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Abstract. This paper presents a stochastic tractography algorithm to
identify branching fibrous structures in 3-D images. Specifically, we employ
a Bayesian formulation that involves sequential importance resampling
of multiple fiber trajectories (particles). At each step, we sample local
orientation candidates from a discrete importance density that is esti-
mated by utilizing a nonlinear oriented filter. The weights of the particles
are subsequently obtained by using an observation density, which models
the intensity coherence along the particle segments of inferred widths,
and a prior density that enforces local smoothness of the trajectories.
At the same time, we successfully build multiple fiber trajectories along
all branches of a fiber by detecting dominant local fiber orientations via
the mean shift algorithm. The performance of the proposed method is
evaluated by tracking synthetic fibers at different noise levels as well as by
extracting selected free-running cardiac Purkinje fibers in structural mag-
netic resonance images. Our experiments show that the method achieves
a mean tracking error of about 4 voxels in the case of Purkinje fibers and
remains robust to moderate amount of noise.

1 Introduction

The development of robust processing methods to quantitatively characterize
fibrous structures constitutes an important yet challenging problem in medical
image analysis. Specifically, the extraction of complex fiber networks in intensity
data finds a wide range of applications in biological studies (see [1, 2] and
references therein). For instance, by extracting the anatomical topology of different
structures such as the human vasculature or pulmonary airways, one could
perform a quantitative assessment of various pathologies. Furthermore, advanced
simulations of arrhythmias could benefit from an electrophysiological model of
the heart with a realistic conduction system [3]. This would involve extracting
the Purkinje system, which is responsible for the propagation of the electrical
impulse initiating the contraction of the ventricular myocardium. Modern ex vivo
magnetic resonance imaging (MRI) techniques provide sufficient resolution to
identify the free-running Purkinje fibers, which activate endocardial structures
such as the papillary muscle. However, tracking these fibers in an automated
manner is difficult due to the presence of numerous bifurcations and image noise.



From an image processing standpoint, a fibrous structure comprises a spatially
coherent appearance pattern that can be quantified via different feature-based
or model-based approaches. Typical examples reviewed in [4] include skeletons,
matched filters, region growing, active contours, and image Hessian-guided stream-
line tracking. However, most of these methods are deterministic in the sense
that the uncertainties associated with the resulting fibers are not inferred. In
addition, they do not usually incorporate a priori geometric knowledge. Similarly,
the majority of the existing tracking techniques on diffusion weighted imaging
(DWI) estimate fiber tracts to be proportional to principal diffusion directions [5].
However, despite their practicality for visualization, they also do not estimate
the aforementioned uncertainties, which are critical for eliminating anatomically
incorrect trajectories caused by local tracking errors and their accumulation.

These issues have inspired recent works [6–10], which aim at stochastically
tracking fibrous structures at the expense of increased computational complexity.
These methods choose the most probable fiber trajectory among multiple possible
trajectories that are generated by statistical sampling. For instance, [7] proposes
a bootstrap filtering scheme to track the cross-sections of non-branching cerebral
arteries. In order to extract non-branching vessels, [8] employs a particle filter-
ing formulation with a sophisticated observation density that requires several
parameters to be tuned, whereas [9] proposes a modified Bayesian formulation
that requires fewer particles. For the analysis of branching fibers, [6] and [10]
employ the k-means algorithm to cluster the trajectories of a particle filter to
segment coronary arteries and brain vasculature, respectively. However, the ex-
tracted vessel topology is limited since k-means requires the number of clusters
(branches) to be known beforehand. Moreover, there exist several works providing
different stochastic tracking approaches on DW images [11–14]. In particular, [12]
proposes a Bayesian formulation that draws samples from the posterior density,
whereas [14] employs sequential importance resampling to track white matter
fibers. [15] estimates complex fiber orientation distributions from high angular
resolution diffusion images and performs random walks to infer brain connectivity.

We believe that the efficiency of stochastic tractography methods can be sub-
stantially improved by developing 1) practical probabilistic models for sampling,
and 2) accurate clustering techniques for detecting bifurcations. We thereby
present such a stochastic approach to track branching fibrous structures in 3-D
images. Our contribution is to fuse the notions of filter-based local orientation
extraction and multimodal fiber orientation distributions into a particle filtering
formulation to infer the uncertainties of the fiber trajectories. Specifically, we
utilize a nonlinear pivoting filter that estimates a reliable discrete importance
density for sampling trajectories (particles). Furthermore, we use this density for
detecting bifurcations by clustering the local fiber orientations via spherical mean
shift. We recursively compute the weights of the particles using an observation
density that quantifies intensity coherence along the particle segments of inferred
widths and a prior density that enforces locally smooth trajectories. We evaluate
our tracking method on synthetic fibers at different signal-to-noise ratios (SNRs)
as well as on selected free-running cardiac Purkinje fibers in structural MRI.



2 Preliminaries on Stochastic Tracking

Our tracking scheme follows a well-known particle filtering technique called
sequential importance resampling (SIR), which implements a recursive Bayesian
filter by Monte Carlo simulations [16,17]. In the SIR formulation, we represent
a fiber trajectory as a sequence of 3-D points (states) x0:T

.= {xt}Tt=0 in the
image domain Υ ⊂ R3. Without loss of generality, we assume that the root
of the fiber of interest is determined, either by the user or through some prior
automatic detection. We define the observations as a sequence of image intensities
y1:T

.= {yt}Tt=1 = {I(xt)}Tt=1, where I(p)4 denotes the intensity value at voxel
p ∈ Υ . We further assume that 1) the states are modeled as a first-order Markov
process, 2) the observations are mutually independent, and 3) the observation at
time t only depends on the current state, i.e., p(yt|x0:t) = p(yt|xt).

The key idea in SIR is to represent the required posterior density p(x0:t|y1:t)
by a set of N weighted random samples {x(n)

0:t }Nn=1 and the associated weights
{w(n)

t }Nn=1, which are chosen using the principle of importance sampling. This
specifically involves defining an importance density q(·) from which the random
samples can be easily drawn. Accordingly, the weights measure the reliability of
the samples as w(n)

t ∝ p(x(n)
0:t |y1:t)/q(x

(n)
0:t |y1:t).

In a sequential setting, we consider N samples that represent p(x0:t−1|y1:t−1)
and then approximate p(x0:t|y1:t) with a new set of samples. Using Bayes’ rule,
a recursive formula for the posterior density can be written in terms of the
observation density p(yt|xt) and the prior density p(xt|xt−1) as

p(x0:t|y1:t) ∝ p(x0:t−1|y1:t−1)p(yt|xt)p(xt|xt−1). (1)

If the importance density satisfies q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|xt−1, y1:t),
the formulation only requires a filtered estimate p(xt|y1:t) at each time step.
Consequently, we can recursively compute the weights as

w
(n)
t ∝ w(n)

t−1

p(yt|x(n)
t )p(x(n)

t |x
(n)
t−1)

q(x(n)
t |x

(n)
t−1, y1:t)

. (2)

Then the posterior filtered density p(xt|y1:t) can be approximated as

p(xt|y1:t) ≈ p̂(xt|y1:t) =
N∑

n=1

w
(n)
t δ(xt − x(n)

t ), (3)

where δ(·) denotes the Dirac delta function and the weights are normalized
such that

∑N
n=1 w

(n)
t = 1. As the number of samples N →∞, the approximate

posterior p̂(xt|y1:t) approaches the true posterior p(xt|y1:t).
It is also worth noting that during SIR, the distribution of the weights becomes

more skewed as t increases [16]. To avoid this degeneracy, a resampling procedure
4 When the point p lies outside the discrete grid, we compute the corresponding

intensity value by trilinear interpolation.



is usually included at each step. More specifically, if the effective sample size
Neff

.= d1/
∑N

n=1(w(n)
t )2e is less than a fixed threshold τ , we resample N particles

from the discrete density p̂(xt|y1:t) and set w(n)
t = 1/N , ∀n. The reader is referred

to [16,17] for further details on sequential Monte Carlo methods.

3 Estimation of the Density Functions in SIR

This section explains the estimation of the importance, observation and prior
densities in the SIR formulation. These densities are primarily used to recursively
compute the importance weights of the particles. For the sake of clarity, we drop
the particle superscripts in the following discussions.

3.1 Importance Density

In the SIR formulation, modeling the importance density with the prior and
solely using the observation density to compute the weights from (2) constitute a
popular yet trivial choice. However, we believe that sampling from a density that
models local fiber structure is more appropriate for tracking purposes. We thereby
estimate the importance density q(xt|xt−1, y1:t) using a nonlinear pivoting filter,
which is a 3-D variant of the matched filter introduced in [18]. Its efficacy in
extracting local fiber orientations has been recently demonstrated in [19].

As depicted in Fig. 1(a), the pivoting filter is centered at a point of interest
x with a fixed backward point b and a pivoting forward point f located at a
distance l from x. The segments bx and xf define the main segments of the filter
and are designed to align with the fiber of interest. The purpose of the remaining
points {bk,fk}2K

k=1 is to fully encapsulate the fiber. Specifically, the points {bk}
(and {fk}) are placed by rotating the 2w-apart antipodal pair (bk, bk+K) (and
(fk,fk+K)) by an angular step α until one circular round is completed.
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Fig. 1. (a) 3-D pivoting filter with key parameters, (b) Discrete importance densities
estimated at two analysis points and the modes detected via spherical mean shift.

The operation of the filter can be summarized as follows: After fixing the
backward segment bx along the known portion of the fiber, the forward segment



xf is allowed to rotate for scanning multiple local orientations. Specifically,
consider a particular orientation s in S .= {s : 〈s,x− b〉 > 0, s ∈ S2} such that
f = x+ ls. For each pair of antipodes (bk, bk+K) and (fk,fk+K), we compute

hk(s;x,x− b, I) =

1 if |I(b)−I(f)| ≤ min
j=k,k+K

{|I(b)−I(bj)|, |I(f)−I(f j)|}

0 otherwise.
(4)

In other words, the filter detects an oriented structure if the absolute value of
the intensity variation along the structure is less than the minimum absolute
intensity variation orthogonal to the structure. The expression in (4) can be
considered as a partial filter response for a fixed k ∈ {1, 2, . . . ,K}. The overall
filter response is subsequently computed by summing (4) over all pairs of antipodes
as h(s;x,x− b, I) =

∑K
k=1 hk(s;x,x− b, I).

In the sequential setting, having fixed the backward segment along the preced-
ing orientation, i.e., st−1

.= (xt−1 − xt−2)/l, the filter response at xt−1 gives a
coarse estimate of the probability of having a structure oriented along any s ∈ S.
This is further refined by using g(s;x,x−b, I) =

∫ 1

0
|I(x+λls)−I(x)|2dλ, which

quantifies the intensity coherence along the forward segment [4]. The importance
density is then estimated as

q(xt|xt−1, y1:t) ∝
(
h(st;xt−1, st−1, I)× exp(−g(st;xt−1, st−1, I))

)
. (5)

Given q(·), we can sequentially sample N local orientations {s(n)
t }Nn=1 that also

define the points {x(n)
t } given {x(n)

t−1}. The resulting discrete density can be
further used to detect branches via spherical clustering, as described in §4.

3.2 Observation Density

Given a current sample st (and xt), we obtain an estimate of the observation
density p(yt|xt). For this purpose, we assume that 1) the fiber portion along st

has the same width (diameter) as the preceding portion, and 2) the intensities of
the voxels in a neighborhood of xt, denoted by Ωxt , are also observed.

We first find the cylinder that optimally encapsulates the preceding fiber
portion and then use it to find the voxels around the segment lst = xt − xt−1.
Specifically, we encapsulate the fiber portion along st−1 with (oriented) cylinders
of height l and of different radii, and estimate the optimal radius re as

re = argmax
r∈R

1
2πlr

∫
F(r)

(
〈∇I(p),

−→
N (p)〉

)2

dp. (6)

Notice that the expression in (6) measures the alignment of the image gradients
with the normals at the cylindrical surface, where R denotes the set of radii, p
is a point on the lateral surface F(r) of the cylinder of radius r, ∇I(p) is the
image gradient and

−→
N (p) is the outward normal to the surface F(r) at point p.



We subsequently use the inferred radius to form a cylinder (of radius re and
height l) oriented along st, define Ωxt

as the voxels inside this cylinder, and
compute the observation density as

p(yt|xt) ∝ exp
(
− (I(xt)− Īt;re)2

2σ2
t;re

)
. (7)

Here Īt;re and σt;re denote the mean and standard deviation of the intensities of
the voxels inside the cylinder, respectively.

3.3 Prior Density

In order to enforce a certain level of smoothness in the fiber trajectories, we choose
to model the prior density based on the von Mises-Fisher (vMF) distribution over
the 2-sphere [20]. It constitutes a unimodal parametric distribution for directional
data with the probability density function (pdf) of the form

pvMF(s;µ, κ) =
κ

4π sinhκ
exp(κ〈µ, s〉), (8)

where µ ∈ S2 is the mean direction and κ > 0 is a parameter regulating the
concentration around the mean direction. In our experiments, we manually set
the value of κ and estimate the prior density as

p(xt|xt−1) ∝ pvMF(st; st−1, κ). (9)

4 Algorithm Overview and Implementation Details

Our method is initiated at two user-specified seed points {x0,x1}, which place
the backward segment bx of the filter along s1 = (x1 − x0)/l. We subsequently
estimate the width of this fiber segment from (6). In order to have a finite number
of search orientations, we discretize the unit sphere at 642 predefined vectors
obtained by a threefold tessellation of an icosahedron. Accordingly, at each step,
we form the set of candidate orientations St

.= {s : 〈s, st−1〉 > 0, s ∈ S2}, estimate
the discrete importance density as described in §3.1, and use the resulting pdf to
analyze local fiber structure, i.e., to detect branches at the point of interest.

The rationale behind analyzing local fiber structure is that in the case of
branching fibers, one of the branches may cause the loss of the remaining ones
by attracting most of the particles. To avoid this problem, before sampling the
particles, we employ the mean shift (MS) algorithm [21], which automatically
detects the number and directions of the branches. Specifically, we utilize a
weighted spherical MS formulation with the Fisher kernel for clustering local
orientations using their importance density values as weights [19]. This scheme
converges to the modes {µ(c)

t }Cc=1 of the importance density q(xt|·) and the
resulting modes are identified as the directions of the branches rooted at xt.
Fig. 1(b) illustrates the operation of the filter and our branch detection strategy.



Algorithm 1 SIR-based tractography in 3-D images

1. At the t-th step, given N = 1000 weighted particles {(x(n)
0:t−1, w

(n)
t−1)}Nn=1 and the

mean trajectory {x̄0:t−1}, consider st−1 = x̄t−1 − x̄t−2.
2. Place the pivoting filter such that b = x̄t−2 and x = x̄t−1.
3. Obtain the set St = {s : 〈s, st−1〉 > 0, s ∈ S2}.
4. Estimate the discrete importance density q̂(xt|x̄t−1, y1:t) from (10) using (5).

5. Perform branch analysis by detecting the modes {µ(c)
t }Cc=1 of the importance density

q̂(xt|·) via spherical MS and check the number of branches C:
– If C > 1, stop tracking the “parent” fiber, go to step 9 and generate separate

SIR schemes for the branches.
– If C = 1, sample N points {x̃(n)

t } from the importance density.

6. For each x̃
(n)
t , compute the weight w

(n)
t from (2) using (5), (7), and (9) with κ = 3.

7. Calculate Neff as described in §2, set τ = 2N/3, and check Neff:

– If Neff ≥ τ , then for n = 1, 2, . . . , N , set x
(n)
t = x̃

(n)
t and update the n-th

trajectory as x
(n)
0:t .

– If Neff < τ , then for n = 1, 2, . . . , N , sample an index z(n) from the discrete

distribution of {w(n)
t }Nn=1, set x

(n)
t = x̃

z(n)
t , w

(n)
t = 1/N and update the n-th

trajectory as x
(n)
0:t .

8. Iterate between 1-8 by setting t = t + 1 until {w(n)
t } are small, a user-defined

stopping criterion is met and/or a branching point is detected.

9. Identify the MAP fiber (or branch) as x
(ζ)
0:t , where ζ = argmaxn=1,2,...,N w

(n)
t ,

i.e., the trajectory with the maximum importance weight.

It depicts the importance densities, where the probabilities of the vectors are
color-coded (blue∼low, red∼high), at two points as well as the resulting modes.

At this point, it is worth noting that the pivoting filter needs to be used
N times per iteration to estimate the importance density given N preceding
particles. This computational load can be reduced with the approximation

q(x(n)
t |x

(n)
t−1, y1:t) ≈ q̂(x(n)

t |x̄t−1, y1:t), (10)

where x̄t−1 is the point reached along the mode of interest, i.e., µ(c)
t−1 for some c.

After estimating the approximate importance density q̂(xt|·) at the t-th step and
clustering the local orientations, N = 1000 samples are drawn from this discrete
density if the number of the modes, denoted by C, is equal to 1. However, if
C > 1, the newly identified branches are treated as separate fibers to be tracked
via new SIR schemes. Finally, we compute the importance weight w(n)

t from (2)
using (5), (7), and (9) with κ = 3, and then eliminate the degeneracy described in
§2 using systematic resampling with τ = 2N/3. We repeat the same procedure by
shifting the filter according to the modes of the importance density, i.e., keeping
track of the “mean” trajectory {x̄0:t}, and generate N different trajectories
{x(n)

0:T }Nn=1 for each branch. The maximum a posteriori (MAP) estimate of the
true fiber/branch is identified as the trajectory with the maximal importance
weight. In summary, our tracking method proceeds as outlined in Algorithm 1.



5 Method Validation

The performance of our method is evaluated via experiments on synthetic fibers
at different noise levels as well as on selected free-running cardiac Purkinje fibers
on structural MR images. In order to quantify the spatial tracking error, we
compute the symmetrized Chamfer distance (in voxels) between the true fiber
trajectory X t .= xt

0:T = {xt
i} and its MAP estimate X e .= xe

0:T ′ = {xe
j} as

ε(X t,X e) = [d(X t,X e) + d(X e,X t)]/2, where

d(X t,X e) = |X t|−1
∑

xt
i∈X t

min{‖xt
i − xe

j‖ : xe
j ∈ X e}. (11)

5.1 Experiments on Synthetic Fibers

In order to evaluate the performances of the fiber width estimator (6), orientation
detection and tracking methods as a function of image noise, we generate 120
synthetic fibers of radii rt ∈ {1, 2, 3} by fitting cubic splines through four randomly
selected points in a 80×80×80 lattice. In the case of branching fibers, bifurcations
are randomly selected on previously generated fibers to add further branches. The
centerlines of the resulting fibers constitute the true trajectories X t. The binary
images are then corrupted by Rician noise to obtain image data at five different
SNRs. We set the filter parameters {l, w, α} = {3, 2, 20◦} (or {4, 4, 20◦} depending
on the value of rt), the search radii R = {1, 1.5, 2, . . . , 5}, and subsequently obtain
the width estimates {re

j} and the MAP trajectory X e of each fiber.
For performance evaluation, we compute the width estimation error rate

ξ(X t,X e) .= |X e|−1
∑

j |rt − re
j |/rt along with tracking error ε. In fact, the value

of the optimal radius re is also critical in order to obtain an accurate observation
density. Although a slight underestimation of the fiber width is tolerable unless
the resulting filter is totally “buried” into the fiber, it should be noted that
the more the fiber width is overestimated, the worse the observation density is
modeled. Therefore, we also compute the rate ξ+ of overestimating the fiber width.
Finally, in order to quantify the reliability of our orientation detection strategy at
different noise levels, we calculate the orientation detection error rates as follows:
In the analysis of non-branching fibers, this rate, denoted by γ1, is computed as
the ratio of the number of points (in X e) at which the MS locates more than one
mode over the total number of points, i.e., the cardinality of X e. However, in the
analysis of branching fibers, we solely focus on the identification of bifurcations.
Specifically, we place the filter at the bifurcations, which constitute the set of
points at which the MS locates two modes in the noise-free case, and compute
the rate γ2 of misidentified bifurcations at different SNRs.

Analysis of non-branching fibers: Table 1 shows the mean and the standard
deviation of the tracking error ε and the width estimation error rate ξ along
with the average values of the width overestimation rate ξ+ and the orientation
detection error rate γ1 over 60 non-branching fibers at different SNRs. The
symbol “∞” for SNR represents the noise-free case. First, we observe that the



mean width estimation error rates are about 0.09 with ξmax = 0.36 for SNR > 5
dB. These results validate the accuracy of our flux-based estimator at moderate
amount of noise. Furthermore, we overestimate the true fiber widths at rates
(ξ+) less than 0.25 for SNR > 10 dB. In terms of tracking accuracy, we observe
that for SNR > 10 dB, the mean tracking errors are about 2.80 voxels with
εmin = 1.00 and εmax = 13.78. However, the performance starts degrading at
higher levels of noise, especially in the case of tracking fiber segments with high
curvature. Finally, for SNR > 5 dB, the average values of the rates of erroneously
detected orientations (γ1) are less than 0.07, which demonstrate the reliability of
our filter-based orientation detection strategy under noisy conditions.

Table 1. Experimental results on non-branching fibers

Error SNR (dB)
parameter ∞ 30 20 15 10 5

ξ 0.08±0.07 0.08±0.07 0.08±0.07 0.09±0.07 0.11±0.09 0.20±0.26

(ξmin, ξmax) (0,0.36) (0,0.36) (0,0.31) (0,0.31) (0,0.32) (0,1.42)

ξ+ 0.23 0.24 0.23 0.25 0.31 0.39

ε 2.39±1.21 2.82±2.11 3.20±2.39 2.68±1.32 3.96±2.70 5.18±3.83

(εmin, εmax) (0.87,6.35) (0.78,13.68) (0.65,13.78) (0.90,6.81) (1.00,11.94) (1.67,18.92)

γ1 0.04 0.04 0.04 0.05 0.07 0.17

Analysis of branching fibers: We further perform tracking experiments on
60 remaining branching fibers as well as focus on testing our orientation detection
strategy at the bifurcations. At this point, note that extracting such fibers in
noisy data may result in misleading tracking errors if a bifurcation point is
undetected. Therefore, we estimate the widths of the fibers and obtain their
MAP trajectories only in the noise-free case. Table 2(a) shows the mean and the
standard deviation of the width estimation error rate ξ and the tracking error ε
over 60 branching fibers. We observe that the mean tracking error is 4.81 voxels
with εmin = 2.46 and εmax = 8.21. Notice that the tracking performance is worse
than the one obtained for non-branching fibers by approximately 2.50 voxels.
This is mainly due to 1) a number of branches that are generated very close to
each other, and 2) differences between the coordinates of the actual bifurcations
and the detected ones. Furthermore, we overestimate the true fiber widths in only
18% of the fiber segments and achieve a width estimation error rate of 0.07±0.05
with ξmin = 0 and ξmax = 0.22. Finally, Table 2(b) shows the average rates of
misidentified bifurcations (γ2). Notice that for SNR > 10 dB, less than 20% of
the bifurcations are misidentified, but the error rate γ2 increases at lower SNRs.

Table 2. Experimental results on branching fibers

(a) Tracking and width estimation errors

ε (εmin, εmax) ξ (ξmin, ξmax)

4.81±1.42 (2.46,8.21) 0.07±0.05 (0,0.22)

(b) Bifurcation misidentification

SNR (dB) 30 20 15 10 5

γ2 0.10 0.15 0.18 0.25 0.33
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Fig. 2. (a) An MR image slice with manually extracted Purkinje fibers (red circles),
(b) Selected region of interests illustrating the trajectory of a branching Purkinje fiber.

5.2 Experiments on Cardiac Purkinje Fibers

We conduct additional tracking experiments on a structural MR image of a
healthy rabbit heart, which was acquired on an 11.7 T MR system at an in-
plane resolution of 26.5 µm × 26.5 µm and an out-of-plane resolution of 24.5
µm [3]. Denoising and rescaling steps are performed to obtain a 3-D image of
size 512×512×850 (Fig. 2(a)). Our method is tested on selected subvolumes that
contain 53 free-running Purkinje fibers. They are either non-branching fibers
running from one Purkinje-myocardial junction (PMJ) to another or branching
fibers with at least one Purkinje-Purkinje junction (PPJ), as depicted in Fig. 2(b).
In addition, we manually extract the centerlines X t of the true fibers and obtain
the MAP trajectories X e using the filter parameters {l, w, α} = {4, 4, 20◦}.

In our experiments, we obtain a tracking error of 3.93±3.15 voxels with
εmin = 0.78 and εmax = 19.74. Specifically, our method achieves such promising
results that 16 fibers are tracked with errors of less than 2 voxels, and 32 fibers
with errors of less than 4 voxels. In addition, all the bifurcations are correctly
detected along with the corresponding branch directions to be followed. However,
2 fibers are tracked with errors greater than 10 voxels and we observe that, in
those cases, tracking is affected by the presence of nearby fibers/cardiac wall.
Specifically, the pivoting filter fails at encapsulating the fibers of interest and this
causes an inaccurate estimation of the importance densities. Fig. 3 illustrates our
tracking results by showing the surface renderings (green) of selected subvolumes,
the seed points (black), and the resulting MAP trajectories (red) of the fibers.

6 Conclusions

The aim of this work is to stochastically track branching fibrous structures in 3-D
images. Specifically, we present an SIR-based tracking framework that employs
an oriented filter for the estimation of a practical discrete importance density.
We also describe a flux-based fiber width estimator to obtain an observation
density that models the intensity coherence in the fiber segment of interest.
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Fig. 3. Visualization of 6 free-running Purkinje fibers and their MAP trajectories (red).

Along with a prior density, which enforces locally smooth fiber trajectories, the
aforementioned densities are used to recursively compute the certainties of the
trajectories. Furthermore, in order to correctly analyze branching structures, we
sample trajectories along all branches by detecting dominant branch directions
via spherical mean shift. Comprehensive experiments in synthetic and real data
demonstrate that the proposed method achieves promising results in terms of
fiber width estimation and tracking accuracy at moderate amount of noise.
Nevertheless, tracking fibers in dense fibrous regions as well as fiber segments
with high curvature under noisy conditions may be problematic due to the (linear)
geometry of the filter. Therefore, as a future work, we will perform a sensitivity
analysis on the filter parameters and subsequently use the extracted free-running
Purkinje system in cardiac conduction simulations.
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