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ABSTRACT

We consider the problem of aligning high angular resolution diffusion
images characterized by orientation distribution functions (ODFs).
We cast this problem as an optimization problem where we seek the
rotation that aligns the source and target ODFs. This rotation induces
a linear transformation of the spherical harmonic coefficients of the
ODFs, which can be parametrized by the rotation Euler angles. We
propose an algebraic approach to estimate this transformation from a
number of ODF correspondences. We evaluate the proposed method
on synthetic ODFs as well as on a diffusion MR phantom dataset.

Index Terms— image matching, optimization, irreducible repre-
sentation, harmonic analysis, diffusion magnetic resonance imaging.

1. INTRODUCTION

High angular resolution diffusion imaging (HARDI) is a diffusion
MRI technique that can be used to infer the tissue microstructure in
vivo [1]. This requires the reconstruction of the orientation distribu-
tion function (ODF), a non-parametric probability density function
(PDF) describing the anisotropy of water diffusion at a location of
interest. The ODF model offers improved accuracy in resolving intra-
voxel complexities over the diffusion tensor (DT) model [2], currently
the de facto standard for neuroimaging.

The problem of aligning ODFs can be considered as part of the
more general problem of spatially normalizing HARDI data. Tools for
normalizing human brain HARDI datasets are essential to investigate
brain development and the onset and progression of neurological dis-
orders by allowing one to quantify intra- and inter-subject differences
in longitudinal and population studies. Recent works addressing the
problem of normalization include but not limited to [3, 4, 5, 6, 7].
The method in [3] uses the spherical harmonic (SH) representation of
ODFs for extracting spatial features that are hierarchically updated by
increasing the harmonic degree. The ODF images are registered by
using these features in a forward-backward-consistent soft correspon-
dence matching scheme. [4] performs registration of ODF images
by using the SH band energies as rotationally invariant features in a
multi-channel diffeomorphic demons algorithm. [5, 6] use the SH
coefficients of the ODFs as features to find the diffeomorphism be-
tween the source and target images. [7] incorporates the Riemannian
metric of ODFs for quantifying the similarity between the two im-
ages into a variational problem defined under the large deformation
diffeomorphic metric mapping (LDDMM) framework.

In this paper, we approach the problem of aligning HARDI data
from a different perspective. Rather than extending off-the-shelf reg-
istration techniques from intensity values to ODFs, we leverage the
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mathematical relationship between the spherical harmonic represen-
tations of the source and target ODFs to algebraically compute the
optimal rotation aligning these ODFs. Under the assumption that the
rotation is parameterized by the Euler angles in zyz convention, the
rotation of an ODF induces a linear transformation of the SH coeffi-
cients of that ODF parameterized by the same angles. [8] provided an
iterative approach to recover the rotation, i.e., the Euler angles, from
a pair of spherical images represented via SH coefficients. While
a single correspondence is sufficient to estimate the rotation in our
problem as well, erroneous correspondences and/or image noise will
make the solution unreliable. In addition, [8] requires a “very good”
initialization and hence, it can only be used for refining an existing
solution, as reported by the authors themselves in [9]. Our main
contribution is to propose an algorithm to estimate the rotation from
multiple ODF correspondences by computing its Euler angles in a se-
quential way to avoid local optima. As a consequence, our method is
less sensitive to initialization. Experiments on synthetic data evaluate
the sensitivity of our approach to angular perturbations, image noise,
and the number of correspondences. Experiments on phantom data
demonstrate the validity of the method to recover rigid deformations.

2. SPHERICAL HARMONIC REPRESENTATION OF ODFs

Consider the spherical harmonic function Y ml : S2 7→ C of degree l
and order m of the form

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (1)

where Pml is the associated Legendre polynomial of the same degree
and order, and θ ∈ [0, π] and φ ∈ [0, 2π) are the polar and azimuthal
angles, respectively, representing the direction (θ, φ) in spherical co-
ordinates. Any complex-valued function defined on the sphere S2 can
be expressed as a combination of spherical harmonics. However, due
to the physics of the diffusion phenomenon, the ODF, p, is assumed
to be real and antipodally symmetric. Thus, the SH representation of
the ODF uses a modified basis that is also real and symmetric. More
precisely, the value of the ODF at (θ, φ) is approximated as

p(θ, φ) ≈
L∑
l=0

l∑
m=−l

dlmYlm(θ, φ). (2)

Here, {dlm} are the real SH coefficients and {Ylm} is the modified
basis of degree L containing R = (L+1)(L+2)

2
functions of the form

Ylm =


√
2Re{Y |m|l } if − l ≤ m < 0,

Y ml if m = 0,√
2(−1)m+1Im{Y ml } if 0 < m ≤ l,

(3)



where l = 0, 2, 4, . . . , L, m = −l, . . . , l, and Re{·} and Im{·} are
the real and imaginary parts, respectively [10].

Similar to the complex SH functions {Y lm}, the modified SH
functions {Ylm} form an orthonormal basis for RR. Therefore, the
`2 distance between two ODFs p1 and p2 can be found by computing
the `2 distance between their SH coefficient vectors d1 and d2, i.e.,

dist(p1, p2) = ‖d1−d2‖2 =
( L∑
l=0
l even

l∑
m=−l

|dlm;1−dlm;2|2
) 1

2
. (4)

Finally, since (3) induces a linear transformation between {Y lm}
and {Ylm}, one can convert the vector of real SH coefficients d =

[d00, . . . , d
L
L]
> to that of complex SH coefficients d̂ = [d̂00, . . . , d̂

L
L]
>,

and (4) also holds for the complex coefficients {d̂lm}.

3. ODF ROTATION THROUGH SPHERICAL HARMONICS

Suppose that R is an element of the rotation group

SO(3) = {R ∈ R3×3|R> = R−1, det(R) = 1} (5)

parameterized with the Euler angles α, γ ∈ [0, 2π), β ∈ [0, π] in zyz
convention, i.e., R ≡ R(α, β, γ) = Rz(γ)Ry(β)Rz(α), where
Rz and Ry represent rotations about the z and y axes, respectively.
Through the action of SO(3), denoted by “◦”, R induces a linear
transformation of the complex SH coefficients {d̂lm} of the ODF p,
which can also be obtained from the its real SH coefficients {dlm}.
In particular, each coefficient f̂ lm of the rotated ODF R ◦ p can be
written as a linear combination of the coefficients {d̂lm} of p as

f̂ lm =

l∑
k=−l

d̂lkA
l
k,m(R). (6)

In this expression, Alk,m is of the form

Alk,m(R(α, β, γ)) = e−ikγP lk,m(cosβ)e−imα, (7)

where P lk,m are the generalizations of the associated Legendre poly-
nomials, which can be computed efficiently via Jacobi polynomials
and recurrence relations [11]. It is also shown in [11] that Alk,m(R)
are the matrix elements of the irreducible unitary representation of
R ∈ SO(3). This means that, for each l, the matrix with entries
Alk,m is unitary. These entries are also related to the elements of the
d-small Wigner matrix [12]. To simplify the notation, we define the
matrix Al ∈ C(2l+1)×(2l+1), whose (k,m) entry is given by

[Al]k,m = Alg(k,l),g(m,l), (8)

where g(k, l) = k+ l+1, l = 0, 2, . . . , L, and |k| ≤ l. If we write
the vectors f̂ and d̂ of SH coefficients by concatenating the bands as
f̂ = [f̂0, (f̂2)>, . . . , (f̂L)>]> and d̂ = [d̂0, (d̂2)>, . . . , (d̂L)>]>,
the expression in (6) can be written as f̂ = A>d̂, where A is a block-
diagonal matrix whose blocks {Al} are unitary, i.e., (Al)∗Al =
I(2l+1)×(2l+1).

4. ROTATION ESTIMATION FROM MULTIPLE
ODF CORRESPONDENCES

Our formulation utilizes a number of correspondences between two
ODF images to estimate the matrix A, whose entries (7) are further

used for computing the Euler angles of R, β and {α, γ}, in that
order. Let {(p1n, p2n)}Nn=1 be N ODF correspondences, which can
be manually provided by a medical expert or automatically found
via feature extraction and matching. We assume that the ODFs are
expressed in terms of their complex SH coefficients {(d̂1n, d̂2n)}Nn=1

and seek to minimize
∑
n dist

2(p1n,R ◦ p2n), i.e.,

E(A) =
1

N

N∑
n=1

‖d̂1n −A>d̂2n‖22. (9)

Since A is a function of (α, β, γ), we could directly minimize E(A)
over (α, β, γ) using nonlinear optimization. However, this strategy
would be prone to local minima. We thus seek an alternative approach
where we first optimize over A and then obtain (α, β, γ) from A.
The advantage of this approach is that the optimal solution for A
is a global minimizer and can be obtained in closed form. In what
follows, we consider the SH basis of degree L = 4⇒ R = 15.
Solving for A. Notice that A is block-diagonal and A0 = 1. Thus,
we can solve (9) for each even degree l > 0 as follows:

min
Al

E(Al) = min
Al

1

N

N∑
n=1

‖d̂l1n − (Al)>d̂l2n‖22 (10)

such that (Al)∗Al = I(2l+1)×(2l+1). Since Al is unitary, minimiz-
ingE(Al) is equivalent to maximizing trace(

∑
n d̂l2n(d̂

l
1n)
∗(Al)>).

Let Dl =
∑
n d̂l2n(d̂

l
1n)
∗, then Ãl = (UV∗)> is a solution to this

problem, where UΣV∗ is the singular value decomposition of Dl,
and it is the unique solution if Dl is full-rank [13]. The matrix Dl

is, in general, a full-rank matrix, unless N is smaller than 2l + 1 or
many of the ODF correspondences are duplicate of each other. Both
cases are very unlikely in the case of real data.
Solving for β and {α, γ}. Once the irreducible unitary representa-
tions {Ãl}l∈{2,4} are obtained, β is estimated by setting k = m = 0
in (7) and solving the resulting set of equations

{Ãll+1,l+1 = P l0,0(cosβ)}l∈{2,4}. (11)

In particular, by using P 1
0,0(cosβ) = cosβ and the recurrence rela-

tions between P l−1
k,m , P lk,m, and P l+1

k,m, we obtain two equations

2Ã2
3,3 = 3 cos2 β − 1, (12)

8Ã4
5,5 = 35 cos4 β − 30 cos2 β + 3, (13)

which are solved for β ∈ [0, π
2
].1 Once a solution β̃ is computed, we

subsequently estimate the remaining angles α and γ by solving

min
α,γ

4∑
l=2
l even

l∑
k=−l

l∑
m=−l

|Ãlk,m − e−ikγP lk,m(cos β̃)e−imα|2. (14)

For this purpose, we employ a well-known quasi-Newton method
called Broyden’s method, which requires a good initialization to avoid
potential local minima. Therefore, we first solve

|Ã2
0,m − e−imαP 2

0,m(cos β̃)| = 0, m ∈ {−2, 2}, (15)

|Ã2
k,0 − e−ikγP 2

k,0(cos β̃)| = 0, k ∈ {−2, 2}, (16)

for α and γ, respectively, and initialize our solver with the averages
of these solutions. The resulting estimates {α̃, γ̃} are restricted to be
in [0, π) due to the antipodal symmetry of the ODFs.2 This last step
finalizes the estimation of the rotation as R̃ = R(α̃, β̃, γ̃).

1In reality, it is seldom that β > π
2

, hence we discard the root in (π
2
, π].

2Notice that if β̃ ≈ 0, we can take γ = 0 and solve (14) for α.



5. METHOD VALIDATION

5.1. Experiments on Synthetic Data

We first study the sensitivity of our method to the amount of angular
perturbations, the level of image measurement noise, and the number
of ODF correspondences through experiment on synthetic data. We
generate the synthetic data using the multi-tensor model, where the
HARDI signal at a gradient direction g is a convex combination of
functions of the form e−bg

>Trg. Here, Tr denotes the r-th tensor
and we set b=3, 000 s/mm2. We simulate the noise-free signal at
81 gradient directions and reconstruct 100 ODFs using the method
proposed in [14]. We rotate each ODF with known parameters α, γ∈
{0, π

6
, . . . , 5π

6
}, β∈{0, π

6
, . . . , π

2
} to obtain its corresponding ODF,

and estimate the rotation as described in Section 4. In this experiment,
we particularly consider the following test scenarios:
Noisy rotations. We use the ODFs estimated from the noise-free
signals and generate the corresponding ODFs by applying noisy
rotations. More specifically, the Euler angles are corrupted by addi-
tive Gaussian noise with zero mean and varying standard deviation
σrot∈{ π

180
, π
90
, π
45
, π
18
}. Fig. 1 (top row) illustrates, for a randomly

selected ODF, the generation of the corresponding ODFs. Notice that
the higher the noise, the more the direction at which an ODF attains
its peak deviates from the correct one (indicated in black).
Noisy measurements. We consider both the noise-free and noisy
HARDI signals, which are obtained by adding complex Gaussian
noise with zero mean and standard deviation σ = 1/ζ, ζ being the
signal-to-noise ratio (SNR). We form a correspondence by taking two
ODFs, one reconstructed from the noise-free signal and the other one
reconstructed from the noisy signals (SNR∈{40, 30, 20, 10, 5}), and
then rotating the second ODF. We aim to quantify how differences
in the signal quality, e.g., due to different acquisition settings and/or
using raw diffusion weighted images, affect the estimation. Fig. 1
(bottom row) shows the corresponding ODFs for different SNRs.

We repeat these scenarios for N ∈ {20, 40, 60, 80, 100} to in-
vestigate the effect of the number of correspondences. Tables 1 and 2
show the average of the angular discrepancies δρ = |ρ̃− ρ| between
the true Euler angles ρ ∈ {α, β, γ} and the estimated ones ρ̃ (in
degrees) for the Noisy Rotations and Noisy Measurements scenarios,
respectively. The results in Table 1 indicate that the discrepancy de-
creases as the amount of error in rotation, σrot, decreases. In particular,
we achieve very low discrepancies (less than 3.3◦) for all σrot ≥ π

45
.

We also observe that the number of correspondences, N , does not
have a significant effect on the estimation of the irreducible represen-
tation in (10). The results in Table 2 show a similar decreasing trend
in δ when the SNR increases. This time, an increase in the number of
correspondences also reduces the angular discrepancies, which are
less than 2.7◦ for all SNRs when N≥40. This demonstrates that the
solution of (10) becomes more reliable when N increases.

3040 20 10 5
SNR

π
180

π
90

π
45

π
18

Noise-free σrot

Fig. 1. Generation of ODF correspondences for the sensitivity experi-
ment: The ODFs are color-coded (blue∼low, red∼high) and the black
lines with arrowheads indicate the correct ODF maxima direction
after rotation in the absence of noise.

5.2. Experiments on Phantom Data

We use the proposed approach for aligning two ODF images that are
assumed to be related via a rigid body transformation, i.e., rotation
R and translation t such that x2 = Rx1 + t. This experiment can
be considered as a simulation of correcting for subject motion. We
use a realistic diffusion MR phantom [15] mimicking the diffusion
properties of white matter. Fig. 2(a) shows the configuration of the
fiber tracts in the phantom. The HARDI signal is acquired with a
64×64 image matrix, an isotropic spatial resolution of 3 mm, and a
diffusion sensitization at b = 1, 500 s/mm2 applied along a set of 64
gradient directions. The reconstructed ODFs are shown in Fig. 2(b).

We apply different rigid body transformations {(Rj , tj)} to the
source image to obtain the target image. The rotations are of the form
R(α, 0, 0) with α∈ {0, π

12
, π
6
, . . . , π

2
}. Once the angle α is chosen,

we add Gaussian noise with zero mean and standard deviation σrot =
π
90

to obtain the rotations {Rj}. The experiment is repeated 10 times
with random translations {tj = [tx, ty, tz]

>}, where [tx, ty]
> ∼

N (0, 4I2×2) and tz = 0. After transforming the ODF fields, the
correspondences are established by matching the SIFT [16] features
between the source and target generalized fractional anisotropy (GFA)
maps [1]. This procedure provides a number of ODF correspondences
{(p1n, p2n)} and point correspondences {(x1n,x2n)} for estimating
the spatial transformation, as shown in Figs. 2(c) and 2(d) when R ≡
R(π

2
, 0, 0). We then apply the proposed approach to estimate the

rotation, reorient the ODFs and then use the point correspondences to
find the translation via least-squares. The mean and standard deviation
of δα, δβ , and δt = ‖t̃− t‖2 is calculated as 2.66± 2.95◦, 4.26±
3.44◦ and 0.96± 0.45 pixels, respectively. The errors in α and t are
relatively small, which demonstrates that our approach yields accurate
initial information to resolve simple parametric transformations.
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Fig. 2. (a) The fiber tract configuration in the phantom, (b) The recon-
structed ODFs. Automatically identified ODF/point correspondences
between (c) the GFA map of the source ODFs and (d) the GFA map
of the target ODFs rotated (π

2
, 0, 0) radians.



Table 1. Averages of the angular discrepancies {δα, δβ , δγ} (in degrees) in the Noisy Rotations scenario.

σrot
N = 20 N = 40 N = 60 N = 80 N = 100

δα δβ δγ δα δβ δγ δα δβ δγ δα δβ δγ δα δβ δγ

π/18 9.43 6.86 7.98 9.47 6.83 7.97 9.45 6.81 7.99 9.50 6.77 8.01 9.45 6.78 8.00
π/45 3.14 2.32 3.25 3.24 2.32 3.24 3.13 2.33 3.20 3.11 2.34 3.26 3.10 2.31 3.23
π/90 1.39 1.42 1.54 1.40 1.42 1.55 1.40 1.42 1.54 1.39 1.42 1.57 1.38 1.43 1.57
π/180 0.73 0.90 0.68 0.73 0.90 0.66 0.72 0.90 0.67 0.73 0.90 0.66 0.73 0.89 0.68

Table 2. Averages of the angular discrepancies {δα, δβ , δγ} (in degrees) in the Noisy Measurements scenario.

SNR N = 20 N = 40 N = 60 N = 80 N = 100
δα δβ δγ δα δβ δγ δα δβ δγ δα δβ δγ δα δβ δγ

5 6.53 2.11 6.92 2.04 1.61 2.62 2.12 1.55 1.81 1.30 1.31 1.22 1.23 1.25 1.11
10 4.04 1.86 4.25 2.28 1.53 2.12 0.90 1.18 0.95 0.91 0.91 0.84 0.80 1.06 0.64
20 1.57 1.12 1.22 1.32 1.02 0.80 0.89 0.81 0.50 0.71 0.71 0.43 0.47 0.74 0.42
30 1.58 1.07 1.84 1.57 0.90 0.58 1.13 0.87 0.29 0.42 0.71 0.22 0.37 0.82 0.29
40 1.40 1.14 1.79 1.34 0.86 0.52 0.67 0.78 0.43 0.45 0.68 0.22 0.22 0.62 0.18

6. DISCUSSIONS AND CONCLUSIONS

We proposed an algebraic solution to the problem of estimating the
rotation aligning multiple pairs of ODFs. These pairs (or correspon-
dences) were used to compute the linear transformation between the
SH coefficients of the ODFs, which is an irreducible unitary represen-
tation of the rotation. Our formulation provides a unique solution that
can be obtained in closed form. The Euler angles parameterizing the
rotation were computed from the elements of this representation in
a sequential way, which reduces the sensitivity to initialization. We
demonstrated that this strategy yields accurate estimates of the rota-
tion parameters and offers robustness to moderate amounts of noise.

To generate the ODF/point correspondences, a medical expert
can manually provide landmarks that correspond to the same anatomi-
cal structure in the target and source images. However, this procedure
may be challenging, time consuming, and error-prone. To alleviate
this problem to some extent, we adopted an automatic strategy based
on feature extraction and matching, and showed its applicability in
our experiments on phantom data. More specifically, we used SIFT
features, which measure the distribution of gradients around a pixel
and are invariant to image translation, rotation and scaling. The simi-
larity between the features was measured in terms of a matching score
and the number of correspondences can be altered by changing the
value of the threshold for this score. It is worth noting that this type
of automatic strategies might also yield incorrect/inadequate number
of correspondences and user intervention might still be needed.

While registering HARDI data characterized by ODFs, one
should always consider the fact that a spatial transformation induces
a reorientation of the ODF because the direction of diffusion depends
on the coordinate system. The proposed approach can be considered
as a method that estimates a “global reorientation function” from
ODF correspondences without knowing the deformation. Although
this assumes a highly oversimplified model to capture inter-subject
variability of human brain, our formulation is suitable for feature-
based intra-subject alignment, e.g., correction for subject motion,
which is a possible direction for future work. In addition, further
research is needed to formulate the problem using quaternions so that
one can avoid singularities when working with the Euler angles.
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