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Abstract

The mean shift algorithm, which is a nonparametric den-
sity estimator for detecting the modes of a distribution on a
Euclidean space, was recently extended to operate on ana-
lytic manifolds. The extension is extrinsic in the sense that
the inherent optimization is performed on the tangent spaces
of these manifolds. This approach specifically requires the
use of the exponential map at each iteration. This paper
presents an alternative mean shift formulation, which per-
forms the iterative optimization “on” the manifold of interest
and intrinsically locates the modes via consecutive evalua-
tions of a mapping. In particular, these evaluations constitute
a modified gradient ascent scheme that avoids the compu-
tation of the exponential maps for Stiefel and Grassmann
manifolds. The performance of our algorithm is evaluated
by conducting extensive comparative studies on synthetic
data as well as experiments on object categorization and
segmentation of multiple motions.

1. Introduction
The mean shift (MS) algorithm is a nonparametric kernel

density estimator that analyzes multimodal feature spaces
directly from data points [5, 7, 14]. Given a collection of
points distributed according to an unknown distribution on a
Euclidean space, the MS is designed to iteratively locate the
underlying modes together with the points that belong to the
cluster associated with each mode. The algorithm is success-
fully employed in different computer vision problems, such
as image segmentation [7, 21] and tracking [3, 9, 12, 22].
Furthermore, its characterization as an optimization problem
are investigated in [13, 19, 4, 30] and references therein.

The success of the mean shift algorithm inspired many
researchers from the computer vision community to develop
different variants of the standard version. For instance, there
exist a plethora of works that focus on improving its per-
formance in terms of 1) speed (see [21] and references
therein) and 2) accuracy via adaptive bandwidths [15] and
asymmetric kernels [29]. It is also worth mentioning re-
cent modifications of the MS for manifold clustering. In

[24, 27], the MS algorithm was extended to two analytic
manifolds, Grassmann manifolds and Lie groups, in order to
address the problems of motion segmentation and multibody
factorization. Following the introduction of this nonlinear
extension, the medoid shift [23] and the quick shift [28]
algorithms are designed to cluster data on non-Euclidean
spaces and employed for image segmentation and catego-
rization. Specifically, by constraining the points traversed
towards a mode to pass through the actual data points, the
medoid shift eliminates the definition of a stopping criteria
and performs clustering on both linear and curved spaces.
The quick shift was recently proposed to efficiently eliminate
the over-fragmentation problem of the medoid shift.

1.1. Motivation and Contributions

Our work draws inspiration from the works of Tuzel et
al. [27] and Subbarao and Meer [24], where the Euclidean
MS formulation was extended to two particular analytic
manifolds, Grassmann manifolds and Lie groups, and named
as nonlinear MS. The basic idea behind the nonlinear MS
is to compute the mean shift as a weighted sum of tangent
vectors and map the resulting vector back to the manifold.
In other words, the MS iterations are still performed on a
linear space, namely the tangent space to the manifold.

At this point, it is also worth noting that there exist well-
founded statistical tools, e.g., probability density functions
(pdfs) and kernels, for the analysis of analytical manifolds
[2, 6]. In fact, several problems in computer vision and
in biological sciences involve the analysis of data points
on particular analytic manifolds. Typical examples include
motion segmentation [24], object recognition and classifi-
cation [2, 17], activity recognition [26], text categorization
[1, 17], and gene expression analysis [1, 17, 20]. From this
perspective, it is natural to see efforts for developing itera-
tive clustering methods that are guaranteed to operate “on”
the manifold of interest. For instance, Oba et al. presented
a hyperspherical mean shift algorithm with the von Mises-
Fisher kernel to analyze gene expression profiling data [20].
Although they perform density estimation “on” a particu-
lar analytic manifold, i.e., unit hyperspheres, the method is
not generalizable in the sense that it cannot be applied to
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other analytic manifolds because of the specificity of the
inherent kernel function. In addition, in the case of com-
plex non-analytic manifolds, one can employ dimensionality
reduction techniques that map the data to its intrinsic param-
eter manifold (see [16] and references therein). Therefore,
it would be interesting to intrinsically reformulate the MS
algorithm on analytic manifolds, investigate its convergence,
and evaluate its clustering performance and efficiency.

We thereby propose an intrinsic mean shift algorithm
that is designed to operate on two particular manifolds, i.e.,
Stiefel and Grassmann manifolds, using generic kernels.
Specifically, we focus on clustering directional data, which
constitute a particular case of the Stiefel manifold (unit hy-
perspheres), and segmentation of multiple motions under the
affine camera model, which involves clustering subspaces,
i.e., points on the Grassmann manifold. The idea is to per-
form kernel density estimation on the manifold and locate
the fixed point(s) of a mapping via iterative evaluations. The
resulting points are identified as the modes of the underlying
density along with the memberships of the data points.

The organization of the paper is as follows: In §2, we
revisit the fundamentals of the MS algorithm along with
its nonlinear (extrinsic) extension to analytic manifolds. In
§3, we present the mathematical details of our intrinsic MS
formulation and briefly discuss its convergence. In §4, we
provide synthetic experiments to compare our method with
its extrinsic counterpart. In addition, we apply the intrinsic
MS on object categorization and segmentation of multiple
motions, and compare it with other clustering techniques for
directional data. Finally, §5 outlines the conclusions along
with future research directions.

2. Preliminaries
2.1. Euclidean Mean Shift

The MS algorithm is a nonparametric kernel density es-
timator that iteratively locates the modes of a density func-
tion by gradient ascent. Suppose that the set of data points
X = {xn}Nn=1 ⊂ Rm has been independently sampled from
an unknown density function f . The kernel density estimate
of f at x, denoted by f̂(x;h), is defined as

f̂(x;h) = cΦ

N∑
n=1

Φ(xn,x;h), (1)

where Φ is a kernel function and cΦ is a normalization term
that depends on the number of points N , the dimension m,
and the bandwidth h > 0.

A natural choice for the kernel function is the class of ra-
dially symmetric kernels, such as the Gaussian kernel or the
Epanechnikov kernel [7]. If this class of kernels is selected
for density estimation, one can first define the profile func-
tion φ of the kernel Φ such that φ(un;h) = Φ(xn,x;h),

where un = g(xn,x) for some function g : Rm × Rm →
R+. In addition, if one further defines the shadow of the
profile as ψ(un;h) = − dφ

dun
(un;h) and rewrites (1) in terms

of ψ, then the gradient of the density estimate is given by

∇xf̂(x;h) = cψ

N∑
n=1

ψ(un;h)

[∑N
n=1 ψ(un;h)xn∑N
n=1 ψ(un;h)

− x

]
︸ ︷︷ ︸

m(x;h)

,

(2)
where cψ is the corresponding normalization term that de-
pends on {N,m, h}. The second term in (2) is referred to as
the mean shift m(x;h), which yields gradient ascent itera-
tions of the form x(i+1) = x(i) + m(x(i);h). Under some
conditions, the resulting scheme converges to the modes
of the underlying distribution [7, 19]. In addition, the den-
sity estimation can be further improved by using a different
bandwidth hn ≡ h(xn) for each data point xn [8].

2.2. Nonlinear (Extrinsic) Mean Shift

Following the work of Tuzel et al. [27], which performs
motion estimation by detecting modes on Lie groups, Sub-
barao and Meer presented a nonlinear mean shift algorithm
to cluster data points lying on Lie groups or Grassmann
manifolds [24]. The idea is to compute the mean shift as a
weighted sum of vectors in the tangent spaces of the man-
ifold of interest. Therefore, we refer to this algorithm as
the extrinsic mean shift (Ext-MS). Specifically, consider an
analytic manifoldM with a metric d and the set of points
X = {Xn}Nn=1 ⊂ M along with the definitions in §2.1.
Then the kernel density estimate can be written as

f̂(X;h) = cφ

N∑
n=1

φ
(
d2(X,Xn);h

)
, (3)

with the normalization term cφ. By taking the gradient of (3)
and using the shadow ψ, the mean shift is computed as

m(X;h) = −
∑N
n=1∇Xd2(X,Xn) ψ

(
d2(X,Xn);h

)∑N
n=1 ψ(d2(X,Xn);h)

,

(4)
where ∀n, ∇Xd2(X,Xn) ∈ TXM, i.e., the tangent space
ofM at X . The algorithm proceeds by moving the point
along the geodesic defined by the mean shift. Accordingly,
given the exponential map at X as expX(·) : TXM→M,
the update equation, i.e., one mean shift iteration, is of the
form

X(i+1) = expX(i)

(
m(X(i);h)

)
. (5)

Due to the extrinsic nature of the formulation, one can
still employ the aforementioned radially symmetric kernels.
However, one also needs the exponential map (5) to obtain
the resulting point on the manifold [24]. The reader is re-
ferred to [27, 24] for further details.



Extrinsic MS on Stiefel Manifolds: The Stiefel manifold
Vk,m comprises the space of k ≤ m orthonormal vectors in
Rm, which is represented in matrix form as Vk,m = {X ∈
Rm×k|X>X = Ik}, where Ik is the k × k identity matrix
[6, 11]. Special cases constitute the unit (m − 1)-sphere
Sm−1 = {s ∈ Rm|s>s = 1} = V1,m and the group of
orthogonal m×m matrices O(m) = Vm,m.

In order to apply the extrinsic MS on Vk,m, let us define a
discrepancy measure between two matrices X,Xn ∈ Vk,m
as Ik −X>n X [6] and the corresponding metric as

d2(X,Xn) = k − tr(X>n X). (6)

Using the formula in [11] for the gradient of a differentiable
function f : Vk,m → R, i.e., ∇Xf = fX − Xf>XX where
fX

.= ∂f
∂X , the gradient of the metric becomes

∇Xd2(X,Xn) = XX>n X −Xn. (7)

Now, given a tangent vector ∆ ∈ TXVk,m ⊂ Rm×k, one can
first obtain the matrices Q ∈ Rm×k and R ∈ Rk×k, which
denote the compact QR decomposition of (Im −XX>)∆,
to compute the exponential map [11] on Vk,m as

expX(∆) = XB +QC, (8)

where B,C ∈ Rk×k are given by[
B
C

]
= exp

([
A −R>
R 0k

])[
Ik
0k

]
with A = X>∆.

Thus, by substituting (6)-(7) into (4) and using any radi-
ally symmetric kernel, the mean shift on the tangent space
can be calculated. The corresponding point on Vk,m is then
obtained using the exponential map (8).
Extrinsic MS on Grassmann Manifolds: The Grassmann
manifold Gk,m−k comprises the space of k-dimensional lin-
ear subspaces in Rm. Equivalently, it is also obtained by
identifying the matrices in Vk,m whose columns span the
quotient manifold Vk,m/O(k) [6, 11]. Therefore, Gk,m−k is
equivalent to Pk,m−k, i.e., the space of m×m orthogonal
projection matrices of rank k < m. We will frequently use
this equivalence in the following discussions.

To employ the extrinsic MS on Gk,m−k, let P = XX>

and Pn = XnX
>
n denote two points on Pk,m−k such that

X,Xn ∈ Vk,m. A discrepancy measure between P and
Pn is of the form Ik − X>n XX>Xn for k < m, and the
corresponding metric can be written as

d2(X,Xn) = k − tr(X>n XX
>Xn). (9)

Using the formula in [11] for the gradient of a function
f : Gk,m−k → R, i.e.,∇Xf = fX −XX>fX , one can write
the gradient of the metric as

∇Xd2(X,Xn) = −2(Im −XX>)XnX
>
n X. (10)

Finally, the exponential map of a tangent vector ∆ ∈
TXGk,m−k at X is of the form

expX(∆) = [XV cos(Σ) + U sin(Σ)]V >, (11)

where UΣV > represents the compact singular value decom-
position (SVD) of the tangent vector ∆ [11].

Substituting (9)-(10) into (4) and using any radially sym-
metric kernel, we obtain the mean shift, which is mapped
back to the manifold using the exponential map (11).

3. Intrinsic Mean Shift on Analytic Manifolds
We now present the details of our intrinsic mean shift

(Int-MS) formulation. The rationale behind our approach
is to perform the kernel density estimation on the manifold
of interest and locate the modes via consecutive evaluations
of an appropriate mapping p. In particular, the inherent
optimization constitutes a modified gradient ascent scheme
that avoids the computation of the exponential map at each
iteration. Our formulation is initiated by employing two
different estimators proposed in [6], which use a kernel
function of the form Φ(T ) = etr(−T ) .= exp(tr(−T )) for
some T ∈ Rk×k, in order to estimate unknown density
functions on Stiefel or Grassmann manifolds.

3.1. Formulation on Stiefel Manifolds Vk,m
Recall that a discrepancy measure between two matrices

X,Xn ∈ Vk,m is Ik−X>n X . Given a set of data pointsX =
{Xn}Nn=1 that are independently sampled from a density f
on Vk,m, its estimate f̂ at X can be computed as

f̂(X;M) = c1

N∑
n=1

Φ(M−
1
2 (Ik −X>n X)M−

1
2 ), (12)

whereM ∈ Rk×k is a symmetric positive definite smoothing
parameter matrix (which generalizes the bandwidth h) and c1
is the normalization constant [6]. We subsequently compute
the gradient of (12), which is given by

∇X f̂(X;M) = β1(X̄ −XX̄>X), (13)

where β1 = c1etr(−M−1) is a constant term and

X̄ = b1(X;X ) =
N∑
n=1

XnM
−1etr(M−1X>n X). (14)

Our intrinsic formulation involves the definition of a map-
ping p .= (a1◦b1) : Vk,m → Vk,m, which is iteratively eval-
uated as X(i+1) = p

(
X(i)

)
so that∇X(i) f̂(X(i);M)→ 0

as i → ∞. For this purpose, an intuitive choice for a1 is
to take the Q-part of the compact QR-decomposition of X̄ ,
and set it as the new point on the manifold. The resulting



iterative scheme can be summarized as follows: At the i-th
iteration, given the set X and the current mean X(i), one can
then get an estimate for the new mean as

X(i+1) = p(X(i)) = (a1 ◦ b1)(X(i);X ) = Q
(i)
X , (15)

where Q(i)
X ∈ Vk,m denotes the Q-part of the the compact

QR-decomposition of X̄(i), i.e., a1(X̄(i)) = Q
(i)
X . The

validity of this iterative scheme will be discussed next.
Note on the convergence of the Int-MS: The analysis of
convergence of the Euclidean MS was presented by Comani-
ciu and Meer in [7], followed by the work of Li et al. [19]
where the proof in [7] was corrected. Although our method
is conceptually similar to the Euclidean MS by being a ker-
nel density estimation framework, the inherent optimization
is reformulated in terms of iterative evaluations of a specific
mapping. Nevertheless, at each iteration, if the current point
moves along a direction “consistent” with the gradient at
that point, the proposed scheme converges to the modes of
the underlying distribution. Specifically, consecutive evalu-
ations of the mapping p constitute a modified Riemannian
gradient ascent scheme and locate a fixed point if〈

logX(i)(X(i+1)),∇X(i) f̂(X(i);M)
〉
X(i) > 0, (16)

where
〈
·, ·
〉
X

: TXM× TXM → R is the Riemannian
metric, and logX(·) :M→ TXM is the logarithm map. In
the case of Stiefel manifolds Vk,m for k 6= 1, proving (16)
is not straightforward, though the theoretical result for the
case of unit hypersphere, which is elaborated next, gives us
a strong expectation that this will be so. This expectation is
borne out by empirical experience.
Case on V1,m: We now present the analysis of the conver-
gence of our intrinsic formulation on the unit hypersphere
Sm−1 ≡ V1,m. Note that, in a slight abuse of notation, the
gradient of the function f̂ at x = x(i) is given by

∇f̂(x) = β1

N∑
n=1

(
1
M

xn −
x>nx

M
x

)
etr
(

x>nx

M

)
∼ x̄− (x>x̄)x. (17)

Assuming that x and y are not antipodal, the logarithm map
of y = x(i+1) at x has the following form

logx(y) =
y − (x>y)x
‖y − (x>y)x‖

arccos(x>y)

∼ y − (x>y)x. (18)

Note that y = x(i+1) is the Q-part of the compact QR
decomposition of x̄(i), hence y ∼ x̄. Therefore, (16) is
immediately satisfied because logx(i)(x(i+1)) and ∇f̂(x(i))
are parallel. As a consequence, our method and the nonlinear
MS on the hypersphere coincide, up to a scale factor.

X

XInt-MS
XExt-MS

TXM

M

∆ =m(X;h)

expX(∆)
p(X)

Figure 1. Illustration of the extrinsic and intrinsic MS iterations.

Figure 1 illustrates the difference between the iterations
of the extrinsic and intrinsic mean shift. Specifically, the
Ext-MS follows the geodesic defined by the mean shift at
the expense of computing the exponential map, whereas the
Int-MS follows a path on the manifoldM consistent with
the (local) gradients.

3.2. Formulation on Grassmann Manifolds Gk,m−k
Suppose now that we are given a set of N points R =

{Pn|Pn = XnX
>
n , Xn ∈ Vk,m, k < m}, which are in-

dependently sampled from a density f on the manifold
Pk,m−k ≡ Gk,m−k. Recall that a discrepancy measure be-
tween two matrices P and Pn on Pk,m−k is Ik −X>n PXn.
In this case, using the aforementioned kernel function Φ, the
density estimate f̂ at P = XX> becomes

f̂(P ;M) = c2

N∑
n=1

Φ(M−
1
2 (Ik −X>n PXn)M−

1
2 ), (19)

with the symmetric positive definite smoothing parameter
matrix M ∈ Rk×k and the normalization constant c2 [6].
After replacing P with XX>, we compute the gradient of
(19) with respect to X as

∇X f̂(X;M) = β2(P̄X −XX>P̄X), (20)

with the constant term β2 = 2c2etr(−M−1)/N and

P̄ =b2(P ;R)=
N∑
n=1

XnM
−1X>n etr(M−1X>n PXn). (21)

In order to obtain an iterative scheme P (i+1) = p
(
P (i)

)
,

where p .= (a2 ◦ b2) : Gk,m−k → Gk,m−k, we choose a
mapping a2 that takes the first k columns of U from the
SVD of P̄ = UΣU> and computes UU>. Therefore, at the
i-th iteration, given the setR and the current mean P (i), the
new mean P (i+1) = X(i+1)X(i+1)> can be computed as

P (i+1) =p(P (i))=(a2 ◦ b2)(P (i);R)=U
(i)
R U

(i)>
R , (22)

where U (i)
R ∈ Vk,m denotes the first k columns of the U

matrix in the SVD of P̄ (i), i.e., a2(P̄ (i)) = U
(i)
R U

(i)>
R .



4. Experimental Results
The performance of our algorithm is first evaluated by

synthetic experiments. Specifically, we compare the intrinsic
mean shift (Int-MS) with its extrinsic counterpart (Ext-MS)
in terms of clustering accuracy and speed. Next, we clus-
ter directional data on unit hyperspheres and compare the
Int-MS with other unsupervised hyperspherical clustering
techniques for object categorization. Meanwhile, we also
extract a different feature representation to further assess this
problem on Grassmann manifolds. Finally, we employ our
intrinsic method for segmentation of multiple motions.

4.1. Simulations on Synthetic Data

We first compare the clustering performance of our in-
trinsic MS formulation with that of the extrinsic counterpart
in terms of the dimensions {m, k} of the manifolds and the
runtimes. For this purpose, pseudo-random matrices on the
manifolds of interest (Vk,m or Gk,m−k) are generated using
the method described in [6]. Specifically, notice that any or-
thogonal matrix S ∈ O(m) can be represented as a product
of m(m−1)

2 orthogonal matrices of the form

Rνm(θ) =


Iν−1 0 0 0

0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 Im−ν−1

 , (23)

for 1 ≤ ν ≤ m− 1. If an auxiliary matrix Sνm is defined as
Sνm =

∏m−1
j=ν Rjm(θν,j), the orthogonal matrix S ∈ O(m)

can be written as S =
∏m−1
ν=1 Sνm.

We conduct our experiments for clustering N = 200
points from 4 classes (50 points per class). For each class, we
generated m(m−1)

2 angles {θν,j}, each of which is randomly
drawn from one of m(m−1)

2 bins in [0, π). We then corrupted
these angles with a uniform random noise η ∈ [−π/9, π/9].
Following the generation of the set of matrices {S} for each
class, we take the first k orthonormal columns of each S to
obtain the matrices X ∈ Vk,m and P = XX> ∈ Gk,m−k.
Note that the rank of P should be at most m − 1 so that
(9) remains as a valid metric. Finally, we set the bandwidth
h = 0.1 in Ext-MS and the smoothing parameter matrix
M = 0.1Ik in Int-MS.

Table 1 shows the clustering rates of the Ext-MS and the
Int-MS on particular Stiefel manifolds as well as the average
of the ratio of the runtimes tInt-MS/tExt-MS after 50 trials. The
maximum clustering rates are indicated in parenthesis. We
observe that both methods achieve comparable rates in all
7 cases, and the Int-MS slightly outperforms the Ext-MS
in terms of clustering accuracy in 5 cases. Furthermore, in
the case of hyperspherical data on V1,m, m = 3, 10, 50, the
runtimes of our method are less than those of the Ext-MS,
whereas it becomes slower than the Ext-MS for k > 1.

Table 1. Clustering rates (%) of Ext-MS and Int-MS and their
runtime ratio in the case of 4-class clustering on Stiefel Vk,m.

Vk,m Performance Runtime Ratio
m k Ext-MS Int-MS tInt-MS/tExt-MS

3 1 70.94 (100) 71.22 (100) 0.77
3 2 78.37 (100) 82.81 (100) 1.11
3 3 79.43 (100) 78.55 (100) 1.03
5 3 90.58 (100) 91.93 (100) 1.78
10 3 96.00 (100) 96.00 (100) 1.58
10 1 82.28 (100) 83.21 (100) 0.74
50 1 80.74 (100) 84.09 (100) 0.66

Table 2 shows the clustering rates of the aforementioned
algorithms on particular Grassmann manifolds as well as
the average of the ratio of the runtimes after 50 trials. The
maximum clustering rates are indicated in parenthesis. We
observe that the clustering rates of the intrinsic and extrinsic
formulations are comparable but relatively lower than the
previous results. The Int-MS slightly outperforms the Ext-
MS in terms of clustering accuracy in 5 cases, whereas it
converges slower than the Ext-MS in all cases.

Table 2. Clustering rates (%) of Ext-MS and Int-MS and their run-
time ratio in the case of 4-class clustering on Grassmann Gk,m−k.

Gk,m−k Performance Runtime Ratio
m k Ext-MS Int-MS tInt-MS/tExt-MS

3 1 56.26 (99.50) 60.37 (99.50) 1.12
3 2 53.25 (87.50) 59.86 (96.50) 1.05
5 3 74.33 (100) 71.23 (100) 1.25
5 4 47.43 (92) 49.54 (83) 1.14
10 4 60.91 (100) 59.67 (100) 1.94
20 4 56.68 (100) 61.41 (100) 1.67
20 1 66.22 (100) 67.08 (100) 1.08

4.2. Object Categorization

Object categorization refers to the task of grouping simi-
lar objects of the same class in an image or video sequence.
In our experiments, we select a subset of the ETH-80 data
set [18], which contains images from 3 different object cate-
gories (see Figure 2). We conduct two separate experiments
(Exp-80 and Exp-150) for which each category contains
either 80 or 150 images, and extract features on different
analytic manifolds as elaborated next.

Figure 2. Selected object categories from the ETH-80 data set.



i. The Unit Hypersphere: Quantitative analysis of direc-
tional data can be performed using either supervised (proba-
bilistic) learning algorithms (see [17] and references therein)
or hyperspherical versions of unsupervised techniques such
as k-means (HSp-kM) [10] and expectation-maximization
(HSp-EM) [1]. In that case, unit-norm feature vectors should
be extracted from the object image. As described in [17],
such a typical feature vector is obtained from the magnitude
of the image gradient and the Laplacian at three different
scales. Specifically, the 32-bin histograms of each of the
six resulting images are computed and concatenated as a
feature vector of length m = 192, which is then normalized.
Therefore, the problem boils down to clustering points on
the Stiefel manifold V1,192 ≡ S191.

ii. The Grassmann Manifold: In the procedure described
above, the normalization of the feature vector after con-
catenation may corrupt the class separability information
embedded in the individual histograms. To overcome
this problem, we use the square-root representation of
probability mass functions. Specifically, assuming that the
`1-norm of the each histogram is 1, we can take the square
root of each entry to make their `2-norms equal to 1. Now,
if we form a feature matrix by stacking the aforementioned
six 32-bin histograms as columns and then taking the SVD
of the resulting 32 × 6 matrix, its singular vectors span a
subspace of dimension k = 6 in Rm=32. Thus the new
feature representation is a point on G6,32−6.

In the case of using the unit-norm feature vector represen-
tation, for the sake of a fair comparison, we solely focus on
unsupervised learning techniques and compare Int-MS not
only with Ext-MS, but also with HSp-kM and HSp-EM. On
the other hand, if the points are on the Grassmann manifold,
we only employ the Ext-MS (with bandwidth h = 0.1) or
the Int-MS (with smoothing matrix M = 0.1Ik) for cluster-
ing. Table 3 shows the clustering performances of the afore-
mentioned techniques using both representations (Vk,m and
Gk,m−k) for 3-class object categorization. It is observed that
the Ext-MS and the Int-MS achieve comparable rates and
outperform other techniques. Considering the fact that both
HSp-kM and HSp-EM require an estimate for the number of
classes in advance, the clustering performances (>99%) of
the MS formulations on Vk,m are significant.

Table 3. Clustering performances (%) on object categorization for
selected objects in ETH-80

Methods
Performance

V1,192 G6,32−6

Exp-80 Exp-150 Exp-80 Exp-150

HSp-kM 82.52 82.96 n/a n/a
HSp-EM 86.38 88.77 n/a n/a
Ext-MS 100.00 99.77 82.08 88.00
Int-MS 100.00 99.11 80.42 89.34

4.3. Segmentation of Multiple Motions

Segmentation of multiple motions refers to the problem
of identifying regions, i.e., collection of image points, of con-
sistent motions in video sequences. Consider the positions of
a point tracked over F frames under the affine camera model
and the feature vector of trajectories in R2F . Specifically,
for the points that move with respect to the same motion,
the corresponding feature vectors lie in a 4-dimensional sub-
space of R2F defined by that motion. Thus, in the presence
of multiple motions, each motion becomes a point on the
Grassmann manifold. The trajectories of 4 points sharing
the same motion are adequate to find the bases via the SVD.

In our experiments, we select 10 video sequences (see
Figure 3) from the Hopkins 155 data set [25], which con-
tains several sequences along with automatically extracted
feature vectors. In order to cluster the point trajectories
A = {at} in a particular sequence into different motion
classes, we need to first generate several motion candidates
by randomly sampling 4 point trajectories {an} and forming
the matrix A =

[
a1 a2 a3 a4

]
. We then compute the

corresponding motion candidate as the U matrix of the SVD
of A = UΣV >. We generate 1,000 candidates and prune
the poor ones via ‖(I2F − UU>)at‖ > τ, ∀at ∈ A\{an}
for a low threshold τ .

Figure 3. Selected video sequences from the Hopkins 155 data set.

Table 4 shows the clustering performances of the Ext-MS
(with bandwidth h = 0.1) and the Int-MS (with smoothing
matrix M = 0.1Ik) in terms of segmentation accuracy and
number of motions identified. The segmentation accuracy
is quantified via the average and the maximum clustering
rates (in parenthesis), whereas the accuracy in estimating the
number of classes is quantified via the rate of estimating the
correct number of motions over 20 trials. We observe that the
Int-MS achieves higher average clustering rates in 8 cases.
Specifically, it achieves its lowest and highest (average) per-
formances at 64.71% and at 92.91%, respectively, whereas
the Ext-MS achieves those performances at 57.29% and at
94.32%, respectively. In addition, in the cases when the av-
erage clustering rates are comparable, the Int-MS estimates
the correct number of motions in all sequences with equal
(in 3 cases) or higher (in 7 cases) identification rates than
the Ext-MS. Notice also that the Ext-MS fails to identify the
number of motions in one sequence (cars8) and achieves a
low clustering rate of 57.29%, whereas the Int-MS success-
fully segments multiple motions in that sequence.



Table 4. Segmentation of multiple motions for selected sequences
from Hopkins 155: Clustering rates (%) and percentages of trials
that correctly identify the number of motions. The numbers in
parenthesis in the first column are the true number of motions.

Sequence
Performance Estimation

Ext-MS Int-MS Ext-MS Int-MS
arm (2) 69.35 (100) 72.27 (100) 30 30

articulated (3) 69.83 (100) 75.50 (100) 20 25
cars1 (2) 79.93 (100) 77.00 (100) 20 20
cars2 (2) 88.10 (99.80) 90.92 (99.59) 15 35
cars4 (2) 78.40 (100) 88.06 (100) 85 85
cars5 (3) 80.06 (85.68) 80.59 (87.72) 25 30
cars6 (2) 94.32 (96.98) 92.91 (100) 5 30
cars8 (2) 57.29 (57.29) 64.71 (100) 0 25
truck1 (2) 71.44 (100) 86.76 (100) 60 90

2RT3RC (3) 87.48 (98.73) 92.60 (98.91) 80 95

5. Conclusions and Future Work
We have presented an alternative mean shift formulation

that intrinsically performs unsupervised clustering of data
points on analytic manifolds. Specifically, our algorithm
employs a local density estimator based on generic kernels
on the manifold of interest and locates the modes of the
underlying distribution via iterative evaluations of a map-
ping. These evaluations constitute a modified gradient ascent
scheme on Stiefel and Grassmann manifolds. We obtained
promising results on object categorization and segmentation
of multiple motions. In particular, even though hyperspher-
ical versions of k-means and EM have an estimate for the
number of groups in advance, the intrinsic mean shift outper-
forms these methods. For segmentation of multiple motions,
we observe that the intrinsic method, apart from achieving
higher clustering rates, outperforms its extrinsic counterpart
in identifying the correct number of motions. Our future
work includes using an adaptive smoothing matrix in the
formulation and applying the method for the classification
of dynamic textures.
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