of a positive definite matrix to a realization R has
appeared in the literature in relation to the algebraic Riccati
equations or Lyapunov equations (see e.g., [49], [56]). In
this context, balancing arises when there are two such (dual)
equations given, which in our terminology gives rise to two
reduction maps that can be used to define a balancing reduction
map as prescribed by Proposition 15.

C. Another Example: Euclidean Norm Balancing

An interesting example of the variational formulation of bal-
ancing in the literature is called the Euclidean norm balancing
[46] or in the language of [55] clustering, where a minimal
realization R = (A,B,C) ∈ Σ̃min

m,n,p is transformed to a norm-
balanced one by minimizing the function hnbl : GL(n)→ R

hnbl(P ;R) = ‖P−1AP‖2F + ‖P−1B‖2F + ‖CP‖2F . (19)

This function is also constant on O(n). Also note that we
are not assuming a.s. realizations. We show that this defi-
nition results in a reduced realization subbundle. Let S =
(PP>)−1 ∈ S(n), then it can be shown that the first order
optimality condition for hnbl is equivalent to the equation

SAS−1A>S + SBB>S = A>SA+ C>C, (20)

which has a unique solution S ∈ S(n), and this solution
characterizes every global minimizer of hnbl up to a right or-
thogonal factor (see [46] or [54, p. 221 and pp. 261-3]). Using
this uniqueness result, it is easy to verify that the function R 7→
νnbl(R) = (PP>)−1 is an equivariant function from Σ̃min

m,n,p

to S(n). We just need to show that νnbl is a smooth function,
hence a reduction map. To show this we use the derivations
in [54, pp. 260-1], which have a slightly different context.
Consider the smooth function F : Σ̃min

m,n,p×S(n)→ Rn×n de-
fined as F (R,S) = SAS−1A>S+SBB>S−A>SA−C>C.
We need to show that the solution to F (R,S) = 0 depends
smoothly on R. Resorting to the implicit function theorem,
we need to show that the derivative of S 7→ F (R,S) is a full
rank matrix at any solution S and its vicinity. It is easy to
see that the derivative F∗ at S (a linear map from the tangent
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space TSS(n) to itself Rn×n) can be written as

F∗ = SAS−1A> ⊗ In − SAS−1 ⊗ SAS−1+ (21)
In ⊗ SAS−1A> + SBB> ⊗ In + In ⊗ SBB> −A> ⊗A>,
where ⊗ is the Kronecker product. We can re-write F∗ as

F∗ = (
√
S ⊗
√
S)
(
ÃÃ> ⊗ In − Ã⊗ Ã+ In ⊗ ÃÃ> (22)

+ B̃B̃> ⊗ In + In ⊗ B̃B̃> − Ã> ⊗ Ã>
)
(
√
S−1 ⊗

√
S−1),

where R̃ = (Ã, B̃, C̃) =
√
S−1 ◦ R. Notice that (20) can be

re-written as ÃÃ> + B̃B̃> = Ã>Ã+ C̃>C̃. Thus the middle
term in (22) can be written as

F∗ = (
√
S ⊗
√
S)
(
Ã>Ã⊗ In − Ã⊗ Ã+ In ⊗ ÃÃ> (23)

+ C̃>C̃ ⊗ In + In ⊗ B̃B̃> − Ã> ⊗ Ã>
)
(
√
S−1 ⊗

√
S−1).

It is shown in [54, p. 260, Lemma 5.1] that the middle
expression in the above is a matrix all whose eigenvalues are
of positive real parts as long as R̃ is controllable or observable.
This suffices to show that F∗ is full rank in a neighborhood
around a solution S. Finally, the desired smoothness of νnbl
follows from the implicit function theorem. Thus we have:

Theorem 17: The subbundle of Euclidean norm balanced
realizations defined as

ÕΣ
min,nbl
m,n,p = {R ∈ Σ̃min

m,n,p|AA>+BB>=A>A+C>C} (24)

is a standardized or reduced subbundle of Σ̃min
m,n,p.

Notice that ÕΣ
min,nbl
m,n,p = ν−1

nbl (In), and for any realization
R ∈ ÕΣ

min,nbl
m,n,p we have ‖B‖F = ‖C‖F , which justifies the

name. We refer the reader to [54], [57] for algorithms to
compute Euclidean norm balanced realizations.

V. THE ALIGNEMNT DISTANCE

The system manifolds of interest are base spaces of GL(n)
realization bundles. The framework of group action induced
distances described in §II-B requires a GL(n)-invariant dis-
tance on the respective realization bundle space to define a dis-
tance on the base system space. An important fact is that con-
structing GL(n)-invariant distances, due to noncompactness
of GL(n), is theoretically and numerically complicated. In
contrast, O(n)-invariant (or unitarily-invariant) distances are
abundant. Recall that among matrix norms many of them are
O(n)-invariant, but none is GL(n)-invariant. Here, is where
reducing the structure group of realization bundles becomes
useful. The formal definition of the alignment distance is:

Definition 18 (The Alignment Distance): Let
(Σ̃m,n,p,Σm,n,p) be a GL(n) realization-system bundle.
Let ÕΣm,n,p be an O(n)-subbundle of Σ̃m,n,p (e.g., any of
the reduced or standardized subbundles of Σ̃m,n,p in § IV).
Also let d̃ÕΣm,n,p

(·, ·) be an O(n)-invariant distance on

ÕΣm,n,p . Given any two systems M1,M2 ∈ Σm,n,p and
their respective (standardized) realizations R1, R2 ∈ ÕΣm,n,p
define the group action induced distance on Σm,n,p as

d
Σm,n,p,ÕΣm,n,p

(M1,M2) = min
Q∈O(n)

d̃ÕΣm,n,p
(Q ◦R1, R2).

(25)
We call d

Σm,n,p,ÕΣm,n,p
(·, ·) the alignment distance asso-

ciated with, induced by, or subordinate to ÕΣm,n,p and

d̃ÕΣm,n,p
(·, ·). If the context is clear enough, then we simply

may call d
Σm,n,p,ÕΣm,n,p

(·, ·) the alignment distance and may
write it as dΣm,n,p

(·, ·) or simply d. The minimization problem
is called the realization alignment problem or simply the
alignment problem.

Figure 1 pictorially shows this definition. A GL(n) realiza-
tion bundle Σ̃m,n,p and its reduced O(n)-subbundle ÕΣm,n,p
are depicted. Before further explanation, we should stress
that the figure is not quite accurate, since the subbundle
ÕΣm,n,p has zero thickness compared with Σ̃m,n,p. Two
systems M1,M2 ∈ Σm,n,p and their total fibers of realizations
are shown. The (standardized) realizations R1 and R2 of M1

and M2 in ÕΣm,n,p are chosen and aligned according to
(25) to find the alignment distance; the orthogonal matrix
Q is a change of basis that aligns R1 to R2. Alignment
is thought to be achieved when we have a horizontal line
segment connecting Q ◦ R1 and R2, the length of which is
the alignment distance. The sub-fibers within ÕΣm,n,p (e.g,

•

M2Base (System) Space

R2

M1

G
=
G
L
(n
)

O
G

=
O
(n
)

•
•

Q
◦R

1

R1

Realization Space (Bundle) Σ̃m,n,p

Standardized (Reduced) Subbundle ÕΣm,n,p

•

Fig. 1. Computing the alignment distance between to systems M1 and M2,
see (25). The box area shows a reduced O(n)-subbundle, ÕΣm,n,p. The
full GL(n)-realization bundle Σ̃m,n,p is noncompact (and unbounded). The
realizations R1 and R2 are, respectively, any realizations of M1 and M2 in
ÕΣm,n,p, and Q is a best orthogonal change of basis that aligns R1 to R2.

O(n)◦R1 and O(n)◦R2) are shown as parallel vertical lines,
implying that by moving any such horizontal line segment
vertically, it traverses the entire respective sub-fibers. This
also indicates that the alignment distance is independent of
the choice of the realizations of M1 and M2 in ÕΣm,n,p.
The terms “vertical” and “horizontal” are borrowed from the
Riemannian submersion case [58] (see also §V-B1), and used
metaphorically, since in our setting we are not assuming any
notion of angle. However, when using d̃F (see (29)), due to
smoothness (of d̃2

F ), the line segment will be perpendicular to
both the sub-fibers O(n) ◦R1 and O(n) ◦R2, where standard
Euclidean inner product is used to define angles.

Theorem 19 (Alignment Distance Topology): The topology
induced by the alignment distance (25) on Σm,n,p coincides
with its natural quotient topology (independent of the choice of
the reduced bundle ÕΣm,n,p and the distance d̃ÕΣm,n,p

(·, ·)).
Proof: Because of bundle reduction property we have

Σm,n,p = Σ̃m,n,p/GL(n)
diff
= ÕΣm,n,p/O(n). Since O(n)

is compact it follows from part 3 of Theorem 3 that the
alignment distance (25) induces the same topology on Σm,n,p
as its natural quotient topology (w.r.t. GL(n)). Obviously this
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is independent of the specific reduced subbundle ÕΣm,n,p and
the distance d̃ÕΣm,n,p

as long it induces the manifold topology

of ÕΣm,n,p.
Remark 20 (Applicability of Extrinsic Distances): We re-

mark that since ÕΣm,n,p is an embedded submanifold of
Σ̃m,n,p and hence of L̃m,n,p, the distance d̃ÕΣm,n,p

can be

any O(n)-invariant distance on the Euclidean space L̃m,n,p
which induces the natural Euclidean topology or any distance
on Σ̃m,n,p which induces its manifold topology.

Remark 21 (Noncompact Alignment Distance): In princi-
ple, any group action induced distance on the full GL(n)-
bundle (Σ̃m,n,p,Σm,n,p) can also be called an alignment
distance. We call such a distance a noncompact alignment
distance; and since in practice such distances are difficult to
construct and calculate, we reserve the term “alignment” for
distances as in Definition 18.

Remark 22 (On Zero Alignment Distance): On the mani-
fold Σmin

m,n,p, if the alignment distance between two (minimal)
systems is zero, then the two systems are indistinguishable in
the input-output sense, and their distance in any input-output
based distance on Σmin

m,n,p also will be zero. Conversely, if two
systems are indistinguishable in the input-output sense, then
their alignment distance will be zero. However, the alignment
distance can also be defined on system spaces such as Σob

m,n,p,
on which input-output based distances are meaningless, as
such distances can only compare the minimal parts of two
observable systems. Here, it is insightful to note that two
observable systems that have indistinguishable input-output
behaviors may not have zero alignment distance.

Remark 23 (On Naturalness of the Alignment Distance):
The natural way of thinking about the alignment distance is to
start with state-space systems and, at least temporarily, forget
about the input-output description. Then, the set of systems
of order n and size (m, p), Lm,n,p, has a natural quotient
topology inherited from L̃m,n,p. The alignment distance
is natural in the topological sense, because it induces this
natural quotient topology on the subspaces of Lm,n,p which
are manifolds. In the case of minimal systems Σmin

m,n,p, one
can establish a homeomorphism between Σmin

m,n,p and Hm,n,p,
the space of strictly proper transfer functions of McMillan
degree n and dimension p ×m; thus, it happens that, in this
case, input-output based distances defined on Hm,n,p are
also topologically natural, as they induce the same topology.
However, such a homeomorphism cannot be defined between
spaces such as Σob

m,n,p and spaces of transfer functions; hence,
input-output distances cannot be defined on Σob

m,n,p and other
non-minimal system spaces. In our view—as a somewhat
subjective statement—the alignment distance is natural in
the methodological sense too, i.e., once one has a quotient
space under a group action and knows Theorem 3, then, the
most immediate plan to define a distance on it is to try find
a group-invariant distance on the top space and descend it to
the bottom space.

The alignment distance (but not the topology it induces)
depends on both the chosen reduced subbundle ÕΣm,n,p and
the O(n)-invariant distance d̃ÕΣm,n,p

(·, ·). In that sense, the
alignment distance is a general family of distances. Ultimately,

the choice of the reduced subbundle and the distance ÕΣm,n,p
depends on the application. As for the choice of the O(n)-
invariant distance on ÕΣm,n,p, one can have either an intrinsic
distance or an extrinsic one. An intrinsic distance is defined
based on the length of curves defined on ÕΣm,n,p, whereas an
extrinsic distance is based on the curves in a space ambient
to ÕΣm,n,p e.g., the Euclidean space L̃m,n,p. An example
of an intrinsic distance is a Riemannian distance which can
be complicated to calculate numerically (see § V-B1). An
extrinsic distance, however, is much simpler to work with,
because often solving the alignment problem reduces to a static
optimization problem on the compact set O(n).

From the computational point of view, perhaps the simplest
distance on a realization space is the Frobenius norm based
(extrinsic) distance d̃F (·, ·) defined as

d̃2
F

(
R1, R2) = ‖A1−A2‖2F+‖B1−B2‖2F+‖C1−C2‖2F . (26)

This is the natural Euclidean distance on L̃m,n,p and all its
embedded submanifolds including all the reduced subbundles
in § IV. One could have a weighted version of this distance
too. In [5] a fast algorithm for solving the alignment problem
in this distance is given. Obviously, many other distances
are possible, which could prove useful in applications. For
example, the following distance can be used on ÕΣm,n,p:

d̃2
FL(R1, R2)=

L∑

l=1

‖Al1−Al2‖2F +‖B1−B2‖2F +‖C1−C2‖2F
(27)

to encode more behavioral information. To be precise, d̃FL
is not a distance on ÕΣm,n,p as a subset of L̃m,n,p, rather
through the diffeomorphism (A,B,C) 7→ (A, . . . , AL, B,C).
For a.s. realizations a variation of this distance is:

d̃2
FI(R1, R2) =‖(In−A1)−1 − (In −A2)−1‖2F+ (28)

‖B1 −B2‖2F + ‖C1 − C2‖2F
A. Example: closed-form solution for first order systems

The alignment problem is a non-convex problem and in
general no closed-form solution for it is expected. However,
for first order systems, it can be found readily, which gives
some insight. Consider two systems M1,M2 ∈ Σmin,a

m,1,p with
realizations Ri = (ai, bi, ci) ∈ Σ̃min,a

m,1,p. We find the alignment
distance associated with the subbundle of balanced realizations
ÕΣ

min,a,bl
m,1,p . Now Rbl

i = (ai,
√
‖ci‖‖bi‖−1bi,

√
‖bi‖‖ci‖−1ci)

is a balanced realization of Mi. The optimization is on a binary
variable Q ∈ {±1} = O(1), and we get:

d2
F (M1,M2) = (a1 − a2)2 + 2‖b1‖‖c1‖+ 2‖b2‖‖c2‖ (29)

− 2
∣∣ cos](b1, b2) + cos](c1, c2)

∣∣ √‖b1‖‖c1‖‖b2‖‖c2‖,

where cos](x1, x2) is the cosine of the angle between two
vectors x1 and x2. With respect to Σmin

m,1,p, which includes
both stable and unstable systems, it is easy to see that the
same expression holds for the alignment distance on Σmin

m,1,p

associated with ÕΣ
min,bl,1
m,1,p , the subbundle of 1-balanced real-

izations, as well as with ÕΣ
min,nbl
m,1,p , the subbundle of Euclidean

norm balanced realizations (see § IV-C).
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B. Discussions and Relation to the Existing Literature

Here, we discuss some interesting relations between the
alignment distance and the existing control literature.
1) Relation to Riemannian Distances on Σmin,a

m,n,p

There are at least two classes of Riemannian distances on
the manifold of minimal systems Σmin

m,n,p. The first one, due
to Krishnaprasad and Martin [13], [17], is an internal distance
(similar to the alignment distance), and the second one, due
to Hanzon and Marcus [18], [59], is an external distance
(based on input-output description of systems). Since the latter
is not specifically related to our approach, we focus on the
former. The starting point is exactly the GL(n) realization-
system principal fiber bundle (Σ̃min

m,n,p,Σ
min
m,n,p), and then a

GL(n)-invariant Riemannian metric is defined on the real-
ization bundle Σ̃min

m,n,p, which in turn induces a Riemannian
metric on Σmin

m,n,p. This is an example of a construction called
Riemannian submersion, which is a general way of defining
a Riemannian metric on a quotient space [58]. The specific
metric defined in [17] is

g̃KM
R (dR,dR) =tr(Wo,ndAWc,ndA>)+

tr(dB>Wo,ndB) + tr(dCWc,ndC>),
(30)

where dR = (dA,dB, dC) is a horizontal tangent vector
in the tangent space TRΣ̃min

m,n,p. Here, TRΣ̃min
m,n,p is decom-

posed into a vertical subspace (along the fiber at R) and its
complement called the horizontal subspace. A general tangent
vector dR can be written uniquely as dR = dRh + dRv

in terms of its vertical and horizontal components. We de-
fine g̃KM

R (dR,dR) = g̃KM
R (dRh,dRh) + g̃KM

R (dRv,dRv),
where g̃KM

R (dRh,dRh) is as in (30), and the exact form of
g̃KM
R (dRv,dRv) is immaterial for our purposes. The crucial

point is that g̃KM
R (dR,dR) is a positive definite quadratic

form at each horizontal tangent space and is invariant along
every fiber, i.e., g̃KM

P◦R(P ◦ dR,P ◦ dR) = g̃KM
R (dR,dR), for

∀P ∈ GL(n) and any horizontal tangent vector dR. Thus
the Riemannian metric g̃KM

R on the top (realization) space
Σ̃min
m,n,p induces a Riemannian metric gKM

[R] on the base (system)
space Σmin

m,n,p. By this construction, we have a GL(n)-invariant
Riemannian distance on Σ̃min

m,n,p denoted by d̃KM and the
corresponding Riemannian distance on Σmin

m,n,p denoted by
dKM. It is easy to see that, indeed, dKM is a group action
induced distance associated with d̃KM, in the sense of Theorem
3, i.e., an example of the noncompact alignment distance (see
Remark 21). Numerical computation of dKM is, in general,
difficult. In [17] it was merely used to give an alternative proof
of the principal fiber bundle structure of (Σ̃min

m,n,p,Σ
min
m,n,p).

Next, we show that although the alignment distance associ-
ated with the Frobenius distance (26) is an extrinsic distance,
it can be related to a Riemannian metric. First, note that
the approach of Krishnaprasad-Martin in defining GL(n)-
invariant metrics on the realization bundle can be extended
in various ways, e.g., the following Riemannian metric is a
simple variation that penalizes closeness to non-minimality by
using the inverses of the Gramians :

g̃p
R(dR,dR) = tr(W−1

c,ndAW−1
o,n dA>)+

tr(dB>W−1
c,ndB) + tr(dC W−1

o,ndC>),
(31)

where dR is a hoirzontal tangent vector. A more interesting
variant arises from using a bundle reduction map ν(R) (see
Definition 14). Let us define a Riemannian metric on the
(generic) realization bundle Σ̃m,n,p as

g̃νR(dR,dR) = tr
(
ν(R) dA ν(R)−1dA>

)
+

tr(dB>ν(R) dB) + tr(dC ν(R)−1 dC>),
(32)

where R ∈ Σ̃m,n,p. Consider the restriction of this metric to
the submanifold ÕΣm,n,p = ν−1(In), i.e., where ν(R) = In:

g̃F
R(dR,dR) = tr

(
dAdA>

)
+tr(dB>dB)+tr(dC dC>). (33)

The key point is that now R ∈ ÕΣm,n,p. This Riemannian
metric is only O(n)-invariant, which matches that fact that
ÕΣm,n,p is an O(n)-bundle. But more importantly, g̃F

R is the
infinitesimal version of the Frobenius distance d̃F (26), i.e.,
given R ∈ ÕΣm,n,p and dR in the tangent space to ÕΣm,n,p
at R, g̃F

R(dR,dR) in (33) is equal to limε↓0 d̃
2
F (R,R+ εdR).

Therefore, the interesting finding is that the alignment distance
associated with the Frobenius distance d̃F and ÕΣm,n,p ap-
proximates the Riemannian distance on Σm,n,p associated with
the Riemannian metric (33). For large distances they deviate,
but for computing the Riemannian distance one has to solve
the complicated geodesic equation, whereas for the alignment
distance one only needs to solve the alignment problem (25).
Interestingly, it is easy to see from calculations in §V-A that, on
each connected component of Σmin,a

1,1,1 (but not between different
components) the alignment distance subordinate to ÕΣ

min,a,bl
1,1,1

and d̃F coincides with the Riemannian distance associated
with (33) on ÕΣ

min,a,bl
1,1,1 (see [11] on the components of Σmin,a

1,n,1).
2) On Comparing Realizations

At the core of the alignment distance is a distance between
realizations. Although group action induced distances between
systems have not appeared in literature, distances between
realizations are not unprecedented. The scenario in which such
distances have been used is more akin to parameterization of a
system or realization than modeling the time behavior (as one
does in the input-output formulation). The most notable exam-
ple is the so-called Eising distance [60], [61], [54, p. 259]. In
fact, the Eising distance is nothing but the Frobenius distance
d̃F in (26). The distance to uncontrollability can be formulated
as: infR̄ d̃F (R, R̄), where R̄ ∈ Σ̃

ob

m,n,p , L̃m,n,p\Σ̃ob
m,n,p. i.e.,

find the closest uncontrollable realization R̄ to a given control-
lable realization R. A 2-norm version of this problem also has
been studied [60]. Although the distance to uncontrollability
is a distance between realizations, in the literature it is unduly
referred to as distance to uncontrollable systems [60]–[62].
A system-level version of this problem will not make much
sense, since given R ∈ Σ̃co

m,n,p one can make P ◦ R as close
to uncontrollability as one wishes by varying P ∈ GL(n). In
a more formal language, the closure of the GL(n)-orbit of R
in L̃m,n,p contains uncontrollable realizations. In fact, this is
really the indication that L̃m,n,p/GL(n) is a non-Hausdorff
space. The reader is referred to [63] for determining the
closure of the GL(n)-orbit of R ∈ Σ̃co

m,n,p. Interestingly, if one
tries to formulate the problem of distance to non-minimality
at the system-level using the alignment distance, then one will
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arrive at the problem of model order reduction in the alignment
distance. In a recent paper we pursued this approach [23].

As another example of the use of the distance d̃F between
realizations, we already mentioned the variational formulation
of the problem of balancing [46], [48], [54], [55]. Another
example is in the so-called grey-box system identification [64].

VI. EXTENSIONS AND GENERALIZATIONS
The basic notion of the alignment distance can be extended

in various ways. We provide examples regarding including
the initial state in the distance and the alignment distance for
stochastic systems (see [22] for some other examples).

A. Distances Accounting for the Initial State

Define the realization-state space as L̃Sm,n,p = L̃m,n,p ×
Rn. Then GL(n) acts on L̃Sm,n,p as

P } (R, x) = (P ◦R,P−1x). (34)

We think of the quotient LSm,n,p = L̃Sm,n,p/GL(n) as a
system-state space (or system-with-state as called in [18]).
The meaning is that, in (4), for any realization R ∈ L̃m,n,p
and the corresponding (unique) initial state x0 = x ∈ Rn all
realization-state pairs P } (R, x) (P ∈ GL(n)) are indistin-
guishable from an input-output point of view for t ≥ 0. We
denote a system-state as M = (M,x) ∈ LSm,n,p. By choos-
ing realization-state submanifolds of the form (Σ̃m,n,p,Rn),
where Σ̃m,n,p is any of the realization bundles in § III and
Theorem 10, all of our results and constructions from § IV
and § V can be extended easily to yield the alignment distance
on the system-state spaces. For example, take two system-
space pairs Mi = (Mi,xi) (i = 1, 2), where Mi ∈ Σmin

m,n,p.
Then choose a corresponding realization-state pair (Ri, xi)
and convert the pair to a k-balanced realization-state pair
(Rbl,k

i , xbl,k
i ) = P } (Ri, xi), where P is a state-space change

of basis such that Rbl,k = P ◦Ri ∈ ÕΣ
min,bl,k
m,n,p . An alignment

distance between M1 and M2 associated with the Frobenius
distance and ÕΣ

min,bl,k
m,n,p can be defined as

d2
F (M1,M2)= min

Q∈O(n)
d̃2
F (Q◦Rbl,k

1 , Rbl,k
2 )+‖Q>xbl,k

1 −xbl,k
2 ‖2.

(35)

B. Stochastic Systems

Let {ut}+∞−∞ in (4) be an m-dimensional, stationary, Gaus-
sian, white process with zero mean and identity covariance.
Consider the space of stochastic realizations

S̃Lm,n,p = {(A,B,C) ∈ L̃mp,a
m,n,p|rank(B) = m}, (36)

where L̃mp,a
m,n,p is the submanifold of a.s. stable and minimum-

phase realizations in L̃m,n,p (see § III-A). The main object
of interest is not the output yt itself rather its covariance
sequence or power spectral density. In view of this, two
types of symmetries appear: the internal symmetry as in
the deterministic case and the symmetry at input (via group
O(m)). Specifically, GL(n)×O(m) acts on S̃Lm,n,p as

(P,Θ) • (A,B,C) = (P−1AP,P−1BΘ, CP ), (37)

i.e., realizations R and (P,Θ) • R generate the same power
spectral density. Conversely, due to the minimum-phase as-
sumption, if the power spectral density of the output of two

realizations R1, R2 ∈ S̃Lm,n,p are equal, then their transfer
functions are equal up to an O(m) right factor [42], [65, p.
201] and if the realizations are minimal then R1 = (P,Θ)•R2

for some P and Θ. The space of stochastic systems is defined
as SLm,n,p = S̃Lm,n,p/(GL(n) × O(m)). The condition
rank(B) = m ensures that the action of O(m) is free.
Thus, as in § III, by passing to suitable submanifolds of
S̃Lm,n,p such as observable, controllable, minimal, or real-
izations with tall C, etc., one can get principal fiber bundles.
We denote a generic stochastic realization-system bundle by
(S̃Σm,n,p,SΣm,n,p). For example, (S̃Σ

min
m,n,p,SΣmin

m,n,p) de-
notes the bundle of minimal stochastic realization-systems. All
the (appropriate) bundle reduction schemes in § IV or specific
stochastic balancing methods (e.g., as in [56]) can be applied
to such a pair to yield a reduced bundle (ÕSΣm,n,p,SΣm,n,p).
Given an O(n)-invariant distance d̃ÕSΣm,n,p

(e.g., d̃F in (26)),
the alignment distance on SΣm,n,p is defined as

d2
SΣm,n,p

(M1,M2)=min
(Q,Θ)

d̃2

ÕSΣm,n,p
((Q,Θ) •R1, R2), (38)

where Ri (i = 1, 2) is any realization of Mi in ÕSΣm,n,p and
(Q,Θ) ∈ O(n)×O(m).

An alternative approach is where the group O(m) is quo-
tiented out and not explicit in defining the distance. We
call D̃SΣm,n,p = S̃Σm,n,p/({In} × O(m)) a (deterministic)
pseudo realization space for S̃Σm,n,p. One can verify that

D̃SΣm,n,p
diff
= {(A,BB>, C)|(A,B,C) ∈ S̃Σm,n,p}. (39)

We call RD = (A,BB>, C) a deterministic pseudo realization
of R = (A,B,C). We denote the action of GL(n) on
D̃SLm,n,p by ? and note that

P ? (A,BB>, C) = (P−1AP,P−1BB>P−>, CP ). (40)

One can verify that SΣm,n,p
diff
= D̃SΣm,n,p/GL(n). A re-

duced deterministic pseudo realization subbundle ÕDSΣm,n,p
can be constructed, in an obvious way, from the corresponding
stochastic reduced realization subbundle ÕSΣm,n,p. Having
an O(n)-invariant distance on ÕDSΣm,n,p, we define the
alignment distance on SΣm,n,p as

d2
SΣm,n,p

(M1,M2) = min
Q∈O(n)

d̃2

ÕDSΣm,n,p

(Q?RD1 , R
D
2 ), (41)

where RDi (i = 1, 2) is any pseudo realization of Mi in
ÕDSΣm,n,p. Computing this distance requires only a single
minimization (cf. (38)). A simple example for d̃ÕSΣm,n,p

is d̃F .
Interestingly, the impulse response of the deterministic sys-

tem with realization Rcov = (A,WcC
>, C) for t ≥ 0 is equal

to the output covariance sequence of the minimal stochastic
system (4) [59]. There is also a one-to-one correspondence
between pseudo realizations (A,BB>, C) and (A,Wc, C) (via
the Lyapunov equation Wc = BB> +AWcA

> ); thus the set

W̃SΣ
min
m,n,p = {Rwc = (A,Wc, C)|(A,B,C) ∈ S̃Lmin

m,n,p} (42)

is diffeomorphic to D̃SΣ
min
m,n,p, where the action of GL(n) on

this set is the same as ?. Here, the reduced subbundle can be
derived from the corresponding stochastic reduced realization
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subbundle ÕSΣm,n,p ⊂ S̃Lmin
m,n,p. Now, simply by replacing

RD with Rcov or with Rwc = (A,Wc, C) in (41) we can
construct another class of distances on SΣmin

m,n,p.
Finally, we remark that the case of stochastic systems is an

example of a more general situation where we have internal,
input, and output symmetries on the space of realizations;
namely a group G = Gout × Gint × Gin acts on a realization
space Σ̃m,n,p, where the groups Gint, Gin, and Gout act at the
input, internally, and at the output, respectively. The basic idea
of realization alignment can be applied here, too. In particular,
if G is a noncompact Lie group and an appropriate realization-
system bundle exists, then by passing to a useful reduced
subbundle one can only deal with a compact symmetry group
and define an alignment distance easily. Note that in a more
general setting, any of the mentioned groups can be discrete,
e.g., Gout can be a permutation group, in which case our
approach applies again; however, if the discrete group is
noncompact, then the situation is more complicated.

VII. CONCLUSION
The differential-geometric foundation of the alignment dis-

tance was described. The alignment distances is, indeed, a fam-
ily of distances, which crucially depend on the chosen reduced
subbundles (e.g., balanced realizations vs. input-normalized)
and the distances thereon. The usefulness of the alignment
distance in specific control applications could depend on
the choice of these “parameters,” and would require further
research. We already alluded to some potential applications in
§ I-C. Search for more application-specific reduced subbundles
and distances could be a possible research direction, together
with computational algorithms. The Frobenius-norm based
alignment distance—the only one we have used so far—is an
extrinsic distance, but an interesting question is to what extend
geometrical notions like “geodesic” can be defined and used.
Whether the alignment distance can be related (explicitly or
implicitly) to input-output distances is an interesting question.
Extension of the alignment distance to other classes of system
such as LPV systems is another immediate research direction.

APPENDIX
PROOF OF THEOREM 3

Proof: The fact that infP∈G d̃Σ̃(P ◦R1, R2) depends only
on M1 and M2 is a direct consequence of G-invariance of d̃.
That dΣ(M1,M2) ≥ 0 is obvious by the definition. That dΣ

is symmetric is because d̃Σ̃ is symmetric and G-invariant. To
see the triangle inequality for dΣ notice that

inf
P1

d̃Σ̃(P1 ◦R1, R2) ≤ d̃Σ̃(P1 ◦R1, P3 ◦R3)+ (43)

d̃Σ̃(P3 ◦R3, R2) = d̃Σ̃((P1P
−1
3 ) ◦R1, R3) + d̃Σ̃(P3 ◦R3, R2)

⇒inf
P1

d̃Σ̃(P1◦R1, R2)≤ inf
P
d̃Σ̃(P ◦R1,R3)+inf

P3

d̃Σ̃(P3◦R3,R2).

In the above, P = P1P
−1
3 (◦ is a right action), but clearly the

minimization over P ∈ G imposes no constraint on P ∈ G.
Next, we show statement 2. To see that dΣ is positive

definite when the G-orbits are closed, let {Pi}i be such that
limi d̃Σ̃(Pi ◦R1, R2) = 0. Then {Pi ◦R1}i converges to R2.
But since the orbit of R1 closed, this implies that R2 must
belong to the orbit, i.e., R2 = P̄ ◦R1 for some P̄ ∈ G. Thus,
dΣ(M1,M2) = 0 implies that M1 = M2 or, dΣ(M1,M2) > 0
unless M1 = M2.

Now, we show that the metric and quotient topologies on
Σ coincide. Let π : Σ̃→ Σ be the projection map. It suffices
to show that π is a quotient map in the dΣ-topology, since the
quotient topology is the only topology in which this holds.
Let Bd̃Σ̃

(R, ε) and BdΣ(M, ε), respectively, denote d̃Σ̃ and
dΣ open metric balls of radius ε around R and M = π(R) in
Σ̃ and Σ. We have π(Bd̃Σ̃

(R1, ε)) = BdΣ
(π(R1), ε) because

M ∈BdΣ
(M1, ε)⇔ ∃R ∈ π−1(M) s.t.R ∈Bd̃Σ̃

(R1, ε), (44)

where M1 = π(R1). Thus π is an open map in the
dΣ-topology, since it maps the basis elements of the dΣ̃-
topology to open sets in the dΣ-topology. Moreover, π is
continuous in the dΣ-topology, because π−1(BdΣ

(M, ε)) =
∪R∈π−1(M)Bd̃Σ̃

(R, ε) is open in the Σ̃-topology. It follows
that since π is surjective, it is a quotient map in the dΣ-
topology, as claimed.

Finally, to see statement 3, first, assume that every closed
and bounded set in (Σ̃, d̃Σ̃) is compact. Let {Pi}i be a se-
quence such that limi d̃Σ̃(Pi◦R1, R2) = infP d̃Σ̃(P ◦R1, R2).
For large io, the points Pi◦R1 with i ≥ i0 are in a bounded ball
around R2 and since the orbit G ◦R1 is a closed set in Σ̃ the
points lie in a closed and bounded set, hence, compact. Thus,
there is a converging subsequence of {Pi ◦ R1}i and since
the orbit G ◦ R1 is closed, the limit is of the form P ◦ R1,
which means that the infimum is achieved. The same argument
applies if G is compact, since (due to continuity of the action)
any G-orbit is also closed in Σ̃.
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