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Abstract

Dropout is a simple yet effective regulariza-
tion technique that has been applied to vari-
ous machine learning tasks, including linear
classification, matrix factorization (MF) and
deep learning. However, despite its solid em-
pirical performance, the theoretical properties
of dropout as a regularizer remain quite elu-
sive. In this paper, we present a theoretical
analysis of dropout for MF, where Bernoulli
random variables are used to drop columns of
the factors. We demonstrate the equivalence
between dropout and a fully deterministic
model for MF in which the factors are regu-
larized by the sum of the product of squared
Euclidean norms of the columns. Addition-
ally, we investigate the case of a variable sized
factorization and we prove that dropout is
equivalent to a convex approximation problem
with (squared) nuclear norm regularization.
As a consequence, we conclude that dropout
induces a low-rank regularizer that results in
a data dependent singular-value thresholding.

1 INTRODUCTION

In many problems in machine learning and artificial
intelligence, relevant patterns and information often lie
in a low-dimensional manifold. In order to capture this
structure, linear subspaces have become very popular,
arguably due to their efficiency and versatility.

The problem of learning a linear subspace from data
points x1, . . . ,xm ∈ Rn is usually formulated as follows.
Let X be the m× n matrix containing the data points
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as its rows. In the matrix approximation formulation of
subspace learning, the goal is to find anm×n matrix A
that is close to X and satisfies certain properties (e.g.,
being low rank). This problem can be formulated as

min
A
‖X−A‖2F + γ Ξ(A), (1)

where the Frobenius norm ‖ · ‖F measures the approx-
imation error between X and A, the regularization
function Ξ(A) encourages the desired properties on
A, and γ > 0 is a trade-off parameter. An important
property of the formulation in (1) is that the optimiza-
tion problem is convex when Ξ is convex, which greatly
facilitates finding a global minimum. At the same time,
the formulation in (1) may not be adequate for large
scale problems, as it requires solving for m ·n variables.

In the matrix factorization (MF) formulation of sub-
space learning the goal is to find two matrices (or
factors) U ∈ Rm×d and V ∈ Rn×d, where d is the
dimension of the subspace, such that X ≈ UV>. This
problem can be formulated as

min
U,V
‖X−UV>‖2F + λΩ(U,V), (2)

where ‖ · ‖F measures the approximation error between
X and UV>, the regularization function Ω(U,V) en-
courages some desired properties on the factors (e.g.,
orthonormality, sparsity, etc.), and λ > 0 is a trade-off
parameter. The formulation in (2) has two main ad-
vantages. First, the optimization is carried out directly
on the factors achieving a structured decomposition of
X that depends on the choice of the regularizer Ω. In
contrast, the optimal solution Aopt of (1) may not have
such structure. Second, the number of variables to be
optimized in (2) scales linearly with respect to m+ n,
ensuring the applicability of MF even in the big data
regime. Unfortunately, an important shortcoming of
(2) is that, while the problem of optimizing for V when
U is fixed is convex when Ω is convex in V for a fixed
U, and vice versa, the problem in (2) is not convex
when optimizing on U and V jointly. As a result, many
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challenges arise both in verifying whether a given local
solution is globally optimal and whether algorithms are
guaranteed to find globally optimal solutions.

These challenges have motivated a rich literature on
the connections between matrix approximation (1) and
matrix factorization (2) [21, 10, 4, 3, 17, 15, 18, 16].
For example, [16] derives condition under which a local
minimum for (2) gives a global minimum for (1) and (2).
In this paper, we further strengthen these connections
by providing a theoretical analysis for MF with a par-
ticular type of regularizer called dropout [22, 32].

Dropout is a popular algorithm for training neural
networks that, at each training iteration, sets to zero
the outputs of a fraction of the neural units and updates
only the weights of the remaining units. Specifically,
during dropout training each neural unit is associated
with a Bernoulli random variable that specifies whether
the unit is retained or suppressed. The expected value θ
of the random variables is called the “retain probability”.
At each iteration of dropout training, a new training
example/minibatch and a new set of Bernoulli random
variables are drawn, the outputs of the suppressed units
are set to zero, and the network weights corresponding
to retained units are updated using a back-propagation
step, while the remaining weights remain unchanged.
During inference, no unit suppression is performed
and all weights are rescaled by θ. The latter stage
can be interpreted as a model average up to certain
approximations [32, 5, 6].

Motivated by the significant efforts made to understand
dropout as an implicit regularizer [36, 5, 6, 14], in
this paper, following [39, 19], we study the theoretical
properties of dropout for MF. Specifically, we study the
following problem: given a data matrix X, we search
for a factorization X ≈ UV>, where U ∈ Rm×d and
Vn×d, that solves the following optimization problem

min
U,V

Er
∥∥X− 1

θUdiag(r)V>
∥∥2
F
. (3)

where r ∈ Rd is a random vector whose entries are i.i.d.
Bernoulli(θ) and Er denotes the expected value with
respect to r. The dropout formulation of MF in (3)
takes direct inspiration from the idea of suppressing
“hidden units” in a neural network, and in the linear
case of (3) we suppress “columns” of the factorization.
While in practice dropout for MF has shown solid
performance [39, 19], it is still unclear what sort of
regularization it induces.

The contributions of this paper are the following:

1. We show that the standard dropout algorithm is a
stochastic gradient descent method for solving (3).

2. We show that dropout for MF (3) is equivalent to

the following deterministic regularized MF problem

min
U,V

[
‖X−UV>‖2F + 1−θ

θ Ωdropout(U,V)
]
, (4)

where Ωdropout(U,V) =
∑d
k=1 ‖uk‖22‖vk‖22.

3. We show that if in the optimization problem in (4)
we also minimize with respect to the size d of U and
V, while keeping the retain probability θ constant,
then Ωdropout promotes over-sized factorizations, that
is, the larger d, the smaller the objective value.

4. We show that if the dropout rate is chosen as a par-
ticular increasing function of d, then Ωdropout acts as
a low-rank regularization strategy. Specifically, we
show that the optimization problem in (3) is related
to the following matrix approximation problem

min
A

[
‖X−A‖2F + γ‖A‖2?

]
, (5)

where the squared nuclear norm ‖A‖2? is used to
induce low-rank factorizations.

5. We show that if Uopt and Vopt are globally optimal
factors of (3) using a dropout rate that depends on
d with the size of d learned via the optimization,
then Aopt = (Uopt)(Vopt)> is a global optimum of
(5).

Paper outline. Section 2 briefly reviews the litera-
ture related to dropout. Sections 3, 4 and 5 present
our theoretical analysis. Section 6 presents numerical
simulations and Section 7 provides concluding remarks.

2 RELATED WORK

The origins of dropout can be traced back to the lit-
erature on learning representations from input data
corrupted by noise [9, 8, 30]. Since its original formu-
lation [22, 32], many algorithmic variations have been
proposed [25, 7, 37, 24, 29, 1, 26]. Further, the em-
pirical success of dropout for neural network training
has motivated several works investigating its formal
properties from a theoretical point of view. Wager et
al. [36] analyze dropout applied to the logistic loss
for generalized linear models. Hembold and Long [20]
discuss mathematical properties of the dropout regu-
larizer (such as non-monotonicity and non-convexity)
and derive a sufficient condition to guarantee a unique
minimizer for the dropout criterion. Baldi and Sad-
owski [5, 6] consider dropout applied to deep neural
networks with sigmoid activations and prove that the
weighted geometric mean of all of the sub-networks
associated with the retained units at each iteration
can be computed with a single forward pass. Wager
et al. [35] investigate the impact of dropout on the
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generalization error in terms of the bias-variance trade-
off. Gal and Ghahramani [14] study the connections
between dropout training and inference for deep Gaus-
sian processes. Many of these prior theoretical results
required simplifying assumptions, and thus the results
hold only in an approximate sense [36, 20, 5, 6, 14]. In
contrast, our work characterizes the regularizer induced
by dropout for MF in an analytical manner.

In the context of MF, only a few works have investi-
gated the dropout criterion. He et al. [19] leverage
the formal analogy between MF and shallow neural
networks, which inspires the use of dropout as a regu-
larizer. Zhai and Zhang [39] provide some theoretical
analysis for dropout for MF, but only as an argument
to unify MF and encoder-decoder architectures. None
of these works study the formal properties of dropout
as a regularizer and our paper aims at filling this gap.

3 DROPOUT FOR MATRIX
FACTORIZATION

Given an m × n matrix X, we consider the problem
of approximating X as the product UV>, where U is
m× d and V is n× d, and the size d of the factors is
assumed fixed throughout this section. Following (3),
we formulate this MF problem as one of minimizing

f(U,V) = Er
∥∥X− 1

θUdiag(r)V>
∥∥2
F
, (6)

where r = [r1, . . . , rd] is a random vector whose ele-
ments are assumed to be i.i.d. as ri ∼ Bernoulli(θ). We
assume 0 < θ < 1 to avoid trivial or degenerate cases.1

To see why the minimization of f can be achieved using
a strategy akin to dropout for neural network training,
observe that if we use a gradient descent strategy to
minimize f , the gradient of the expected value is equal
to the expected value of the gradient, i.e.

∇f(U,V) = Er∇
∥∥X− 1

θUdiag(r)V>
∥∥2
F
. (7)

Therefore, the evaluation of ∇
∥∥X− 1

θUdiag(r)V>
∥∥2
F

at a particular sample of r provides an unbiased es-
timate of ∇f . This leads to the stochastic gradient
descent (SGD) scheme shown in Algorithm 1, where
the expected gradient at each iteration is replaced by
the gradient for a fixed sample r. Notice that columns
of U and V for which ri = 0 are suppressed when eval-
uating the matrix product. Notice also that columns of
U and V for which ri = 1 are updated according to the
SGD rule, while columns of U and V for which ri = 0
are not updated. This is analogous to dropout training
for a neural network with a single hidden layer.

1Note that this assumption is less restrictive than cur-
rently adopted practices for dropout training where θ > 0.5
(see [32, Appendix A.4] for a list of typical values).

Algorithm 1: Dropout training for MF with fixed d
1 for t = 1, 2, . . . do
2 Sample rt element-wise from a Bernoulli(θ).
3 Compute gradient directions[

∂Ut

∂Vt

]
=
[

( 1
θU

tdiag(rt)Vt> −X)Vt

( 1
θU

tdiag(rt)Vt> −X)>Ut

]
(8)

with respect to U and V, respectively.
4 Update the factors[

Ut+1

Vt+1

]
=
[
Ut

Vt

]
− 2εt

θ

[
∂Ut

∂Vt

]
diag(rt), (9)

5 end

The discussion so far shows that Algorithm 1 is an
SGD scheme applied to the MF problem in (3) that
is akin to the dropout algorithm proposed in [22, 32].
Since during training Algorithm 1 drops columns of
the factorization, it is natural to ask whether this
induces some redundancy or low-rank regularization
on the solution, or perhaps it induces some ensemble
averaging as in the case of neural networks.

In what follows, we seek to study the theoretical proper-
ties of dropout for MF, with the goal of understanding
what type of regularization it induces. The following
theorem shows that the optimization problem solved
by dropout (3) is equivalent to the deterministic MF
problem in (2) with λ = λdropout

.= 1−θ
θ and the reg-

ularizer Ω chosen as the sum of the product of the
squared Euclidean norms of the columns of U and V.
Theorem 1. For any θ, U,V and X, we have

Er
∥∥X− 1

θ
Udiag(r)V>

∥∥2
F

(10)

= ‖X−UV>‖2F + 1− θ
θ

d∑
k=1
‖uk‖22‖vk‖22︸ ︷︷ ︸

Ωdropout(U,V)

.

Proof. The well known equality E(a2) = E(a)2 + V(a)
for a scalar random variable a can be extended to matri-
ces as E(‖A‖2F ) = ‖E(A)‖2F + 1>V(A)1 provided the
entries of A are independent. Applying this to A =
X − 1

θUdiag(r)V> and noticing that E(diag(r)) =
θI, we obtain E(A) = X − UV>. Since V(A) =
1
θ2 V(Udiag(r)V>) and Udiag(r)V> =

∑
k ukv>k rk,

we have θ21>V(A)1 =
∑
ijk V(uikvjkrk) =∑

ijk u
2
ikv

2
jkV(rk) = θ(1 − θ)

∑
k ‖uk‖22‖vk‖22 because

the rk’s are independent.

The implications of Theorem 1 are clear: For λ =
λdropout and Ω = Ωdropout problems (2) and (3) are
equivalent, hence both problems have the same global
minima. At the same time, a key challenge is that the
optimization problem is non-convex, and hence there
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is no guarantee that dropout will converge to a local,
let alone a global minimizer. Recent work has estab-
lished guarantees of global optimality for MF problems
regularized by the sum of the product of the norms of
the columns of the factors [27, 17, 15, 16]. However,
such conditions do not apply to the regularizer Ωdropout

which involves the square of the norms. While the use
of squared norms may appear like a very subtle modifi-
cation, it has an important implication on whether it
induces low-rank factorizations or not when the size of
the factorization is allowed to vary, as discussed in the
next section.

4 CONNECTIONS BETWEEN
DROPOUT AND NUCLEAR
NORM MINIMIZATION

In this section, we study properties of the dropout
regularizer Ωdropout for MF in the case where the size d
of the factorization is allowed to vary and is controlled
by the Ωdropout regularizer. In particular, we show that
when the retain probability is constant, the regularizer
Ωdropout promotes over-sized factorizations.

To understand the motivation for allowing the size d
to be controlled by the regularization, let us first re-
call that the nuclear norm of a matrix A ∈ Rm×n,
also termed the trace norm or Schatten-Von Neumann
1-norm, is defined as the sum of its singular values
‖A‖? =

∑min(m,n)
i=1 σi(A). The nuclear norm is a pop-

ular regularizer for many many machine learning prob-
lems [38, 2, 12, 11, 23, 13, 27, 33], especially to induce
low-rank structure. The connection between ‖ · ‖? and
Ωdropout becomes clearer when considering the following
variational form of the nuclear norm [31, 28], where d
is one of the optimization variables:

‖A‖? = inf
d,U∈Rm×d,V∈Rn×d

A=UV>

d∑
k=1
‖uk‖2‖vk‖2. (11)

This fact is used in [4, 3, 17, 16] to show that the
convex optimization problem minA ‖X−A‖2F +λ‖A‖?
is equivalent to the non-convex optimization problem

min
d,U∈Rm×d,V∈Rn×d

‖X−UV>‖2F + λ

d∑
k=1
‖uk‖2‖vk‖2

(12)
in the sense that if (U,V) is a local minimizer of the
non-convex problem such that for some k we have
uk = 0 and vk = 0, then (U,V) is a global minimizer
of the non-convex problem and A = UV> is a global
minimizer of the convex problem.

But what does the variational form of the nuclear norm
tell us about the regularizer Ωdropout induced by dropout?

Notice the extreme similarity between the functional
optimized in (11) and Ωdropout: the only difference is
that the Euclidean norms of the columns of U and
V are squared in Ωdropout. Naively, one could argue
that such difference is extremely subtle and interpret
dropout as a low-rank regularizer for MF. However,
this is not the case, as we show next.

As an example, suppose we are given an arbitrary
factorization of A = UV> of size d. Then, we can
construct a new factorization of A of size 2d which
reduces the dropout regularizer by a factor of two.
Specifically,

Ωdropout

(√
2

2 [U,U],
√

2
2 [V,V]

)
= 1

2Ωdropout(U,V). (13)

This shows that the regularizer Ωdropout does not pe-
nalize the size of the factorization. On the contrary,
it encourages factorizations with a large number of
columns, as we can always reduce the value of Ωdropout

by increasing the number of columns. This provides
the main argument to prove the following proposition.
Proposition 1. The infimum of the dropout regular-
izer for a variable size factorization is equal to zero,
i.e.,

0 = inf
d,U∈Rm×d,V∈Rn×d

A=UV>

d∑
k=1
‖uk‖22‖vk‖22. (14)

As a consequence, in the context of MF with variable
size d, using dropout with a constant retain probability
θ does nothing to limit the size of the factorization.
This is because the optimization problem solved by
dropout (3) is equivalent to the regularized factoriza-
tion problem (4), which is always reduced in value by
increasing the number of columns in (U,V). To ad-
dress this issue, in the next section we study dropout
using a retain probability θ(d) that decreases with d,
and show that in this case 1−θ

θ Ωdropout induces low-rank
regularization via the square of the nuclear norm ‖A‖2?.
Remark 1. The drawback of dropout regularization
discussed in Proposition 1 does not contradict the excel-
lent performance that dropout shows in practice [39, 19].
This is because the drawback occurs in the context of
MF with variable d, while prior work has used dropout
in the context of a fixed d. Elucidating the properties
of Ωdropout for a fixed d remains an open problem.
Remark 2. While in this section we discussed the
properties of dropout for MF with variable d, we did not
discuss how to modify dropout to also find the optimal
d. This is because this paper focuses on the theoretical
connections between different formulations for MF, not
on algorithms. That being said, in our experiments we
draw inspiration from the meta-algorithm for MF pre-
sented in [16], where the d is increased until a globally
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optimal factorization is found. This requires, however,
a method for checking that the optimal d has been found,
which is briefly discussed in the next section.

5 VARIABLE DROPOUT RATE
FOR LOW-RANK
REGULARIZATION

In this section, we establish a connection between the
matrix approximation problem in (1) and dropout for
MF, which, as explained in the previous section, can
be formulated either as (3) or as its fully determinis-
tic counterpart (2) with Ω = Ωdropout. To make this
connection, we explore the question of whether there
exists a way to choose the retain probability θ in such a
way that the regularization 1−θ

θ Ωdropout limits the size of
the factorization, d, as in nuclear norm regularization,
and hence avoid the pathological situation described in
Proposition 1 that promotes over-sized factorizations.

Specifically, for a given p, 0 < p < 1, we define

θ(d) = p

d− (d− 1)p , (15)

where d refers to the number of columns in U and V in
the factorization A = UV>. Here, we have modified
the retain probability θ to be a function of d, while also
depending on a hyper-parameter p ∈ (0, 1). With this
choice for θ, the parameter λ = 1−θ

θ becomes λ = d 1−p
p .

In other words, the regularization weight λ increases
linearly with the size of the factorization. It is easily
shown that this choice corrects the pathology in (14).

Beyond this basic result, we can also show that a
variable dropout rate induces low-rank regularization.
Specifically, we have the following result.
Proposition 2. For θ = θ(d) as defined in (15), then
the lower convex envelope of

Λ(A) = inf
d,U∈Rm×d,V∈Rn×d

A=UV>

1−θ(d)
2θ(d) Ωdropout(U,V) (16)

is given by 1−p
2p ‖A‖

2
?.

Proof. Recall that the convex envelope of a function
f is the largest closed, convex function g such that
g(x) ≤ f(x) for all x and is given by g = (f∗)∗, where
f∗ denotes the Fenchel dual of f , defined as f∗(q) ≡
supx 〈q, x〉 − f(x). Note that Λ(A) can be equivalently
written as

Λ(A) = inf
d≥ρ(A)

U∈Rm×d

V∈Rn×d

w∈Rd

λd
2 ‖w‖

2
2 s.t.

∑d

k=1
wkukvT

k =A
(‖uk‖2,‖vk‖2)≤(1,1) ∀k.

(17)

where λd = d(1− p)/p. This gives the Fenchel dual

Λ∗(Q) = sup
d, w∈Rd

U∈Rm×d

V∈Rn×d

d∑
k=1

wk
〈
Q,ukvTk

〉
− λd

2 ‖w‖
2
2

s.t. (‖uk‖2, ‖vk‖2) ≤ (1, 1) ∀k.

(18)

If we define the vector Bd(U,V) ∈ Rd as

Bd(U,V) =

〈Q,u1vT1
〉

. . .〈
Q,udvTd

〉
 , (19)

then from (18) we have that

Λ∗(Q) = sup
d, w∈Rd

U∈Rm×d

V∈Rn×d

〈Bd(U,V),w〉 − λd
2 ‖w‖

2
2 (20)

s.t. (‖uk‖2, ‖vk‖2) ≤ (1, 1) ∀k

= sup
d

U∈Rm×d

V∈Rn×d

1
2λd
‖Bd(U,V)‖22 (21)

s.t. (‖uk‖2, ‖vk‖2) ≤ (1, 1) ∀k.

where the final equality comes from noting that the
supremum w.r.t. w is the definition of the Fenchel dual
of the squared `2 norm evaluated at Bd(U,V).

Now, from(21) and the definition of Bd(U,V) note that
for a fixed value of d, (21) is optimized w.r.t. (U,V) by
choosing all the columns of (U,V) to be equal to the
maximum singular vector pair, given by the solution
to

sup
u∈Rm,v∈Rn

〈
Q,uvT

〉
s.t. (‖u‖2, ‖v‖2) ≤ (1, 1). (22)

Note also that for this optimal choice of (U,V) we
have that Bd(U,V) = σ(Q)1d where σ(Q) denotes
the largest singular value of Q and 1d is a vector of all
ones of size d. Plugging this in (21) and recalling the
definition of λd = d(1− p)/p gives

Λ∗(Q) = sup
d

1
2λd
‖σ(Q)1d‖22 = sup

d

σ2(Q)d
2λd

=
(

p

1− p

)
σ2(Q)

2 .

(23)

The result then follows by exploiting the well-known du-
ality between the spectral norm (largest singular value)
and the nuclear norm, as well as the basic properties
of the Fenchel dual.

Recall from (14) that for a fixed dropout rate, Ωdropout

does not act to constrain the number of factors in
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U,V. However, as shown by the above result, once
the dropout rate is adjusted as a function of d as
given by (15) then the regularization is globally lower-
bounded by the (squared) nuclear norm, ensuring that
the regularization will never trivially be identically 0.

Additionally, by exploiting the link between the squared
nuclear norm and dropout regularization provided by
Proposition 2, we can provide a stronger theoretical
result, which, establishes a direct connection between
dropout for MF with variable size and squared nuclear
norm regularization.

Theorem 2. Let Uopt ∈ Rm×dopt and V ∈ Rn×dopt be
the optimal factors that achieve the global minimum of
the dropout MF problem given by

min
U,V,d

Er

∥∥∥X− 1
θ(d)Udiag(r)V>

∥∥∥2

F
= (24)

min
U,V,d

‖X−UV>‖2F + 1− θ(d)
θ(d)

d∑
k=1
‖uk‖22‖vk‖22 (25)

with θ = θ(d) as in (15) for some fixed hyper-parameter
p ∈ (0, 1). Then Aopt = (Uopt)(Vopt)> is the global
minimizer of

min
A

[
‖X−A‖2F + 1− p

p
‖A‖2?

]
. (26)

Theorem 2 provides not only a link between matrix
factorization (2) and matrix approximation (1), but
also insight into the effects of dropout regularization
in promoting low-rank solutions. In particular, we
note that this result implies that if the dropout rate
is adapted to the number of columns in U, V then
solutions to the dropout regularized problems will be
equivalent to regularization via the squared nuclear
norm.

As a final remark, since the objective function of (26)
is strictly convex, the existence and uniqueness of the
global minimizer of (26) is guaranteed and, moreover,
it can be expressed through the following closed form
solution.

Theorem 3. Let X = LΣR> be the singular value
decomposition of X. The optimal solution Aopt to (26)
is given by

Aopt = LSµ(Σ)R>, (27)

where Sµ(σ) = max(σ − µ, 0) defines the shrinkage
thresholding operator2 [34] applied entrywise to the

2For a general scalar x, one usually defines Sµ(x) =
sgn(x) max(|x| − µ, 0), but, here, due to the non-negativity
of the singular values σ > 0, we will exploit the simplified
expression Sµ(σ) = max(σ − µ, 0).

singular values σi(X) of X and

µ = 1− p
p+ (1− p)d̄

d̄∑
i=1

σi(X) (28)

where d̄ denotes the largest integer such that

σd̄(X) > 1− p
p+ (1− p)d̄

d̄∑
i=1

σi(X). (29)

The convex lower bound (26) to dropout for MF allows
a closed-form solution for the dropout problem in terms
of the singular value decomposition of X, which we
exploit to verify our analysis experimentally in the
next section. In particular, this result implies that for
dropout regularization in MF problems, one solution
is to take the singular vectors of X and shrink singular
values via the shrinkage thresholding operator Sµ where
µ is data dependent. Moreover, in this computation
one must also find the optimal value of d̄, which likewise
corresponds to the optimal size of the U, V factors.

We can interpret the latter points as follows: using
dropout regularization for MF where the size of the
factors is controlled via regularization acts as a dimen-
sionality reduction technique very closely to related to
PCA [34]. However, two differences arise: first, the
number of principal components is not (heuristically)
fixed but dropout learns it to be the value of dopt = d̄
in (29). Second, the top d̄ singular values are not di-
rectly used for the projection, but, instead, we shrink
them in a way that is adaptively induced by the data
itself as in standard nuclear norm regularization. From
this connection between dropout for MF and this data
dependent adaptive PCA described above, we conclude
that dropping out columns in the factors acts as a reg-
ularizer which promotes spectral sparsity for low-rank
solutions.

6 NUMERICAL SIMULATIONS

This section validates our theoretical predictions about
the connections between the stochastic, deterministic,
and squared nuclear norm regularized formulations of
MF through experiments on synthetic and real data.

Stochastic vs. deterministic reformulations of
dropout. In this first experiment, we verify the equiv-
alence between the stochastic optimization problem
(3) and its deterministic counterpart (2), in which
Ω = Ωdropout. To do so, we constructed a synthetic data
matrix X = U0V>0 , where U0 ∈ Rm×d, V0 ∈ Rn×d,
m = n = 100 and d = 160. The entries of U0 and V0
were sampled from a N (0, ς2) Gaussian distribution
with standard deviation 0.1. Both the stochastic and
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deterministic formulations of dropout were solved by
10,000 iterations of gradient descent with diminishing
O( 1

t ) lengths for the step size. In the stochastic setting,
we approximated the objective in (3) and its gradient
by sampling a new Bernoulli vector r at each iteration
of Algorithm 1.

Figure 1 plots the objective curves for the stochastic
and deterministic dropout formulations for different
choices of the retain rate θ = 0.1, 0.3, 0.5, 0.7, 0.9. We
observe that across all choices of θ, the deterministic
objective (2) tracks the apparent expected value that is
computed in (3). This validates the claim of Theorem
1 that the two formulations are equivalent.

Evaluating connections to the nuclear norm. In
a second experiment, we validate the equivalence be-
tween Ωdropout and squared nuclear norm regularization
for variable size factorizations (Theorem 2). To do
so, we constructed a synthetic dataset X consisting
of a low-rank matrix combined with dense Gaussian
noise. Specifically, we let X = U0V>0 + Z0 where
U0,V0 ∈ R100×10 and Z0 ∈ R100×100 contain entries
drawn from a normal distributionN (0, ς2), with ς = 0.1
for U0,V0 and ς = 0.01 for Z0. We then compared
the regularization performance of the squared nuclear
norm with that of Ωdropout, both with a fixed θ = 0.9
and an adaptive θ = θ(d) (p = 0.9). Algorithm 1 was
used to solve the Ωdropout regularized problems, while
for the squared nuclear norm we computed the closed
form solution of Theorem 3.

Figure 2 plots the singular values for the optimal so-
lution to each of the three problems. We observe first
that without adjusting θ, dropout regularization has
little effect on the rank of the solution. The small-
est singular values are still relatively large and not
shifted significantly compared to the singular values
of the original data. This is consistent with the idea
of Proposition 1 that traditional dropout is a poor
regularizer when d is allowed to vary. On the other
hand, by adjusting the dropout rate to the size of the
factorization we find that consistent with Theorem 2,
the regularization behavior of Ωdropout closely matches
that of the squared nuclear norm, and moreover both
formulations are able to recover the rank of the noise-
free data (rank(U0V>0 ) = 10). Furthermore, across
the choices for d, the relative Frobenius distances be-
tween the solutions of these two methods are very small
(between 10−6 and 10−2). Taken together, our theoret-
ical predictions and experimental results suggest that
adapting the dropout rate to the size of the factoriza-
tion is potentially critical to ensuring the effectiveness
of dropout as a regularizer and in limiting the degrees
of freedom of the model.

Matrix factorization meets approximation with

dropout. In a final experiment, we compared the
quality of Ωdropout and squared nuclear norm regulariza-
tion in a low-rank approximation task using images of
handwritten digits. Here the data matrix X contains
55K 28×28 images from the MNIST training set. Pre-
processing steps include min-max normalization and
vectorization. In this experiment we fixed the size of
the factorization to d = 40.

We solved the Ωdropout regularized problem (4) by full
gradient descent with a fixed learning rate ε = 10−4. In
order to better cope with the non-convexity of the prob-
lem, we updated the factors U and V in an alternating
fashion. We performed the following updating scheme:
we applied 50 gradient updates to U with V fixed, fol-
lowed by 50 updates to V with U fixed. The previous
updating scheme was repeated for 1000 times overall.
We computed the solution to the squared nuclear norm
problem (26) in closed form following Theorem 3.

In Figure 3 we compare samples of the original MNIST
data to their reconstructions obtained through either
Ωdropout or the equivalent squared nuclear norm regular-
ization, using fixed dropout rates θ = 0.5 and θ = 0.8.
Visually, the two sets of reconstructions are nearly iden-
tical. Numerically, mean squared difference between
the factorizations UV> for the two formulations are
within 10−3. Moreover, both formulations are able to
represent the data reasonably well, achieving mean re-
construction error at most 10−2, despite the simplicity
of the linear low-rank approximation model.

7 CONCLUSIONS

We have presented a theoretical analysis of dropout
as a regularization strategy for matrix factorization
(MF). We showed that the dropout algorithm for MF
is a stochastic gradient descent strategy applied to a
stochastic objective in which Bernoulli random vari-
ables are used to drop columns of the factors. We
also showed that the expected value of the stochastic
objective is equal to a purely deterministic objective
with a regularizer which is equal to the sum of the
product of the squared norms of the columns of the
factors. When the factorization size is allowed to vary,
we showed that using dropout with a fixed dropout rate
is not sufficient to limit the size of the factorization. To
address this issue, we proposed a dropout strategy that
adjusts the dropout rate based on the size of the factor-
ization, and showed that this induces a regularizer that
is closely related to the squared nuclear norm. Finally,
we presented experimental results that confirmed our
theoretical predictions.
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Figure 1: For θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and d = 160 we compare dropout for MF (3) (blue) and its deterministic
counterpart (2) (red). The exponential moving average of the stochastic objective is in cyan. Best viewed in color.

Figure 2: Singular values in log-scale corresponding to the optimal solutions of the three regularization schemes
considered: fixed dropout rate of θ = 0.9 (black), adaptive dropout θ = θ(d) as (15) with p = 0.9 (gray), and the
nuclear-norm squared closed-form optimization as in Proposition 2 (green). Best viewed in color.

Figure 3: Low-rank approximation of MNIST digits using dropout (Ωdropout) and squared nuclear norm (‖ · ‖2?)
regularization, with θ = 0.5 and θ = 0.8.
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