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ABSTRACT

We consider the problem of processing high angular resolution diffu-
sion images described by orientation distribution functions (ODFs).
Prior work showed that several processing operations, e.g., averaging,
interpolation and filtering, can be reduced to averaging in the space
of ODFs. However, this approach leads to anatomically erroneous re-
sults when the ODFs to be processed have very different orientations.
To address this issue, we propose a group action induced distance for
averaging ODFs, which leads to a novel processing framework on the
spaces of orientation (the space of 3D rotations) and shape (the space
of ODFs with the same orientation). Experiments demonstrate that
our framework produces anatomically meaningful results.

Index Terms— biomedical image processing, information geom-
etry, Riemannian manifolds, diffusion magnetic resonance imaging.

1. INTRODUCTION

High angular resolution diffusion imaging (HARDI) is a diffusion
MRI technique that can be used to infer the tissue microstructure in
vivo [1]. This requires the reconstruction of the orientation distribu-
tion function (ODF), a non-parametric probability density function
(PDF) describing the anisotropy of water diffusion at a spatial location.
The ODF model offers improved accuracy in resolving intra-voxel
complexities over the diffusion tensor (DT) model [2], currently the
de facto standard for neuroimaging.

Developing mathematical methods for processing fields of ODFs
is important in many aspects. For instance, by computing the mean of
a set of ODFs, one can statistically compare ODF images of several
subjects. Similarly, almost every geometric transformation applied to
a grayscale image requires interpolation between intensity values and
this is also true in the case of ODF images. Convolution and filtering
are also needed to denoise ODF images that are estimated from noisy
HARDI signals. These operations should be reformulated to properly
handle the mathematical structure of the space of ODFs.

Doing calculus with DTs or ODFs requires defining a metric
to compare two such elements. In the case of DTI, there exist sev-
eral frameworks based on the well-studied geometry of the space of
second-order tensors. Typical examples employ affine-invariant [3]
and Log-Euclidean metrics [4]. In the case of HARDI, one should
consider the statistical manifold whose elements are PDFs. Existing
frameworks for HARDI processing [5, 6] exploit the fact that ODFs
are probability density functions on the 2-sphere S2 and that under a
particular re-parametrization, the square-root representation of ODFs,
various Riemannian operations are computable in closed-form.
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In some cases, however, the methods of [5, 6] fail to provide
anatomically meaningful results by producing ODF “bloating” and
creating false fiber crossings. Fig. 1 shows two such cases: averaging
(Fig. 1(a)) and interpolation (Fig. 1(b)). In the first case, we average
ODFs with the same shape but different orientations. We expect a
mean ODF with no difference in shape (red frame), but [5, 6] produce
a “bloated” ODF (blue frame). In the second case, we interpolate
two 1-fiber ODFs and expect to preserve their shapes (red frame), but
[5, 6] produce 2-fiber (crossing) ODFs (blue frame).

To alleviate these issues, [7] suggests to separate the information
from an ODF into orientation and shape components. In this work,
we formalize this idea into a novel framework for HARDI processing.
We propose a group action induced distance for ODFs, where the
rotation group is the orientation space and the shape space is the
space of ODFs with the same orientation. We compute the mean ODF
by alternating between aligning the ODFs to the current estimate and
updating its orientation and shape via Riemannian averaging in these
two spaces. We evaluate our framework on synthetic and real data.

(a) Averaging a set of ODFs (green frame).

(b) Linear interpolation between pairs of ODFs (green frames)

Fig. 1. Averaging and linear interpolation of ODFs using existing
frameworks (blue frame) and the proposed framework (red frame).

2. RIEMANNIAN MANIFOLD OF ODFs

On the manifold of ODFs, i.e., the space of PDFs p on S2, the Fisher-
Rao (FR) metric [8] determines a Riemannian metric that is invariant
to re-parameterizations. By using a particular re-parameterization,
the square-root representation, the manifold of ODFs is a unit sphere
in a Hilbert space with the Fisher-Rao metric being the L2 metric [9].
Then the space of square-root density functions ψ(s) ,

√
p(s) is

Ψ =
{
ψ : S2 → [0, 1] | ∀s∈S2, ψ(s)≥0 ;

∫
S2
ψ2(s)ds=1

}
. (1)

Ψ is the non-negative orthant of a unit Hilbert sphere and the geodesic
distance between ψi, ψj ∈Ψ is the angle between them, i.e.,

dFR(ψi, ψj)=cos−1〈ψi, ψj〉=cos−1
(∫

S2
ψi(s)ψj(s)ds

)
. (2)



Let TψΨ denote the tangent space of Ψ at ψ. Under the square-
root representation, several Riemannian operations such as the expo-
nential map exp : TψΨ → Ψ and logarithm map log : Ψ → TψΨ
can be computed in closed-form [5]. In practice the ODF p is repre-
sented in terms of its samples at M directions as the vector p∈RM .
In our implementation, we use the vector ψ,

√
p, the M -bin his-

togram of ψ, such that ψ∈Ψ⊂SM−1. For the sake of clarity, we
refer to the function ψ as “ODF” in the following discussions.
Riemannian Averaging of ODFs. The Riemannian weighted aver-
age of N ODFs {ψn}Nn=1⊂Ψ with weights {wn}Nn=1 is the solution
to argminψ

∑N
n=1 wnd

2
FR(ψ,ψn). It is computed via Riemannian

gradient descent, which involves consecutive evaluations of the afore-
mentioned logarithm and exponential maps until a convergence crite-
rion is met. The reader is referred to [5, 11] for further details.

3. GROUP ACTION INDUCED AVERAGING FOR
PROCESSING ODFs

3.1. A Group Action Induced Distance between ODFs

To explicitly represent the orientation information of an ODF, we
use the action of the rotation group SO(3) on Ψ. The rotation group
SO(3) = {R ∈ R3×3|R> = R−1, det(R) = 1} is a matrix Lie
group whose tangent space at the identity element I ∈ R3×3 is the Lie
algebra so(3), which is the space of 3× 3 skew-symmetric matrices.
The geodesic distance between two elements Ri,Rj ∈ SO(3) is

dSO(3)(Ri,Rj) = (1/
√

2)‖Log(R>i Rj)‖F , (3)

where ‖ · ‖F is the Frobenius norm and Log is the matrix logarithm
(see [10, 11] for details on the Riemannian operations and optimiza-
tion in SO(3)). The action of SO(3) on Ψ is a rotation around
the origin, i.e., if R ∈ SO(3) and ψ ∈ Ψ, then the group action
R ◦ ψ ∈ Ψ is defined as R ◦ ψ(s) = ψ(Rs), ∀s ∈ S2.

We define the rotation group action induced distance in Ψ as

d2
Ψ(ψi, ψj) = min

R∈SO(3)
d2
FR(ψi,R ◦ ψj) + λ d2

SO(3)(I,R). (4)

The first term measures the dissimilarity in shape when the ODFs ψi
and ψj are “aligned”, while the second term measures the amount of
alignment needed, i.e., the dissimilarity in orientation. The parameter
λ is a trade-off parameter between the shape and orientation terms and
needs to be chosen such that λ>0. Otherwise, the ODF alignment
problem in (4) may not have a unique solution due to the possible
symmetries of the ODFs. Finally, notice also that dΨ is a rotation-
invariant distance on Ψ, i.e., for all ψi, ψj ∈ Ψ and all R ∈ SO(3),
we have dΨ(ψi, ψj) = dΨ(R◦ψi,R◦ψj), because dFR is rotation-
invariant and dFR(Ri ◦ ψi,Rj ◦ ψj) = dFR(ψi,RjR

>
i ◦ ψj).

3.2. Group Action Induced Averaging of ODFs

The average of N ODFs {ψn}Nn=1 with respect to dΨ is defined as

˜̄ψ=argmin
ψ∈Ψ

N∑
n=1

wn(min
Rn

d2
FR(ψ,Rn◦ψn)+λd2

SO(3)(I,Rn)), (5)

where ψ = R ◦ φ is a decomposition of ψ into its orientation and
shape components R and φ, respectively. We propose to compute ˜̄ψ
via an iterative method that alternates between aligning the ODFs to
the current estimate of ˜̄ψ, updating the orientation component given
the current alignments and shape component, and updating the shape
component given the current alignments and orientation component.

To derive the algorithm, let Qn = RnR> and notice that

d2
FR(R◦φ,Rn◦ψn)=d2

FR(φ,RnR>◦ψn)=d2
FR(φ,Qn◦ ψn)

d2
SO(3)(I,Rn) = d2

SO(3)(I,QnR) = d2
SO(3)(R

>,Qn). (6)

Therefore, we can rewrite (5) as

min
φ,R,{Qn}

N∑
n=1

wn(d2
FR(φ,Qn ◦ ψn) + λd2

SO(3)(R
>,Qn)). (7)

We solve this problem using an alternating minimization strategy.
In the alignment step, we solve for Qn assuming that we have

estimates φ = φk and R = Rk at iteration k. From (7) we obtain

Qk+1
n = argmin

Qn

d2
FR(φk,Qn ◦ ψn) + λd2

SO(3)(R
k>,Qn). (8)

By setting Qn = RnRk> and ψk = Rk ◦ φk, notice that this prob-
lem is equivalent to minRn d

2
FR(ψk,Rn ◦ ψn) + λd2

SO(3)(I,Rn),
which is of the form in (4). We compute Qk+1

n numerically using
the Nelder-Mead method [12] extended from Rn to SO(3). The
method is initialized with the icosahedral rotation group, a finite
point subgroup of SO(3), and converges to a local minimum.

In the orientation step, we solve for R with φ = φk and Qn =
Qk+1
n . From (7) we obtain

Rk+1 = argmin
R

N∑
n=1

wnd
2
SO(3)(R

>,Qk+1
n ). (9)

Hence, (Rk+1)> is the Riemannian average of the current align-
ments, which can be computed using Riemannian gradient descent.

In the shape step, we solve for φ with R = Rk+1 and Qn =
Qk+1
n . From (7) we obtain

φk+1 = argmin
φ

N∑
n=1

wnd
2
FR(φ,Qk+1

n ◦ ψn). (10)

Thus, φk+1 is the Riemannian average with respect to dFR of the
rotated ODFs {Qk+1

n ◦ ψn}Nn=1, which can be computed using the
algorithm of [5], as described in §2. Finally, the new estimate of
mean ODF ˜̄ψ, ψk+1, is obtained by composing the orientation and
shape updates as ψk+1 = Rk+1 ◦ φk+1. The above alternating
minimization algorithm converges to a local minimum of the cost
function in (7). In our experiments we run a single iteration of this
method starting at R0 = I and φ0 = ψn for any n = 1, . . . , N .

3.3. Group Action Induced Interpolation and Filtering of ODFs

Having presented how to perform averaging of ODFs, let us now
consider the problems of interpolation and filtering. Assuming that
we know N endpoints {xn}Nn=1 in a multi-dimensional lattice, inter-
polation of ODFs at point x can be defined as the solution to

ψ(x) = argmin
ψ∈Ψ

N∑
n=1

wn(x)d2
Ψ

(
ψ,ψ(xn)

)
, (11)

where ψ(xn) is the ODF at point xn andwn(x) is the corresponding
interpolation weight. Notice that ψ(x) is the weighted average of
{ψ(xn)}Nn=1 and can be computed from the algorithm in §3.2.

Discrete convolution of an ODF image ψ with the filter g ≥ 0 of
spatial support U can be written as

ϕ(x) = argmin
ϕ∈Ψ

∑
u∈U

g(u)d2
Ψ(ϕ(u), ψ(x− u)). (12)

Again, notice that the filtered ODF ϕ(x) is the weighted average of
{ψ(x− u)}u∈U and can be computed from the algorithm in §3.2.



4. VALIDATION AND DISCUSSIONS

4.1. Experiments on Synthetic Data

We generate the synthetic data using the multi-tensor model, where
the HARDI signal at a gradient direction g is a convex combination
of functions e−bg

>Dkg, Dk being the k-th tensor and b = 3, 000
s/mm2. We simulate the signal at 81 gradient directions, add complex
Gaussian noise, and reconstruct the ODFs as described in [13].

Averaging. We generate five sets of ODFs (Fig. 2) to illustrate
the difference between the averages ψ̄ and ˜̄ψ computed using dFR
and dΨ, respectively. The ODFs are generated by gradually rotating
and/or changing the shape of the leftmost ODFs as well as adding
noise to the signals they are reconstructed from. Thus, we expect to
obtain mean ODFs “similar” to the fifth ODFs in the sets. In the first
set, the ODFs do vary in shape but not in orientation, and hence both
methods yield the same mean ODF. In the second set, the ODFs have
the same shape but different orientations and averaging using dFR
produces a bloating effect on the resulting ODF. Our framework, on
the other hand, produces an ODF with the same shape as that of the
ODFs it is computed from and its orientation is the average of their
orientations. For the remaining sets, averaging with dΨ produces
more meaningful results than averaging with dFR.

Fig. 2. Averaging ODFs (green frames): the averages ψ̄ (blue frames)
and ˜̄ψ (red frames) are computed using dFR and dΨ, respectively.

Interpolation. We first perform linear interpolation between three
pairs of ODFs (Fig. 3(a)). In the first and second cases, interpolation
using dFR produces a 2-fiber ODF at the mid-point, whereas using
dΨ interpolates the ODFs via rotation. In the third case, two 2-fiber
ODFs that are different in orientation and in shape are interpolated.
We observe that our framework prevents the bloating effect observed
when interpolation is performed using dFR. More precisely, the
entropy of the interpolated ODFs is higher than that of the ODFs being
interpolated when interpolation is performed using dFR (Fig. 3(b)),
whereas interpolation using dΨ results in an approximately linear
relationship between the entropies. We also perform 2D interpolation
between four ODFs, which have either different orientations but the
same shape (Figs. 4(a)-4(b)), or different shapes including crossing
configurations (Figs. 4(c)-4(d)). We observe that interpolation using
dFR produces ODFs with large amounts of bloating, whereas our
framework yields smooth and visually appealing interpolations.

Filtering. We convolve an ODF image (Fig. 5(a)) with sharp dis-
continuities (in orientation) with a 5× 5 Gaussian filter of standard
deviation 1. Figs. 5(b)-5(c) show the resulting images after filtering
using dFR and dΨ, respectively. We observe that our framework
yields a more realistic smoothed version of the input image.

(a) Interpolation between the leftmost and rightmost ODFs

(b) Entropies of the ODFs in Sets 1, 2, and 3

Fig. 3. (a) Interpolation between pairs of ODFs using dFR (blue
frames) and using dΨ (red frames). (b) Study of bloating effects for
interpolation using dFR and using dΨ.

(a) Interpolation using dFR (b) Interpolation using dΨ

(c) Interpolation using dFR (d) Interpolation using dΨ

Fig. 4. 2D interpolation among four ODFs (blue frames): (a,b) Input
ODFs have the same shape but different orientations; (c,d) Input
ODFs have different shapes and orientations.



(a) (b) (c)

Fig. 5. (a) ODF image to be smoothed, (b) Image obtained after
filtering using dFR, (c) Image obtained after filtering using dΨ.

4.2. Experiments on Real Data

We also evaluate our framework on a human brain HARDI dataset
[14] where 105 images were acquired, 11 with no diffusion weight-
ing and 94 with diffusion weighting at b= 1, 159 s/mm2, by using
a 128×128 acquisition matrix (1.8 mm in-plane resolution) and 55
axial slices (2 mm thick). Prior to ODF reconstruction, the diffu-
sion weighted images of each subject are nonlinearly registered to a
group-averaged template. We perform averaging of the ODFs over
20 subjects in a ROI containing parts of the corpus callosum and
cingulum. These tracts do not intersect, but there exist partial volume
averaging due to low image resolution, as illustrated in Figs. 6(a)-6(b).
Fig. 6(d) shows the mean ODF image computed using dΨ, where
both tracts are accurately delineated without ODF bloating. Our
framework prevents the generation of spurious ODFs with crossing
configurations by considering the orientation as a separate entity. As
a result, the number of voxels with partial volume averaging (see
number of the blue frames in Fig. 6(d)) is reduced compared to that in
the mean ODF image computed using dFR (see number of the blue
frames in Fig. 6(c)). This demonstrates that by using the proposed
framework, one can obtain anatomically more meaningful averages.

5. CONCLUSIONS AND FUTURE WORK

We presented a novel framework for performing averaging, interpola-
tion, and filtering of ODFs. We showed how these operations reduce
to weighted averaging and proposed the rotation induced distance dΨ,
which led to an iterative method that updates the orientation and shape
of the current estimate via Riemannian averaging in the orientation
and shape spaces, respectively. We demonstrated that our frame-
work produces anatomically more meaningful results, especially in
highly anisotropic regions, by reducing partial volume averaging and
eliminating unrealistic changes in ODFs. As a future work, we aim
to improve the quality of white matter atlases by averaging ODFs
across several subjects using dΨ, and the accuracy of tractography by
increasing the coherence among ODF orientations via filtering.
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