
A System Theoretic Approach to
Synthesis and Classification of Lip Articulation

Hasan Ertan Çetingül, Rizwan Ahmed Chaudhry, and René Vidal

Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218, USA

Abstract. We present a system for synthesizing lip movements and rec-
ognizing speakers/phrases from visual lip sequences. Low-dimensional
geometrical lip features, such as trajectories of landmarks on the outer
lip contour and vertical distances for the mouth opening are first ex-
tracted from the images. The temporal evolution of these features is
modeled with linear dynamical systems, whose parameters are learned
using system identification techniques. By carefully exploiting physical
constraints of lip movement both in the learning and synthesis stages, re-
alistic synthesis of novel sequences is achieved. Recognition is performed
using classification methods, such as nearest neighbors and support vec-
tor machines, combined with various metrics based on subspace angles
and kernels, such as the Binet-Cauchy, Martin, and Kullback-Leibler
kernels. Experiments are designed to find the combination of features,
identification method, kernel and classification method that is most ap-
propriate for synthesis and classification of lip articulation.

1 Introduction

Recently, the analysis of lip articulation has attracted widespread interest from
the computer vision community due to several applications in biometrics, audio-
visual speech synthesis, rehabilitation engineering and virtual reality. Motion
capture technology plus complex 3D facial models are key ingredients in anima-
tions [15], whereas visual text-to-speech (VTTS) and viseme-based HMMs have
been extensively used in audio-visual speech synthesis (see references in [9]).

In speaker/speech recognition, state-of-the art systems employ both lip move-
ment and audio information in a unified framework [7]. However, most audio-
visual biometric systems combine a simple visual modality with a sophisticated
audio modality. Systems employing enhanced visual information are quite lim-
ited. This is due to several reasons: (i) Lip feature extraction and tracking are
complex tasks (see [4] and references therein). Indeed, the performance of ex-
isting lip feature extraction techniques depends on acquisition specifics such as
image quality, resolution, head pose and illumination conditions. (ii) Current
methods are limited to the use of geometric, parametric and motion features for
speaker/speech recognition with well-known clustering methodologies such as
PCA, LDA, and HMMs (see references in [7, 4]). These methods do not use lip
articulation judiciously, although it contains useful information for classification.

On a completely parallel track, several system-theoretic techniques have re-
cently been used in the computer vision community for modeling dynamic visual

processes. For instance, [10, 23] model the appearance of dynamic textures, such
as videos of water, smoke, fire, etc., as the output of an Auto Regressive Moving
Average (ARMA) model; [3] uses ARMA models to represent human gaits, such
as walking, running, jumping, etc.; [1] uses ARMA models to describe the ap-
pearance of moving faces; and [19] uses ARMA models to represent audio-visual
lip articulation. Given a video sequence, one can use standard system identifi-
cation techniques, e.g., subspace identification [18], to learn the parameters of
the ARMA model. Given a model, novel sequences can be synthesized by sim-
ulating the model forward. Impressive synthesis of dynamic textures has been
demonstrated by a number of papers [10, 11, 23, 21]. The same ideas have also
been used for synthesis of lip articulation using speech as the driving input [19].

As it turns out, the identified parameters can also be used for recognition.
For instance, if one defines a distance on the space of linear dynamical systems
(LDSs), then recognition of novel sequences can be performed using k-nearest
neighbor (k-NN) classification. This approach has been tested in [20] for recog-
nition of dynamic textures from intensity trajectories, in [3] for recognition of
human gaits from motion capture trajectories, and in [1] for recognition of faces
from intensity, color and landmark trajectories. As the space of LDSs is not Eu-
clidean, a key challenge to this recognition approach is the definition of a distance
between two LDSs. The works of [3, 20, 1] use distances built from the subspace
angles among the observability spaces associated with the LDSs [16, 8], while
the work of [10] uses the Kullback-Leibler divergence between the probability
distributions of the associated output processes. Another approach to compar-
ing LDSs is to use kernels, which can be combined not only with k-NN, but also
with support vector machines (SVM). In [5], a probabilistic kernel based on the
Kullback-Leibler divergence is introduced and used for classification of dynamic
textures. In [22], an entire family of kernels based on the Binet-Cauchy theorem
is proposed to compare LDSs. However, classification results have not yet been
reported.

Our main goal is to develop a system for synthesis and classification of lip
articulation in video sequences, including the comparison of several choices for
features, identification methods, synthesis methods, distances and kernels for
comparing LDSs, and classification methods. Although we will follow the frame-
work of [3, 20, 1, 5, 22], there are several challenges that need to be considered:

1. Feature selection: Unlike previous work, we cannot rely on intensity or color
trajectories. Also, we will not use motion capture data. Therefore, good
feature selection and tracking methods for lip articulation are needed.

2. Identification method : As the data dimension for learning dynamic textures
is the number of pixels, prior work had to resort to the PCA-based identifi-
cation method [10], rather than N4SID [18]. For lip articulation, one can use
both N4SID and the PCA-based method. Nevertheless, our experiments will
show that, contrary to intuition, the PCA-based method performs better.

3. Synthesis method : While synthesis of dynamic textures with LDSs has been
quite a success, realistic synthesis of other visual processes is not straight-
forward, as it depends on the choice of the features, the stability of the

dynamical models, etc. Our experiments will show that good synthesis can
only be achieved when physical constraints of articulation are incorporated.

4. Distances, kernels, and classification methods: Most prior work used k-NN
classification with a small number of distances based on subspace angles.
Our work includes both k-NN and SVM classification combined with a wide
variety of distances and kernels. In particular, this is the first time SVMs are
combined with Binet-Cauchy kernels for the classification of lip articulation.

This paper is organized as follows: §2 shows how to extract features for
representing lip articulation; §3 describes the identification of LDSs and their
use for synthesis; §4 presents several distances and kernels for LDSs, and their
use for recognition; §5 presents experimental results; and §6 gives the conclusions.

2 Representation of lip articulation

We first describe the extraction of geometric features representing lip articula-
tion. For this purpose, we employ a 3-stage processing system proposed in [4].

The first stage eliminates natural head motion during the speaking act to ob-
tain pure lip movement. Each frame of each talking face sequence is aligned with
the first frame using a 2D parametric motion estimator. For each pair of con-
secutive frames, global head motion parameters are calculated using hierarchical
Gaussian image pyramids and the 12-parameter quadratic motion model. This
model is then used to back-warp the frames and extract corrected lip frames.

In the second stage, the quasi-automatic technique proposed in [13] is used to
extract the outer lip contour. The manual selection of a point above the mouth
serves as the initialization of a snake-like algorithm that finds several points
in the upper-lip boundary. From these points, the three key points p2, p3 and
p4 forming the cupids bow are automatically extracted (see Fig. 1(a)) and the
two line segments joining them are computed. Pseudo-hue gradient information
is then used to locate the key point in the lower lip boundary, p6, and the lip
corners p1 and p5. Least-squares optimization is used to fit four cubic polynomials
using five of the key points as junctions. All the key points are then tracked in
consecutive frames and the curve fitting steps are repeated. Fig. 1(b) displays
examples of lip contours extracted from the images in the database.

(a) The 6 key points on the lip contour (b) Extracted lip contours

Fig. 1. Lip contour extraction.

Once the six key points have been detected and tracked, the number of
landmarks is increased to 32 per frame by carefully selecting contour points
at regular intervals on the fitted curves. In the last stage, the coordinates of
these points (xt

pi
, yt

pi
) are used to create three sets of lip features, denoted by

{Lxy,L,D}. The first set, Lxy, is formed by stacking the landmark coordinates
into two 32-dimensional feature vectors at time t, yLx

t =
[
xt

p1
xt

p2
· · · xt

p32

]>
and

y
Ly

t =
[
yt

p1
yt

p2
· · · yt

p32

]>
. The second set, L, is generated by simply concate-

nating yLx
t and y

Ly

t , i.e. yLt =
[
yLx

t

y
Ly

t

]
. The third set, D, corresponds to the 15

vertical distances li from the equidistant upper lip landmarks to the lower lip
boundary. The resulting feature vector is yDt =

[
l1 l2 . . . l15

]>. Fig. 2(a) shows
the 32 landmark points whereas Fig. 2(b) illustrates the 15 lip distance features.

(a) 32 landmark features (b) 15 distance features

Fig. 2. Landmark and distance based lip features.

3 Synthesis of lip articulation

We model the temporal evolution of different lip features using a dynamical
system framework. More specifically, a sequence of feature trajectories {yt} is
assumed to be a realization from a second-order stationary stochastic process
and hence it can be modeled with a state space model

xt+1 = Axt + Bvt; Bvt ∼ N (0, Q),
yt = Cxt + µ + wt; wt ∼ N (0, R).

(1)

xt ∈ Rn and yt ∈ Rm are respectively the state and output variables at
time t. vt and wt are respectively the state and measurement noise processes,
which are assumed to be stationary and zero mean i.i.d. Gaussian processes with
covariances Σvt = Ip and R, where Ip is the identity matrix of dimensions p×p.
(x0, µ, A,B, C, R) are the parameters of the LDS with x0 ∈ Rn being the initial
state, µ ∈ Rm being the mean of yt, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and
R ∈ Rm×m. We assume that BB> = Q ∈ Rn×n. It is also typical to take the
output dimension to be greater than the system order, i.e. m > n.

3.1 ARMA system identification

Given a sequence of measurements {yt}τ−1
t=0 generated by a linear dynamical

system, the task is to identify the system parameters (x0, µ,A, B, C, R). Sub-

space identification methods, such as N4SID [18], provide asymptotically optimal
estimates of the model parameters in the maximum likelihood sense if the mea-
surements are generated by stochastic linear systems [2]. We do not provide
mathematical details of N4SID in this paper and refer the reader to [18].

However, N4SID becomes impractical when the output dimension is high,
which is usually the case when intensity values of an image sequence are used as
measurements, e.g., in dynamic textures. The PCA-based approach introduced in
[10] identifies the system parameters (x0, µ, A,B, C, σ2) assuming R = σ2Im.
Briefly, this method first estimates (µ,xt, C, σ2) by neglecting the relationship
between xt+1 and xt. Therefore, the equation yt = Cxt + µ + wt becomes a
PCA model, where µ is the mean of yt, C is a basis for the subspace spanned by
{yt −µ} with coefficients xt. By assuming a canonical model where C>C =In,
one obtains the estimates µ̂ = ȳ

.= 1
τ

∑τ−1
i=0 yi, Ĉ =U and X̂

τ−1

0 =ΣV >, where
UΣV > is the singular value decomposition (SVD) of the mean-subtracted out-
put matrix Y τ−1

0
.=

[
y0−ȳ, . . . , yτ−1−ȳ

]
and X̂

tf

t0 =
[
x̂t0 , . . . , x̂tf

]
is the ma-

trix of state estimates for t = t0, . . . , tf . Note that σ̂2 = var(Y τ−1
0 −ĈX̂

τ−1

0) and

x̂0 = X̂
0

0. Then, the transition matrix can be computed as Â = X̂
τ−1

1 (X̂
τ−2

0)†,
where Z† denotes the pseudo-inverse of Z. The estimate of Q is given by
Q̂ = 1

τ−1

∑τ−2
i=0 ûiû

>
i , where ût := x̂t+1 − Âx̂t and B̂B̂

>
= Q̂. See [3, 10] for a

detailed explanation of the algorithm along with MATLAB implementations.

3.2 Synthesis with ARMA models

Given the identified model parameters (x̂0, µ̂, Â, B̂, Ĉ, R̂), one can generate new
lip articulation data Ỹ

τ−1

0 =
[
ỹ0, ỹ1, . . . , ỹτ−1

]
based on the learned dynamical

model. However, the estimated parameters, and hence the corresponding syn-
thesis procedures, may differ depending on the identification approach used.

It is worth noticing that N4SID determines state sequences that are outputs
of non-steady state Kalman filter banks [18]. Hence it estimates the so-called
Kalman gain, K, instead of B. When the parameters (x̂0, µ̂, Â, K̂, Ĉ, Q̂) are
identified using N4SID, for accurate synthesis, the model needs to be driven by
the noise process et ∼ N (0, Q̂),

x̂t+1 = Âx̂t + K̂et,

ỹt = Ĉx̂t + µ̂.
(2)

On the other hand, when (x̂0, µ̂, Â, B̂, Ĉ, R̂) are identified using the PCA-based
method, lip movements can be synthesized by driving the system with the noise
process zt ∼ N (0, Ip), and p = n,

x̂t+1 = Âx̂t + B̂zt,

ỹt = Ĉx̂t + µ̂.
(3)

However, when applying these procedures to landmarks, it is important to
take the physics of the process into account. Since the vertical movement has

larger variance than the horizontal movement during a natural speaking act,
it is useful to separately identify the x− and y− trajectories, i.e. {Lx,Ly},
as (x̂0

Lx , µ̂Lx , Â
Lx

, B̂
Lx

, Ĉ
Lx

, R̂
Lx) and (x̂0

Ly , µ̂Ly , Â
Ly

, B̂
Ly

, Ĉ
Ly

, R̂
Ly), and

synthesize new trajectories with parallel addition of them:
[
x̂Lx

t+1

x̂
Ly

t+1

]
=

[
Â
Lx

0

0 Â
Ly

] [
x̂Lx

t

x̂
Ly

t

]
+

[
B̂
Lx

B̂
Ly

]
z′t,

[
ỹLx

t

ỹ
Ly

t

]
=

[
Ĉ
Lx

Ĉ
Ly

][
x̂Lx

t

x̂
Ly

t

]
+

[
µ̂Lx

µ̂Ly

]
,

(4)

where z′t ∼ N (0, I2p), and p = n.

4 Classification of lip articulation

Given a training set of models {Mi}N
i=1 with parameters (x̂0;i, µ̂i, Âi, B̂i, Ĉi, R̂i),

and the membership of these models to a number of classes, the goal is to clas-
sify new models according to the different classes for the purpose of recognition.
To that end, we employ nearest neighbor classifiers or support vector machines
together with various metrics on the space of dynamical systems.

4.1 Nearest neighbor classification and subspace angles

Nearest-neighbor classification is a method that assigns each point to the class
of its nearest neighbors via a majority vote. The simplest case is the 1-NN
method, where given a training set {(s1, g1), (s2, g2), . . . , (sN , gN)}, the group
membership, g of the input sample vector, s is determined as g = gj , where
j = argmini=1,...,N ‖s−si‖. Notice that sj is the nearest neighbor of s according
to the metric ‖ · ‖.

In order to apply nearest neighbor classification to LDSs, we need a metric
in the space of models. A common distance for comparing ARMA models is
based on subspace angles between observability subspaces [8]. To calculate the
subspace angles, each model M is converted into the forward innovation form:

x′t+1 = Ax′t + Ket,
yt = Cx′t + et,

(5)

where K is the Kalman gain and x′t is the transformed state. The Kalman gain
can be computed as K = (APC>)(CPC> + I)−1, where P is the solution of

P = APA> − (APC>)(CPC> + I)−1(APC>)> + Q. (6)

Given Mi = (Ai, Ki, Ci), i = 1, 2, one can define its extended observability ma-
trix O∞(Mi) = [C>

i , (CiAi)>, (CiA
2
i)
>, · · ·]> ∈ R∞×n, and use it to compare

M1 and M2 by computing the angles between the ranges of
[O∞(M1) O∞(M−1

2)
]

and
[O∞(M2) O∞(M−1

1)
]
, where M−1

i = (Ai −KiCi,Ki,−Ci).
Then the subspace angles between M1 and M2 are computed as follows:

1. Solve the Lyapunov equation A>QA − Q = −C>C for Q .=
[
Q11 Q12

Q21 Q22

]
,

where

A .=

A1 0 0 0
0 A2 −K2C2 0 0
0 0 A2 0
0 0 0 A1 −K1C1

 and C .=

[
C1 −C2 C2 −C1

]
.

2. Compute the eigenvalues {λi}4n
i=1 of

[
0 Q−1

11 Q12

Q−1
22 Q21 0

]
.

3. The 2n largest eigenvalues are equal to the cosines of the subspace angles
{θi}2n

i=1 between M1 and M2.

Given the subspace angles {θi}2n
i=1 between the observability subspaces of two

dynamical systems, one can define various distances between the two ARMA
models. The Finsler distance dF , the Martin distance dM , and the Frobenius
distance df between M1 and M2 are defined as:

dF (M1,M2) = θmax,

dM (M1,M2)2 = − ln
2n∏

i=1

cos2 θi,

df (M1,M2)2 = 2
2n∑

i=1

sin2 θi.

(7)

The reader is referred to [8] for theoretical and to [3] for implementation details.

4.2 Support vector machines and kernels

A linear SVM classifies the training samples {(s1, g1), . . . , (sN , gN)} by finding
a hyperplane {s|w>s + b = 0} that maximizes the distance to all data points
{si ∈ S}. When the data are linearly separable, the separating hyperplane can
be computed as w =

∑
αisi, where αi 6= 0 only for a few support vectors {si}.

Given (w, b), a new point s is classified as g = sign(
∑

αis
>
i s + b).

When the data are not linearly separable, one can use slack variables to
achieve separability. Alternatively, one can find an embedding Φ : S → F into a
feature space F where a separating hyperplane exists. Since w =

∑
αiΦ(si), a

new point s is classified as g = sign(
∑

αik(s, si) + b), where k : S × S → R is
the kernel k(si, sj) = Φ(si)>Φ(sj). Therefore, classification may be performed
by defining a kernel, without having to specifically compute the embedding Φ.

In order to apply SVM classification to LDSs, we need to define a kernel in
the space of models. Over the past few years, different kernels for LDSs have been

proposed. The Martin kernel [16] is defined from the Martin distance among the
observability subspaces between two dynamical systems M1 and M2 as

kM (M1,M2) = e−γ(dM (M1,M2))
2
, (8)

where γ is a parameter, which is equal to 1 in the original definition in [16].
In [5], Chan and Vasconcelos proposed another metric based on the Kullback-

Leibler (KL) divergence D(PY 1‖PY 2) between the probability distributions PY 1

and PY 2 of the output processes Y 1
.= {yt;1 − µ1 ∈ Rm}∞t=1 and Y 2

.= {yt;2 −
µ2 ∈ Rm}∞t=1. Although these are infinite sequences, one can approximate the
KL divergence using sequences of length τ − 1, Y 1:τ−1

1 ∈ Rm(τ−1) and Y 1:τ−1
2 ∈

Rm(τ−1), because

D(PY 1‖PY 2) = lim
τ→∞

1
τ − 1

D(PY 1:τ−1
1

‖PY 1:τ−1
2

). (9)

In the case of LDSs, the output sequences are distributed as Y 1:τ−1
i ∼ N (Υ i, Φi),

i = 1, 2. Omitting the subscript, Υ = C[(Ax0)>, . . . , (Aτ−1x0)>]> is the mean
of Y 1:τ−1 and Φ = CΣC> + R is the covariance. Here C and R are block
diagonal matrices formed from C and R, respectively, and Σ is a matrix with
block entries Σ(i,j) = Ai−j ∑min(i,j)−1

k=0 AkQ(Ak)> for j ≤ i ≤ τ − 1, and
Σ(j,i) = Σ>

(i,j) for i < j. Thus, the KL divergence between the two sequences
becomes

D(PY 1:τ−1
1

‖PY 1:τ−1
2

) =
1
2
[log

|Φ2|
|Φ1| + trace(Φ−1

2 Φ1) + ‖Υ 1 − Υ 2‖2Φ2
−m(τ − 1)].

(10)
By symmetrizing the KL divergence, we obtain the KL distance dKL

dKL(M1,M2) =
1
2
[D(PY 1:τ−1

1
‖PY 1:τ−1

2
) + D(PY 1:τ−1

2
‖PY 1:τ−1

1
)]. (11)

The KL kernel kKL is then defined by using radial basis functions (RBFs) as

kKL(M1, M2) = e−γ(dKL(M1,M2))
2
, (12)

where γ is a free parameter.
In [22], Vishwanathan et al. introduced the family of Binet-Cauchy kernels

for the analysis of dynamical systems. One of such kernels is called the trace
kernel. In the case of two ARMA models M1 = (x0;1, A1,B1, C1) and M2 =
(x0;2,A2, B2,C2) driven with the same noise realization vt, the trace kernel is

ktr(M1,M2) = trace(Σx0P) +
λ

1− λ
trace(B>

1 PB2Σvt). (13)

Here Σx0 = E
[
x0;1x

>
0;2

]
is the covariance matrix of the initial conditions (as-

suming that E [x0;1] = E [x0;2] = 0), Σvt = Ip with p = n, λ is a parameter
such that 0 < λ < 1, and P ∈ Rn×n is the solution of the Sylvester’s equation
P = λA>

1 PA2 + C>
1 C2. Notice that the kernel ktr can be normalized, and the

normalized trace kernel has the form kT (M1,M2) = ktr(M1,M2)√
ktr(M1,M1)

√
ktr(M2,M2)

.

Furthermore, given the trace kernel kT , one can define a distance metric dT as
dT (M1,M2)2

.= kT (M1,M1)− 2kT (M1,M2) + kT (M2,M2).

5 Experimental evaluation

Experiments are conducted using the audio-visual database MVGL-AVD [12].
The video stream has color video frames of size 720×576 pixels at a rate of 15 fps,
each containing the frontal view of a speaker’s head. In this work, we randomly
select 12 out of 50 subjects from the database and form 3 groups (G4, G8, G12)
composed of 4, 8 and 12 subjects, respectively. Fig. 1(b) illustrates these groups
in such a way that the subjects on the first row form G4, the subjects on the first
two rows form G8, and the subjects on all rows form G12. There are 10 sequences
per subject, making G4, G8, G12 have 40, 80, and 120 sequences respectively.

From the frontal face images of a sequence, we eliminate the head motion and
extract the lip region of size 128×80. By the nature of the speaking, act the length
of the lip sequences, even for the same uttering, may be different. Hence for accu-
rate identification, we perform linear interpolation to the x−, y−, and distance
trajectories, i.e. {Lx,Ly,D}, and extend the length of the sequences to a fixed
number by oversampling the fitted curves. Having obtained the equal-length tra-
jectories as measurements, the parameters of the corresponding ARMA models,
of order n = 3, are identified using both the N4SID and the PCA-based identifi-
cation methods. We use the implementation of N4SID in the MATLAB system
identification toolbox. We then compute the (dis)similarity between pairs
of models using the distances and kernels for LDSs, and perform classification
using both nearest neighbors and support vector machines. To ensure stability,
we scale the eigenvalues of A to lie inside the unit circle. Also, to ensure that the
KL divergence converges, in the computation of the KL metrics we regularize Q
so that Q′ = Q + In to prevent singularities. Finally, we take λ = 0.5 in dT .

5.1 Classification of lip models

We evaluate the classification performance on two different scenarios, namely
the Name scenario and the Digit scenario. In the name scenario each subject
utters ten repetitions of her/his name as the secret phrase, whereas in the digit
scenario each subject utters ten repetitions of a 6-digit number as the password.
It is worth noting that the latter is more challenging than the former as it reveals
discrimination only among speakers.

To evaluate the performance of the different lip features, identification meth-
ods, distances and kernels for LDSs, and classification methods, we performed
classification of the data sets G4, G8, and G12 using leave-one-out classifica-
tion. Table 1 shows the classification errors of all groups in the name and digit
scenarios for both the landmark trajectories L and the distance trajectories D,
using both the N4SID and the PCA-based identification methods, and using
both 1-NN classification with 5 different distances and SVM classification with
3 different kernels. In SVM classification, a one-against-all scheme is used to
learn the multi-class problem. The slack penalty parameter and the kernel pa-
rameters {γ,λ} are selected using 2-fold cross-validation over the training set.
The multi-class SVM training-testing is performed using the LibSVM software
[6].

Table 1. Classification error (%) using leave-one-out classification.

(a) name scenario

1-NN SVM

N4SID-D dF dM df dKL dT kM kKL kT

G4 40 50 40 50 55 95 75 40

G8 79 75 69 79 75 73 92 66

G12 88 83 80 90 78 84 92 73

N4SID-L dF dM df dKL kT kM kKL kT

G4 33 25 30 58 8 20 5 3

G8 58 44 45 64 29 46 17 48

G12 53 42 43 66 44 50 20 49

PCA-D dF dM df dKL kT kM kKL kT

G4 50 45 38 43 30 95 32 33

G8 69 70 65 61 58 76 52 54

G12 74 70 69 68 71 75 55 50

PCA-L dF dM df dKL kT kM kKL kT

G4 38 13 10 3 0 17 0 0

G8 63 41 25 23 33 45 15 25

G12 63 49 34 36 39 47 17 28

(b) digit scenario

1-NN SVM

N4SID-D dF dM df dKL dT kM kKL kT

G4 70 63 50 55 70 57 50 78

G8 79 80 80 90 86 85 82 86

G12 83 83 87 93 89 100 95 88

N4SID-L dF dM df dKL kT kM kKL kT

G4 50 43 28 15 23 32 12 18

G8 70 55 49 54 50 76 48 43

G12 74 64 55 59 50 65 25 57

PCA-D dF dM df dKL kT kM kKL kT

G4 55 50 48 33 75 77 40 60

G8 63 65 64 60 83 65 57 71

G12 78 75 71 73 83 93 78 79

PCA-L dF dM df dKL kT kM kKL kT

G4 43 28 15 13 28 40 10 10

G8 55 46 30 34 45 41 13 31

G12 63 48 33 43 51 64 20 42

In order to analyze the effect of the size of the training set on the classifi-
cation error, we perform another classification experiment for all groups in the
name scenario using the landmark trajectories L as features and the PCA-based
identification method. We use 70%, 50%, and 30% of the data set for training
the SVMs. The results of these experiments are summarized in Table 2(a).

To evaluate the performance of the different ARMA metrics and kernels as
a function of the order of the identified dynamical systems, we perform a third
classification experiment for group G8 in the name scenario using the landmark
trajectories L as features and the PCA-based identification method. Table 2(b)
shows the classification errors for this experiment.

By looking at the results from the different experiments, we can draw the
following conclusions.

1. Feature selection: Tables 1(a) and 1(b) clearly show that the landmark fea-
tures L outperform the distance features D in terms of classification error.
The reason is that, by construction, the lip landmarks contain more local
information than the lip distances. Furthermore, this information is coded in
a feature of much larger dimension. Hence, the more local information a lip
feature vector has, the more powerful it is in terms of discrimination. In fact,
the classification errors obtained using the distance features D are so high
that they cannot be used for classification. From now on we will only use the
landmark features to draw conclusions about the classification performance.

2. Identification method : As shown in Tables 1(a) and 1(b), the PCA-based
method outperforms N4SID in term of classification error for most distances
and kernels. At a first sight, this may come as a surprise, because N4SID
is asymptotically consistent and under some conditions also asymptotically

Table 2. Classification errors (%) as a function of the size of the training set and the
system orders for the name scenario, using L features and PCA-based identification.

(a) Error versus size of the training
set for a system order of n = 3.

SVM

Group Training (%) kM kKL kT

70 8 0 0

G4 50 25 5 5

30 32 3 3

70 41 25 41

G8 50 47 40 47

30 51 28 48

70 38 27 52

G12 50 40 26 51

30 47 30 57

(b) Error versus system order n us-
ing leave-one-out classification.

1-NN SVM

n dF dM df dKL dT kM kKL kT

1 35 31 31 39 40 50 36 32

2 56 35 21 28 31 45 15 36

3 63 41 25 23 33 45 15 33

4 68 43 18 29 35 61 10 21

5 66 40 18 25 39 45 11 20

6 61 41 28 38 41 38 11 21

7 66 36 29 48 36 33 12 23

8 63 30 19 48 32 20 8 17

9 70 36 26 59 32 28 15 15

10 73 46 24 74 34 46 13 22

efficient [2], while the PCA-based method is not. Because of this, the PCA-
based method is often called the sub-optimal identification method [10].
Why does the PCA-method perform better than N4SID then? First of all,
modeling the feature trajectories as the output of a LDS is merely a modeling
assumption, and so the data need not comply with the model. Thus, by
disregarding the relationship between xt and xt+1, the PCA-based approach
allows for some level of non-linearity on the evolution of xt, even if it fits
a linear model thereafter. Second, notice that our evaluation metric is the
classification error, not the identification error. Therefore, a method that is
optimal for identification, need not be optimal for classification.

3. Distances: Among the distances based on subspace angles, the Frobenius
distance df outperforms both the Finsler distance dF and the Martin dis-
tance dM when using 1-NN classification with the landmarks L as features.
In the name scenario (Table 1(a)) df achieves an error rate of 10% in G4,
25% in G8, and 34% in G12. In the digit scenario (Table 1(b)) df achieves an
error rate of 15% in G4, 30% in G8, and 33% in G12. Among the remaining
distances, notice that the performance of the KL divergence dKL and trace
kernel based distance dT is comparable to that of the Frobenius distance df .
In fact, the relative performance of these distances depends on the number
of classes: df often performs better for a large number of classes, whereas
dKL and dT often perform better for a small number of classes. Regarding
the performance as a function of the system order, for 1-NN classification
the best distance is the Frobenius distance df , as shown in Table 2(b).

4. Kernels: When we look at the classification results in Tables 1(a) and 1(b),
we conclude that the KL kernel kKL outperforms the Martin kernel kM and
the trace kernel kT with error rate of 0% in G4, 15% in G8, and 17% in G12

when using 1-NN classification with the landmarks L as features in the name
scenario, and with an error rate of 10% in G4, 13% in G8, and 20% in G12 in
the digit scenario. In addition, as shown in Table 2(a), kKL is also the best

kernel in terms of its robustness with respect to the size of the training set.
Furthermore, the KL kernel also shows the best performance for different
system orders, as shown in Table 2(b). In fact, the KL kernel achieves the
best classification result for G8 with an error of 8% when the order is n = 8.

5. Classification method: Tables 1(a) and 1(b) show that SVMs yield lower
errors than 1-NN with a decrease in the error rate from 34% to 17% for G12

in the name scenario, and from 33% to 20% for G12 in the digit scenario.
In addition, as the system order changes in Table 2(b), the kKL kernel used
with SVMs outperform all other metrics with 1-NN classification.

5.2 Synthesis of Lip Dynamics

Figures 3(a) and 3(b) illustrate consecutive frames of a lip sequence with the
original features and the synthesized features. It is observed that the synthe-
sized landmarks are close to the original ones and follow them according to the
learned dynamical models. In Fig. 3(b), the synthesized distances are placed
in such a way that the middle point of each distance is the mean point of 2
vertical landmarks, and still the discrepancy between the landmarks is small.
Thus the lip articulation is accurately animated with the landmark Lxy and dis-
tance features D. We also show the time evolution of the average error between
the true and the synthesized lip articulation for 120 synthesized videos in the
name scenario. Fig. 4(a) shows error plots for the 4 most critical landmarks, i.e.
{p1, p3, p5, p6}, and Fig. 4(b) shows error plots for the 4 distance features with
maximum discrepancy, i.e. {l7, l8, l9, l10}. It can be seen that these errors are
within an acceptable range of [0, 5] pixels, with a maximum of 3.75 pixels for the
landmark features and 4.4 pixels for the distance features. The average lip size
is 50× 80 pixels.

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

(a) The original (red) and synthesized
(blue) lip landmarks for the first 9 frames
of a sequence

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

0 50 100
0

20

40

60

80

(b) The original (red) and lip landmarks
created from synthesized distances (blue)
for the first 9 frames of a sequence

Fig. 3. Synthesis results using landmark and distance based features.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Average Errors

Time (frames)

A
vg

. E
rr

or
 (

pi
xe

ls
)

P
1

P
3

P
5

P
6

(a) Landmark features Lxy

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Average Errors

Time (frames)

A
vg

. E
rr

or
 (

pi
xe

ls
)

L
7

L
8

L
9

L
10

(b) Distance features D
Fig. 4. Time evolution of the error between true and synthesized lip articulation.

6 Conclusion

An analysis/synthesis methodology that models lip articulation in the space of
dynamical systems has been proposed. In this setting, using intelligent lip fea-
tures not only gives good classification and accurate animations, but also helps
us model highly complex dynamics that are nonlinear and non-stationary in the
intensity space. Among the lip features that are fed to the system, landmark
trajectories are shown to possess adequate local information, which gives dis-
criminative power to the classifier. Furthermore, it has been demonstrated that
the PCA-based approach, which is mostly preferred for dynamic texture recog-
nition, outperforms the N4SID in terms of classification performance. Moreover,
the Frobenius distance provides the best classification results among other sub-
space angles based distances for 1-NN, whereas the Kullback-Leibler kernel is
shown to be the best kernel for SVM classification. Lastly, the corresponding
synthesis scheme modified for natural lip movements can create accurate and
realistic lip sequences.

In the future, not only can kernels derived from the Frobenius distance be
employed for classification, but also hybrid systems can be used for system iden-
tification. Further research is also needed for determining the best system order.
The proposed framework could be integrated with speech modality to obtain
more accurate lip dynamics, which makes it possible to use in audio-visual speech
synthesis, facial animations, lip reading education of hard of hearing people, and
biometric security systems.

Acknowledgements

The authors thank Antoni Chan for providing the KL divergence code, and Dr.
Mihály Petreczky and Avinash Ravichandran for useful discussions. This work
has been funded by Johns Hopkins WSE startup funds and by grants ONR
N00014-05-10836, NSF CAREER IIS-0447739, and NSF EHS-0509101.

References

1. G. Aggarwal, A. Roy-Chowdhury, and R. Chellappa. A system identification ap-
proach for video-based face recognition. In IEEE International Conference on
Pattern Recognition, pages 23–26, 2004.

2. D. Bauer. Asymptotic properties of subspace estimators. Automatica, 41(3):359–
376, 2005.

3. A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto. Recognition of human gaits. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 52–58, 2001.

4. H. E. Çetingül, E. Erzin, Y. Yemez, and A. M. Tekalp. Discriminative analysis of
lip motion features for speaker identification and speech-reading. IEEE Trans. on
Image Processing, 15(10):2879–2891, 2006.

5. A. B. Chan and N. Vasconcelos. Probabilistic kernels for the classification of auto-
regressive visual processes. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 846–851, 2005.

6. C.-C. Chang and C.-J. Lin. LIBSVM : a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

7. T. Chen. Audiovisual speech processing. IEEE Signal Processing Magazine, pages
9–21, 2001.

8. K. D. Cock and B. D. Moor. Subspace angles and distances between ARMA
models. System and Control Letters, 46(4):265–270, 2002.

9. E. Cosatto, J. Ostermann, H. P. Graf, and J. Schroeter. Lifelike talking faces for
interactive services. Proceedings of the IEEE, 91(9):1406–1429, 2003.

10. G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. Dynamic textures. International
Journal of Computer Vision, 51(2):91–109, 2003.

11. G. Doretto and S. Soatto. Editable dynamic textures. In IEEE Conference on
Computer Vision and Pattern Recognition, volume II, pages 137–142, 2003.

12. E. Erzin, Y. Yemez, and A. M. Tekalp. Audio-visual database (MVGL-AVD), Mul-
timedia, Vision and Graphics Laboratoty, Koç University. http://mvgl.ku.edu.tr/.

13. N. Eveno, A. Caplier, and P.-Y. Coulon. Accurate and quasi-automatic lip tracking.
IEEE Trans. on Circuits and Systems For Video Technology, 14(5):706–715, 2004.

14. T. Katayama. Subspace Methods for System Identification. Springer-Verlag, 2005.
15. S. A. King and R. E. Parent. Creating speech-synchronized animation. IEEE

Trans. on Visualization and Computer Graphics, 11(3):341–352, 2005.
16. R. J. Martin. A metric for ARMA processes. IEEE Trans. on Signal Processing,

48(4):1164–1170, 2000.
17. J.-M. Odobez, P. Bouthemy, and F. Spindler. Motion2D: a software to estimate

2D parametric motion models. http://www.irisa.fr/vista/Motion2D/.
18. P. V. Overschee and B. D. Moor. N4SID : Subspace algorithms for the identifi-

cation of combined deterministic-stochastic systems. Automatica, Special Issue in
Statistical Signal Processing and Control, pages 75–93, 1994.

19. P. Saisan, A. Bissacco, A. Chiuso, and S. Soatto. Modeling and synthesis of facial
motion driven by speech. In ECCV, pages 456–467, 2004.

20. P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto. Dynamic texture recognition. In
IEEE Conf. on Computer Vision and Pattern Recognition, pages 58–63, 2001.

21. M. Szummer and R. W. Picard. Temporal texture modeling. In IEEE International
Conference On Image Processing, volume 3, pages 823–826, 1996.

22. S. Vishwanathan, A. Smola, and R. Vidal. Binet-Cauchy kernels on dynamical
systems and its application to the analysis of dynamic scenes. International Journal
of Computer Vision, 73(1), 2007.

23. L. Yuan, F. Wen, C. Liu, and H.-Y. Shum. Synthesizing dynamic texture with
closed-loop linear dynamic system. In European Conference on Computer Vision,
pages 603–616, 2004.

