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Abstract. The paper deals with the identification of a MIMO Switched
ARX model from its input-output data. The model is assumed to have
an unknown number of submodels of unknown and possibly different
orders. This is a challenging problem because of the strong coupling be-
tween the unknown discrete state and the unknown model parameters.
In our work, we adopt a polynomial decoupling representation for han-
dling switched systems with multiple inputs and multiple outputs. This
exact and analytical polynomial representation however comes with an
important complexity related to the number of polynomials that need
to be estimated. Therefore, an alternative scheme is proposed that oper-
ates in two phases. We first classify the data according to the generating
submodels and subsequently recover the system parameters.

1 Introduction

A hybrid system can be thought of as a collection of interactive dynamical sub-
systems with global behavior resulting from switching among all the submodels.
The switches can be exogenous deterministic, state-driven, event-driven, time-
driven or totally random. Given input-output data generated by such systems,
the identification problem aims at determining the parameters that describe the
system regardless of the switching mechanism. This problem has received a lot of
attention in the modeling-identification community for several reasons. Firstly,
the class of piecewise affine models (which is a subclass of hybrid systems) has
been shown to possess universal approximation capabilities [?]. Therefore, their
relative simplicity and transparency make them very appealing for nonlinear sys-
tems modeling and control [?]. In addition, the increasing emergence of discrete
event systems in many modern applications has encouraged the modeling, the
estimation and the analysis of such systems.

Prior work. Many existing methods for hybrid systems identification apply to
piecewise linear systems for which the switching mechanism is defined by re-
gions (polyhedra) of the state-input space. The clustering based procedures [?],
[?] first determine these individual regions and then estimate a submodel for



each region. The optimization based method [?] solves the identification prob-
lem as a linear or quadratic mixed integer programming problem. The algebraic-
geometric approach [?] formulates a single decoupling polynomial that vanishes
on all the data regardless of their generating submodel. Once this polynomial
is computed, the problem boils down to that of recovering the system parame-
ters as the polynomial’s derivative evaluated at some specific points [?]. Another
category of methods alternates between assigning the data to submodels and
estimating simultaneously their parameters by performing a weights learning
technique on a fuzzy parameterized model [?], solving a Minimum Partition into
Feasible Subsystems (MinPFS) problem [?] or resorting to Bayesian inference
[?]. For a comprehensive review of hybrid systems identification techniques, we
refer the readers to the survey paper [?]. It is worth noting that most of the
aforementioned methods deal with SISO systems with common and available
order and sometimes, of known number of submodels. There also exist some
works on the identification of linear switched MIMO systems described by state
space models [?], [?], [?]. However, the proposed methods generally require the
restrictive assumption of a minimum dwell time in each discrete state.
Paper contribution. The contribution of this paper is to consider a general MIMO
Switched Auto-Regressive eXogenous (SARX) model where the orders of the sub-
models are unknown and possibly different, and the number of submodels is not
available. The proposed method is based on the concept of Generalized Principal
Component Analysis (GPCA) reported in [?]. In contrast to the identification
of SISO SARX where only one vanishing homogeneous polynomial is used to
embed data lying on a mixture of hyperplanes, the estimation of MIMO SARX
involves a potentially unknown number nh ≥ 1 of independent homogeneous
polynomials that vanish on subspaces that are no longer hyperplanes. In order
to conveniently construct the regressors to which the embedding is applied, we
first estimate the orders of the submodels and the number of discrete states.
Then, given the number of discrete states, we compute the number of vanishing
polynomials nh and subsequently derive the parameters. However, the number
of polynomials to be estimated grows exponentially with respect to the num-
ber of outputs and the number of submodels, thereby making the computation
expensive. Therefore, we propose an alternative method that proceeds by first
partitioning the regression data according to each discrete state, based on the
estimation of a single polynomial. Given the data related to each mode, the para-
meters follow from a relevant application of least squares regression techniques.

2 Problem statement

Consider a linear switched system described by the following MIMO ARX model

y(t) =
nλt∑
i=1

Ai
λt

y(t− i) +
nλt∑
i=0

Bi
λt

u(t− i) + e(t), (1)

where y(t) ∈ Rny is the output vector, λt ∈ {1, · · · , s} refers to the discrete state,
s is the number of submodels of the global switched system and

{
Ai

j

}i=1,··· ,nj

j=1,··· ,s ∈



Rny×ny and
{
Bi

j

}i=1,··· ,nj

j=1,··· ,s ∈ Rny×nu are the associated parameter matrices. The
modeling error or process noise is represented by e(t) ∈ Rny . In this representa-
tion, there may exist for certain models j an integer δj < nj such that Bi

j = 0
for i > δj but we require that A

nj

j 6= 0 for all j.
Given input-output data {u(t), y(t)}Nt=1 generated by a switched system of

the form (??), the identification problem can be formulated as: estimate the num-
ber of submodels s, their orders {nj}sj=1 and their parameters

{
Ai

j , B
i
j

}i=1,··· ,nj

j=1,··· ,s .

3 Identification of switched systems

To begin with the identification procedure, let us define the parameter matrices
as

Γj =
[
B

nj

j A
nj

j · · · B1
j A1

j B0
j A0

j

]
∈ Rny×(nj+1)(nu+ny),

Pj =
[
0ny×qj

Γj

]
∈ Rny×K , j = 1, · · · , s, (2)

and the regression vector as

xn(t) =
[
u(t− n)> y(t− n)> · · · u(t− 1)> y(t− 1)> u(t)> −y(t)>

]> ∈ RK ,

with n = maxj(nj), A0
j = Iny , qj = (n−nj)(nu+ny) and K = (n + 1) (nu + ny).

For now, assume that the data is not corrupted by noise i.e., e(t) = 0 in (??).
Then, the equations defining a hybrid system of the form (??) may be re-written
as

(P1xn(t) = 0) ∨ · · · ∨ (Psxn(t) = 0) , (3)

where ∨ refers to the logic operator or. To eliminate the discrete state in this
set of ny · s equations, the underlying idea of the algebraic-geometric method
developed in [?] is to consider along each row of (??), the product of equa-
tions related to all the possible submodels. The advantage in doing so is that
one can then obtain a set of polynomial constraints

∏s
j=1

(
θ>ij

xn(t)
)

= 0, with

θ>ij
= Pj(i, :), satisfied by all the data regardless of their generating submodel.

Therefore, the system (??) can be decoupled into a set of equations involving ns
y

(not necessarily independent) homogeneous polynomials pi1,··· ,is
defined by

pi1,··· ,is

(
z
)

=
s∏

j=1

(
θ>ij

z
)

=
∑

hn1,··· ,nK

i1,··· ,is
zn1
1 · · · z

nK

K (4)

= h>i1,··· ,is
νs

(
z
)
,

where νs(·) : RK → RMs(K), with Ms(K) =
(
K+s−1

s

)
, is the Veronese map which

associates to z ∈ RK the vector of all the monomials zn1
1 · · · z

nK

K , n1 + · · · +
nK = s, organized in a descending lexicographic order. Therefore, each pi1,··· ,is

is a homogeneous polynomial of degree s with coefficients vector hi1,··· ,is and
monomials stacked as a vector in νs(z) ∈ RMs(K).



3.1 Known and equal orders and known number of submodels

In this subsection, we assume that the number of submodels s is known and that
the orders of all the submodels are also known and equal to n. Note that the
regression vectors xn(t) generated by the hybrid model (??) lie in the union of
the subspaces null(Pj) and these subspaces can be estimated using GPCA [?].
From the entire set {u(t), y(t)}Nt=1 of input-output data available, if we construct

L(n, s) =
[
νs

(
xn(n + 1)

)
· · · νs

(
xn(N)

)]> ∈ R(N−n)×Ms(K), (5)

then the coefficient vectors hi1,··· ,is
of the vanishing polynomials must satisfy

L(n, s)hi1,··· ,is = 0. (6)

Therefore, to solve for the parameters hi1,··· ,is
from (??), one needs to compute

the null space of the embedded data matrix L(n, s). Note that hi1,··· ,is is the sym-
metric tensor product of an indexed set of rows

{
θij

}s

j=1
taken from {Pj}sj=1

respectively: hi1,··· ,is
= Sym (θi1 ⊗ · · · ⊗ θis

) ∈ RMs(K), where ⊗ denotes the
Kronecker product. It can be shown that these parameters live in a vector sub-
space of RMs(K) that we refer to as the space of homogeneous polynomials of
degree s vanishing on the data. In what follows, we define H =

[
h1 · · · hnh

]
to

be a basis of this space with dimension nh.
When the data are perfect and rich enough so that the dimension of the null

space of L(n, s) is exactly equal to nh, the polynomials coefficient matrix H
may be computed as a basis of null(L(n, s)) by Singular Value Decomposition.
The parameters of the system may then be computed by differentiating the
polynomials obtained at some particular points. For the sake of completeness, a
basic version of the GPCA algorithm [?] that computes the system parameters Pj

in a deterministic framework, is described in Algorithm ??. However, in practice
the data may be affected by noise. In this case, even with the assumption that
the orders and the number of submodels are known, the matrix L(n, s) is likely to
be full rank and so, one may not be able to get the right basis H of polynomials.
Therefore, it is desirable to know in advance the dimension nh of this basis. In
this way, H could be approximated by the right singular vectors of L(n, s) that
correspond to its nh smallest singular values. But since the Pj are not known, it
is not easy to compute nh in a general framework. However, under some specific
assumptions on the intersection between the null spaces of the matrices Pj , we
can derive a closed form formula for nh as outlined in Proposition ??.

Proposition 1 Let B1, · · · , Bs be some matrices in RK×m such that

(i) For any {i1, · · · , iq} ⊂ {1, · · · , s}, q ≤ s

rank(
[
Bi1 , · · · , Biq

]
) = min

(
K,

∑q
j=1 rank(Bij )

)
,

(ii)
∑s

i=1 rank(Bi)− s < K.

Let H be the symmetric tensor product of B1, · · · , Bs i.e., H is the matrix whose
columns consists of all vectors in RMs(K) of the form Sym (bi1 ⊗ · · · ⊗ bis), where
bi1 , · · · , bis

are respectively columns of B1, · · · , Bs.
Then rank(H) =

∏s
j=1 rank(Bj).



Proof. It can be seen that there exists a matrix S ∈ RMs(K)×Ks

filled with
0 and 1 such that H = S (B1 ⊗ · · · ⊗Bs). A basic result from linear algebra
then gives us the result that rank(H) ≤ rank(B1 ⊗ · · · ⊗ Bs) =

∏s
j=1 rj , where

rj = rank(Bj). Let us now exclude the trivial cases and assume none of the Bj

is zero. Then, a consequence of the assumption (i) is that we can construct some
matrices Lj , j = 1 · · · , s using rj linearly independent columns of Bj such that
rank(L) = min (r, K), where L =

[
L1, · · · , Ls

]
and r =

∑s
j=1 rj . Consider now

the subset HL of columns of H defined as HL = Sym(L1 ⊗ · · · ⊗ Ls). We will
prove by contradiction that rank(HL) is in fact

∏s
j=1 rj . If it was not so, then

by denoting columns of HL by hi1···is
, there would exist a set of scalars λi1···is

not all zero, such that
∑

i1···is
λi1···ishi1···is = 0. Each hi1···is can be regarded

as a vector coefficient of the polynomial pi1···is
(x) =

(
b>i1x

)
· · ·

(
b>is

x
)
, x ∈ RK .

Therefore we have

Q(x) =
∑

i1···is

λi1···is
pi1···is

(x) = 0 ∀x. (7)

Let (io1, · · · , ios) be one of the vector of indices such that λio
1···io

s
6= 0. Eq. (??)

can then be rewritten as

Q(x) = pio
1···io

s
(x) +

∑
i1···is

λ−1
io
1···io

s
λi1···is

pi1···is
(x) = 0 ∀ x. (8)

Let Mo =
[
Lo

1 · · · Lo
s

]
be the matrix L obtained by deleting the columns bio

1
, · · · ,

bio
s

from the matrix L. As rank(Mo) = r− s < K, (Mo)⊥, the orthogonal space
to the column space of Mo contains at least one nonzero x. For such a x, it is
easy to verify that the second term on the right hand side of Eq. (??) is zero,
and the only term that remains gives us pio

1···io
s
(x) =

(
b>io

1
x
)
· · ·

(
b>io

s
x
)

= 0. In

Algorithm 1 GPCA algorithm
Step 1 : Compute a basis H of the null space of L(n, s) by SVD.

Let Q(z) =
[
p1(z) · · · pnh

(z)
]

= νs(z)>H be the corresponding basis of
homogeneous vanishing polynomials of degree s.

Step 2 : Differentiate Q(z) with respect to z:

∇Q(z) =
[

∂p1(z)
∂z · · · ∂pnh

(z)

∂z

]
=

(
∂νs(z)

∂z

)>

H

Step 3 : Evaluate ∇Q(z) at points zj ∈ null(Pj) but not in null(Pi), for all i 6= j.
Step 4 : Then a basis of null(Pj) can be obtained by SVD as the range space

of (∇Q(zj))
>, j = 1, · · · , s. For each j, denote the obtained basis by Tj ∈

Rny×K which must be of dimension ny.
Let Tj =

[
T 1

j T 2
j

]
be a partition of Tj such that T 2

j ∈ Rny×ny .
Step 5 : T 2

j is necessarily invertible and we can get Pj =
(
T 2

j

)−1
Tj , j = 1, · · · , s.



other words, (Mo)⊥ ⊂
(
bio

1

)⊥ ∪ · · · ∪ (
bio

s

)⊥. In order to show that this cannot
hold, we will examine separately the cases 1) r ≤ K and 2) r − s < K < r.

1) If r ≤ K, we immediately get a contradiction. To see that, form a full
rank square matrix T =

[
Mo Bo C

]
, where Bo is the matrix whose columns

are the bio
j

and C a matrix of appropriate dimensions. T spans RK and we can

hence find a vector x ∈ RK such that T>x =
[
0 1>s c>

]>, where 1s is a vector
of dimension s filled with 1, and c any vector of appropriate dimension. Hence,
x ∈ (Mo)⊥ but x /∈

(
bio

1

)⊥ ∪ · · · ∪ (
bio

s

)⊥.
2) Now examine the case r − s < K < r. Let x ∈ (Mo)⊥, x 6= 0. Let kx be

the number of potential vectors bio
j

obeying b>io
j
x = 0 and let Bx ∈ RK×kx be a

matrix formed by these vectors. Then we have that 0 ≤ kx < K − r + s because
it would otherwise imply x = 0. Therefore, as in the previous case, one can pick
a nonzero y ∈ (Mo)⊥ such that B>x y = 1kx

. It is then easy to see that there
exists a point xo = y + αx for a certain scalar α satisfying xo ∈ (Mo)⊥ and
xo /∈

(
bio

1

)⊥ ∪ · · · ∪ (
bio

s

)⊥. We again get a contradiction and the proposition is
proved. ut

Assumption (i) of Proposition ?? corresponds to an important property of the
subspace arrangement ∪j null(B>

j ) that is known as transversality. This prop-
erty states that the dimension of the intersection of any subset of subspaces in
the arrangement ∪j null(B>

j ) is as small as possible [?]. It is not hard to see that
with this assumption, the number of independent homogeneous polynomials that
vanish on ∪j null(B>

j ) is equal to rank(H). Therefore, if the same property holds
for ∪j null(Pj) and if (n + 1) (nu + ny) > (s− 1) ny, then it follows from Propo-
sition ?? that nh is given by quite a simple formula: nh =

∏s
j=1 rank(Pj) = ns

y

since rank(Pj) = ny for all j. Although our formula is less general than the one
derived in [?], it is much easier to compute. In the rest of the paper we will
assume, unless stated otherwise, that the conditions of Proposition ?? hold. In
short, given the right n and s, the parameter matrices Pj follow directly from
Algorithm ??. If noise is present in the data, the same algorithm still applies but
with the difference that the basis H is approximated by the singular vectors of
L(n, s) that are associated with its nh = ns

y smallest singular values.

3.2 Unknown number of submodels and unknown and possibly
different orders

Now let us consider the challenging case where the orders are possibly different
and neither the orders nor the number of submodels are known. Consequently,
nh is also unknown. This means that we need to derive all the characteristics
of the switched ARX model (??) from the data. In order to properly estimate
the parameters of the system, we shall first identify the orders and the number
of submodels. Once this task is accomplished, Algorithm ?? can be applied to a
certain submatrix of L(n, s) that will be defined later.
Before proceeding further, we need to introduce some notations. For r and l,
positive integers, we use the same definitions for xr(t) and L(r, l) as before.
Denote by n1 ≥ n2 ≥ · · · ≥ ns the orders of the different submodels which



constitute the hybrid system and let ρ =
[
n1 · · · ns

]
be a vector consisting of

all the orders enumerated in a non-increasing order. Let s̄ ≥ s and n̄ ≥ n1 be
upper bounds on the number of submodels and their orders respectively. In order
to deal with submodels of different orders, we need to introduce the vector of
monomials ηρ

(
xn1(t)

)
that shows up in the product(

θ>1 xn1(t)
)
· · ·

(
θ>s xns

(t)
)

= h>ηρ

(
xn1(t)

)
, (9)

of polynomials, where xnj (t) ∈ RKj and Kj = (nj + 1)(nu + ny). The vector
ηρ

(
xn1(t)

)
is a sub-vector of the vector of monomials νs (xn1(t)) that defines the

Veronese map and can consequently be obtained by removing some monomials
in νs (xn1(t)). To this end, we need to define the set of monomials that are to
be removed. From the exponents (α1, · · · , αK) of the Veronese map monomials
organized in a descending lexicographic order, let us define Iρ as the set of
indices (α1, · · · , αK) satisfying α1 + · · ·+ αj > kj for j ≤ τ , where τ = K1−Ks

and kj = card ({i : Ki ≥ K1 − j + 1}). In the following,

Vρ :=
[
ηρ

(
xn1(n̄ + 1)

)
, · · · , ηρ

(
xn1(N)

)]>
is an embedding data matrix in R(N−n̄)×(Ms(K1)−|Iρ|), that is the matrix L(n1, s)
with |Iρ| missing columns.

Deriving the system parameters correctly from the data requires that the data
satisfy some properties of richness. Therefore, we make the following definition
of sufficiency of excitation.

Definition 1. We say that the data {u(t), y(t)}Nt=1 are sufficiently exciting for
the switched system (??) if

rank(Vρ) = Ms(K1)− nh − |Iρ| ,

where Vρ is the matrix obtained by removing from L(n1, s) the columns indexed
by Iρ. That is, the null space of Vρ is of dimension exactly equal to nh.

Definition ?? assumes implicitly that all the discrete states have been sufficiently
visited. If we denote the matrix of data vectors related to the discrete state j by
X̄j =

[
xn(tj1) · · · xn(tjNj

)
]
, where the tjk, k = 1, · · · , Nj , are the instants t such

that λt = j, then X̄j must span completely null(Pj). Otherwise, null(Pj) may
not be identifiable from ∪s

j=1 null(Pj). We have the following result.

Theorem 1 Assume that the data are sufficiently exciting in the sense of De-
finition ??. Assume further that Nj >> Ms̄(K1) for all j = 1, · · · , s. Let
s̄ ≥ s be an upper bound of the number of submodels and r be an integer. Then
dim

(
null(L(r, s̄))

)
= 0 if and only if r < max (nj).

Proof. Assume r < n1. Let q be the number of submodels whose orders are less
than or equal to r. Let X =

[
xr(to1), · · · , xr(toNo

)
]
∈ Rf×No , with f = (r+1)(nu+

ny), be a matrix of regressors formed by data generated by the s− q submodels
of orders nj > r. Then, since the data are diverse enough and are sufficiently



exciting, X has full row rank. It follows from Lemma 5 in [?] that rank(νs̄(X )) =
min(No,Ms̄(f)) = Ms̄(f), where νs̄ (X ) =

[
νs̄(xr(to1)), · · · , νs̄

(
xr(toNo

)]
.

Consequently, L(r, s̄)> =
[
νs̄(X ), νs̄(Xs−q+1), · · · , νs̄(Xs)

]
(up to a column per-

mutation), is necessarily full row rank.
Conversely, if r ≥ max(nj), the row nullity of each data matrix Xj is at

least one. This means that, for all j = 1, · · · , s, there exists a non zero bj ∈ Rf

satisfying b>j Xj = 0. One can then verify that Sym(b1⊗· · ·⊗bs⊗as+1⊗· · ·⊗as̄) ∈
null(L(r, s̄)) for some ai ∈ Rf . Hence, dim(null(L(r, s̄))) ≥ 1. ut

Based on the result stated in Theorem ??, we shall now be able to estimate the
orders along with the number of submodels. The basic fact is that whenever r is
less than at least one order nj , j = 1, · · · , s, there is no polynomial of degree s̄ ≥ s
vanishing on the entire data set embedded in L(r, s̄).3 Therefore, as reported
in Algorithm ??, to obtain for example the first order n1, set ρ =

[
r · · · r

]
and hence, Vρ = L(r, s̄). Start decreasing r from r = n̄ towards r = 0 until
null(Vρ) = {0}. Then, fix n1 = r + 1. Once n1 is available, set ρ =

[
n1 r · · · r

]
and repeat the procedure starting from r = n1 and so on, until all the the
orders of all the s submodels are identified. Conversely when all the orders of

3 Note that we must have s̄ << N because there always exists a polynomial of degree
equal to N that vanishes on all the data

Algorithm 2 Identification of the orders and the number of submodels
Set jo ← 1, nj ← n̄ for j = 1, · · · , s̄,
K ← (n̄ + 1) (nu + ny), V ← L(n̄, s̄),

1. Determine the maximum order n1 using Theorem ??.
– While rank(V ) < Ms̄(K), do
• nj ← n1 − 1 for j = 1, · · · , s̄
• K ← (n1 + 1) (nu + ny)
• V ← last Ms̄(K) columns of V

– EndWhile
– Obtain the maximum order nj ← n1 + 1 for j = 1, · · · , s̄
– Set V ← L(n1, s̄)

2. Find the remaining orders nj , j = 2, . . . , s̄ using Theorem ??.
– jo ← jo + 1
– While rank(V ) < Ms̄(K)− |Iρ|
• nj ← njo

− 1 for j = jo, · · · , s̄
• Compute Iρ and zero out the corresponding columns of V

– EndWhile
– Obtain the order njo

: nj ← njo
+ 1 for j = jo, · · · , s̄

– Set V ← L(n1, s̄)
3. Go to step 2 until jo = s̄ or until one gets njo

= 0
4. Determine the number of submodels s = card ({j : nj > 0})



the s submodels are correctly estimated, r can even go to zero for the s̄ − s
remaining presumed submodels. If one assumes that nj > 0 for all j = 1, · · · , s,
then the number of submodels corresponds to the number of orders nj strictly
greater than zero. One advantage of Algorithm ?? is that it does not require
a knowledge of the dimension nh of the vanishing polynomials space. If all the
orders are correctly identified, then Definition ?? of sufficiency of excitation
guarantees that the dimension of the null space of Vρ will then be exactly equal
to nh. Therefore, in Algorithm ??, we need to compute a basis Hρ of null(Vρ)
that we should then complete with zeros to form a matrix H ∈ RMs(K1)×nh such
that the rows indexed by Iρ are null. However the multiple rank tests required
may cause Algorithm ?? to fail when dealing with noisy data. Next we shall
discuss some possible improvements of the algorithm in order to enhance its
ability to deal with noisy data.

3.3 Implementation of Algorithm ??

Recall first that the purpose of the rank tests in Algorithm ?? is to check for a
given vector ρ of orders, whether the null space of Vρ is void or not. Therefore
one need not know the rank of Vρ exactly and just needs a measure of how likely
it is that there exists a nonzero vector hρ satisfying Vρhρ = 0. Roughly, this can
be done by inspecting the smallest singular values of Vρ for different vectors ρ.
For example, to compute n1, let ρ1,q =

[
q · · · q

]
, q = 0, · · · , n̄ and define Wρ1,q

as the matrix obtained from 1
N−n̄L(n̄, s̄)>L(n̄, s̄) by removing its columns and

rows indexed by Iρ1,q . Denote by σq, q = 0, · · · , n̄ the smallest eigenvalues of the
matrix Wρ1,q . According to Theorem ??, Wρ1,q has at least one non zero vector
in its null space for all q ≥ n1 and hence σn1 ≈ · · · ≈ σn̄ ≈ 1

n̄−n1

∑n̄
q=n1+1 σq

and are small compared to σ0, · · · , σn1−1. Following this procedure, Algorithm
?? can be implemented in a more efficient way for the determination of the
orders. With n0 = n̄, m1 = n̄ and given a user-defined decision threshold ε0, the
following algorithm directly computes the orders starting from j = 1 through
j = s̄, by avoiding the rank tests required in Algorithm ??.

ρj,q =
[
n̂1 · · · n̂j−1 q · · · q

]
, q = 0, · · · ,mj ,

σq = minλ
(
Wρj,q

)
, q = 0, · · · ,mj ,

ε(r) =
1

mj − r

mj∑
q=r+1

σq,

Sj =
{
r = 0, · · · ,mj : |σr − ε(r)| < εo

}
,

n̂j =
{

min {r : r ∈ Sj} , if Sj 6= ∅
mj otherwise,

j ← j + 1,

mj ← n̂j ,

where λ(Wρj,q ) is the set of all eigenvalues of the matrix Wρj,q .



As it turns out, the algorithm derived previously though mathematically
accurate, may be computationally prohibitive when the dimensions of the system
considered get large. This is worsened by the fact that the regressor xn1(t) ∈
RK1 constructed from all ny outputs is potentially long and so, it may induce
an exponential increase in Ms(K1), the dimension of homogeneous polynomials
space of degree s in K1 variables. Moreover, as seen above, unless one makes some
specific assumptions, the number nh of polynomials to be estimated is unknown
even when the orders and the number of submodels are given. Therefore, we
shall discuss in the following an alternative method for dealing with the MIMO
SARX system.

4 Complexity reduction using a projection approach

Instead of attempting to compute a potentially large and unknown number of
polynomials, we propose in this subsection, a more appealing method to derive
the parameters we are looking for. The idea is to use only one decoupling polyno-
mial to partition the data according to the different generating submodels. Once
all the data are correctly partitioned, the hybrid system identification problem
boils down to a standard regression problem.

Notice that, without loss of generality, system (??) can be rewritten, by a
straightforward transformation as4

y(t) =
nj∑
i=1

ai
jy(t− i) +

nj∑
i=0

F i
ju(t− i) + e(t), (10)

where the
{
ai

j

}nj

i=1
are the coefficients of the polynomial znj−a1

jz
nj−1−· · ·−a

nj

j

that encodes the poles of the jth submodel as its roots.
Let γ =

[
γ1 · · · γny

]> be a vector of real nonzero numbers and let yo(t) =
γ>y(t) ∈ R be a weighted combination of all the system outputs. Then, (??) can
be transformed into the following single output system.

yo(t) =
nj∑
i=1

ai
jyo(t− i) +

nj∑
i=0

γ>F i
ju(t− i) (11)

By introducing the blended output yo(t) we can obtain only one hybrid decou-
pling polynomial P (z) that is easier to deal with. But at the same time, the
parameters of each mode have been combined and this raises the question if this
combination of the outputs preserves the distinguishability of the different sub-
models that constitute the switched system. In fact, depending on the weights
vector γ, two submodels which were initially distinct may reduce to the same
submodel in (??). To analyse this risk, let

F j =
[
F

nj

j · · · F 1
j F 0

j

]>
and aj =

[
a

nj

j · · · a1
j

]>
.

4 Note that the orders nj in (??) may be larger than the ones in (??) but we will keep
using the same notation



Two modes i and j initially different happen to be indistinguishable consecutively
to the previous transformation if they have the same order (ni = nj), the same
dynamics (ai = aj) and (Fi − Fj) γ = 0, i.e., when γ lies in null(Fi − Fj).
If the Fj were known one could readily select a γ which does not satisfy this
condition. But these matrices are precisely what we are looking for. The question
is, without knowing the Fj , how can we choose γ in such a way that for any i 6= j,
γ /∈ null(Fi − Fj).

Lemma 1 Let F 6= 0 ∈ Rm×ny and γ ∈ Rny be a vector of nonzero real numbers
generated randomly. Then, we have Fγ 6= 0 with probability one

Proof. Let F>
k be the kth row of F . Let Ek and E be respectively the events

F>
k γ = 0 and Fγ = 0. Consider that γ is drawn uniformly from a finite subset

of R\{0}, of cardinality c. From the Schwartz-Zippel theorem [?], we know that
the probability that γ is a root of the one degree polynomial F>

k x is bounded

as Pr(Ek) ≤ 1
c
. Let r = rank (F ) and Eki

, i = 1 · · · , r be the events F>
ki

γ = 0

where
{
F>

ki

}r

i=1
are some r linearly independent rows of F . We have Pr (E) =

Pr (E1 ∩ · · · ∩ Em) =
∏r

i=1 Pr(Eki
) ≤

(
1
c

)r

. Then, Pr
(
Ē

)
≥ 1−

(
1
c

)r

and the

proof is completed by letting c tend to infinity. ut
From this lemma, it is now clear that if Fi 6= Fj , then (Fi − Fj) γ 6= 0 almost
surely for a γ picked randomly. Therefore, two submodels that are distinct in
the original system (??) remain so after the transformation. However, the sep-
arability of the modes, which measures how close the different submodels are,
may be affected.
From (??), let us redefine the parameter vector θ̄j and the regressor x̄n(t)

θ̄j =
[
0>qj

γ>F
nj

j a
nj

j · · · γ>F 1
j a1

j γ>F 0
j 1

]> ∈ RK , j = 1, · · · , s

x̄n(t) =
[
u(t− n)> yo(t− n) · · · u(t)> −yo(t)

]> ∈ RK ,

where K = (n + 1)(nu + 1). As previously, we eliminate the dependency of the
system equation on the switches by considering the following decoupling poly-
nomial which vanishes on the data independently of their generating submodel:

P
(
x̄n(t)

)
=

s∏
j=1

(
θ̄>j x̄n(t)

)
= h>νs

(
x̄n(t)

)
= 0. (12)

Solving (??) is a particular and simpler case (ny = 1) of the case studied in
section ??. The procedure for the determination of θ̄j is roughly the same: 1)
solve for the orders and number of submodels using Algorithm ??, 2) obtain hρ

as any nonzero element in null(Vρ) (which is expected to be one dimensional
when the data are sufficiently exciting), and 3) complete hρ with zeros to form
a h ∈ RMs(K) so that the entries of h defined by Iρ are zero. Given h, the
parameters may be obtained from the derivative of P as shown in [?]:

θ̄j =
∇P (zj)

e>
K̄
∇P (zj)

, j = 1, . . . , s, (13)



where zj is a point in Sj \ ∪s
i 6=jSi, Sj =

{
x ∈ RK : θ̄>j x = 0

}
, eK is a vector of

length K with 1 in its last entry and 0 everywhere else.

4.1 Classification of the data

The computation of the θ̄j for each submodel, involves the determination of some
points lying in Sj but which do not belong to any other Si, i 6= j. The procedure
followed is: define D1 = {t : ∇P (x̄n(t)) 6= 0} and for j > 1,
Dj =

{
t : ∇P (x̄n(t)) 6= 0, θ̄>i x̄n(t) 6= 0, i = 1, · · · , j − 1

}
. Then, for each sub-

model, an evaluating point can be determined among the data

τj = arg min
t∈Dj

∣∣∣∣∣∇P (x̄n(t))> x̄n(t)
e>K∇P (x̄n(t))

∣∣∣∣∣
from which one can compute the parameters as

θ̄j =
∇P (x̄n(τj))

e>K∇P (x̄n(τj))
.

We recall that recovering the vectors θ̄j which define the blended output yo(t)
is only an intermediate step in achieving the goal of computing the parameters
aj and F j that define each subsystem of the original system (??). Now, from
the parameters θ̄j obtained, we can determine the discrete state of (??) which is
the same as that of (??) and then, compute finally the system sought. In order
to discard possible outliers in the data we set up a performance bound ε < 1 to
define the following decision rules:

If min
j

∆(θ̄j , x̄n(t)) > ε ‖x̄n(t)‖ , then λt is undecidable (14)

If min
j

∆(θ̄j , x̄n(t)) ≤ ε ‖x̄n(t)‖ , then λt = arg min
j

∆
(
θ̄j , x̄n(t)

)
(15)

where ∆(θ̄j , x̄n(t)) =

∣∣θ̄>j x̄n(t)
∣∣∥∥θ̄j

∥∥ is the distance from the point x̄n(t) to the linear

hyperplane Sj defined by its normal vector θ̄j . We define Xj = {t > n̄ : λt = j}
=

{
tj1, · · · , t

j
Nj

}
, j = 1, · · · , s as the set of time instances corresponding to the

data generated by the mode j.

4.2 Estimation of the submodels

Based on the results of the previous classification, we know the data correspond-
ing to each generating mode. Therefore, it remains to determine the parameters
of each mode j from the data indexed by Xj . To begin with, consider a single
linear submodel j of order nj from (??). For any t ∈Xj , let us define

Φy
j (t) :=

[
y(t− 1) · · · y(t− nj)

]
∈ Rny×nj ,

φu
j (t) :=

[
u(t)> · · · u(t− nj)>

]> ∈ R(nj+1)nu ,



and zj(t) := y(t)−Φy
j (t)aj and φo

j(t) := Φy
j (t)>γ. Then, Eqs. (??) and (??) can

be written as

zj(t) = Fjφ
u
j (t) + e(t),

yo
j (t) = a>j φo

j(t) + γ>Fjφ
u
j (t) + γ>e(t).

Repeating these equations for all the available data leads to the following block
equations

Zj = FjUj + Ej , (16)

Y o
j = a>j Ψo

j + γ>FjUj + γ>Ej , (17)

where

Uj =
[
φu

j (tj1) · · · φu
j (tjNj

)
]
, Zj =

[
zj(t

j
1) · · · zj(t

j
Nj

)
]
, Ej =

[
e(tj1) · · · e(tjNj

)
]
,

and
Y o

j =
[
yo

j (tj1) · · · yo
j (tjNj

)
]
, Ψo

j =
[
φo

j(t
j
1) · · · φo

j(t
j
Nj

)
]
.

To solve for a from (??), we multiply on the right side by

Π⊥
Uj

= I − U>
j

(
UjU

>
j

)−1
Uj

to eliminate the term γ>Fj that is not required. This results in

Y o
j Π⊥

Uj
= a>j Ψo

j Π⊥
Uj

+ γ>EjΠ
⊥
Uj

. (18)

and therefore, we get

â>j = arg min
a

∥∥∥Y o
j Π⊥

Uj
− a>Ψo

j Π⊥
U

∥∥∥2

F
= Y o

j Π⊥
U Ψo

j
>

(
Ψo

j Π⊥
Uj

Ψo
j
>

)−1

.

Once âj is available, an estimate of zj(t) can be obtained according to ẑj(t) =
y(t) − Φy

j (t)âj from which the matrix Ẑj defined above is constructed. We get
finally the matrix Fj as,

F̂j = arg min
Fj

∥∥∥Ẑj − FjUj

∥∥∥2

F
= ẐjUj

>
(
UjUj

>
)−1

.

The estimates obtained here result from a classification task where only a finite
amount of data has been processed. This raises the question whether the â>j and
F̂j , j = 1 · · · , s, would converge to the true parameters if the dataset used for
the identification was infinite (each mode is visited an infinite number of times).
This can be easily proved by assuming that all the data are correctly partitioned
and that the noise e(t) is white. However, to rightly partition an infinite amount
of data, one may need to resort to recursive identification.



5 Numerical results

In order to test the performances of the method presented in the paper, consider
the following linear switched system with 1 input and 2 outputs and composed
of 2 submodels of orders 2 and 1. The system is driven by a zero-mean white
Gaussian noise input with unit standard deviation and switches periodically from
one discrete state to another every 10 samples. We add to the data an additive
output noise in the proportion of a signal to noise ratio SNR = 30 dB.

y(t) = a1
jIny

y(t− 1) + a2
jIny

y(t− 2) + b0
ju(t) + b1

ju(t− 1) + b2
ju(t− 2),

where a1
j and a2

j , j = 1, 2 are scalar coefficients and b0
j , b1

j , b2
j are vectors of

dimension ny = 2. Of course, in this representation, a2
j and b2

j are zero for the
second submodel. For convenience of comparison with the estimates, we present
the system parameters with the following matrices:

Γ1 =

�
1.3561, 0

0, 1.3561
0.6913, 0,

0, 0.6913,
0

1.3001
0.3793
1.8145

0.2639
0.7768

�
,

Γ2 =

�
0.9485, 0

0, 0.9485
0, 0,
0, 0,

1.7661
0

2.9830
0.9106

0
0

�
,

defined with respect to the regression vector[
y(t− 1) y(t− 2) u(t) u(t− 1) u(t− 2)

]
.

As described above, given input-output data generated by this system on a
time window of size 1500, we are interested in extracting the number of the
constituent submodels, the orders of these submodels and the parameters that
describe them. To demonstrate the performances of our algorithm we carried
out a Monte-Carlo simulation of size 1000 with the following user-defined set of
parameters : n̄ = 3, s̄ = 3. For a threshold of ε0 = 10−3 in the algorithm of
subsection ??, the estimation of the orders of both submodels is realized with
100% of successes. Since we provided s̄ = 3, the vector of orders is obtained
as ρ̂ =

[
2 1 0

]
. The means of the estimates Γ̂1 and Γ̂2 obtained across all the

simulations are given below:

Γ̂1 =

�
1.3558, 0.0043
−0.0012, , 1.3558

0.6897, 0.0036
−0.0021, 0.6907

0.0056
1.3031

0.3937,
1.8208

0.2639
0.7753

�

Γ̂2 =

�
0.9480, 0.0045
−0.0003, 0.9479

−0.0005, 0.0050
−0.0001, −0.0006

1.7710,
−0.0012

2.9869,
0.9081

0.2695
−0.0018

�

In Figure ??, we present the histogram of the maximum angle between the
column space of the hybrid parameter matrix H and that of its estimate Ĥ. It
can be noticed that for all the simulations the cosine of this angle is larger than
0.99 which implies a strong correlation between H and its estimate. In the case
with projection, this result is much better since H consists of only one vector. In
Figure ??, we present the absolute errors between the true parameter matrices
Pj and their respective estimates P̂j obtained by our algorithm. It turns out
that the proportion of simulations that give errors less than 0.1 is about 50% for
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Fig. 1: Histograms of the maximum subspace angle between span(H) and span(Ĥ).

(a)
GPCA

(b)
GPCA+classification

Fig. 2: Histograms of the errors



P1 − P̂1





2

and



P2 − P̂2
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the first model and about 70% for the second submodel. These proportions are
significantly improved (92% and 94%) when we use the classification approach
described in section ??.

6 Conclusion
We have presented an algebraic-geometric method for the identification of MIMO
SARX models with unknown number of submodels of unknown and possibly
different orders. Given upper bounds on the number of submodels and on the
orders, the strategy followed consists of computing first the right number of
submodels and the orders. We then showed that, with sufficiently exciting data
the parameters can be extracted by applying the concept of GPCA. Finally, we
provided some simulations results that show the potential of this method. Future
work includes extending the work presented in [?] on recursive identification of
SISO switched systems to MIMO SARX.


