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ABSTRACT

CNN-based models currently provide state-of-the-art performance in image categorization tasks.
While these methods are powerful in terms of representational capacity, they are generally not con-
ceived with explicit means to control complexity. This might lead to scenarios where resources are
used in a non-optimal manner, increasing the number of unspecialized or repeated neurons, and over-
fitting to data. In this work we propose CompactNets, a new approach to visual recognition that
learns a hierarchy of shared, discriminative, specialized, and compact representations. CompactNets
naturally capture the notion of compositional compactness, a characterization of complexity in com-
positional models, consisting on using the smallest number of patterns to build a suitable visual rep-
resentation. We employ a structural regularizer with group-sparse terms in the objective function, that
induces on each layer, an e�cient and e↵ective use of elements from the layer below. In particular,
this allows groups of top-level features to be specialized based on category information. We evaluate
CompactNets on the ILSVRC12 dataset, obtaining compact representations and competitive perfor-
mance, using an order of magnitude less parameters than common CNN-based approaches. We show
that CompactNets are able to outperform other group-sparse-based approaches, in terms of perfor-
mance and compactness. Finally, transfer-learning experiments on small-scale datasets demonstrate
high generalization power, providing remarkable categorization performance with respect to alterna-
tive approaches.

c� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few years, deep learning techniques have achieved

state-of-the-art performance in most, if not all of visual recogni-

tion tasks, ranging from image classification (Krizhevsky et al.,

2012), to semantic segmentation (Badrinarayanan et al., 2017),

to visual question answering (Jahangiri et al., 2017). At the

heart of these impressive results lies their deep hierarchical

compositional structure, which allows them to learn powerful

mid-level representations that serve as a shared and flexible set

of building blocks for modeling a large variety of visual cate-
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gories.

Several works have studied the hierarchical structure of deep

neural networks (Giryes et al., 2015; Hae↵ele and Vidal, 2015;

Montufar et al., 2014; Bruna and Mallat, 2013; Choromanska

et al., 2015), showing among other results, that depth and com-

positionality play a critical role to learn suitable representa-

tions. However, as noted in (Geman et al., 2002; Zhu and Mum-

ford, 2006; Jin and Geman, 2006), in order to take full advan-

tage of compositionality, models should control their complex-

ity, specifically the compositional construction of new elements

in the hierarchy. We can characterize this complexity as the

number of lower-level elements used to compose new ones. In

the case of modeling object categories, controlling complexity
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translates into using the smallest number of building blocks to

compose an object, without sacrificing categorization perfor-

mance. We call this property the compositional compactness

of a hierarchical compositional model.

Generally, visual recognition models based on CNNs do not

explicitly consider compositional compactness. Specifically,

this type of models do not constrain the information coming

from the channels of the preceding layers. Most previous re-

search has focused on the raw capacity of the models, exploring

their width and depth, giving place to architectures with vast

representational power, but with a massive amount of param-

eters (Simonyan and Zisserman, 2015). As shown in (Zeiler,

2012), this unnecessarily increases the size of parameter space,

by generating repeated, unspecialized, or even dead units, and

also increasing the risk of overfitting (Cogswell et al., 2016).

A few works include special constrains to control complexity,

such as (Scardapane et al., 2017; Alvarez and Salzmann, 2016;

Wen et al., 2016), however, their main goal is only limited to

achieve network compression. In this work, we argue that a

mechanism to induce compositional compactness into deep hi-

erarchical models should lead to more specialized, less redun-

dant, and therefore, more semantically meaningful representa-

tions. Furthermore, a more compact representation should also

lead to a less complex model with improved categorization per-

formance and lower risk of overfitting.

Paper Contributions: In this work we present Compact-

Nets, a deep hierarchical compositional model that explicitly

takes into account compositional compactness at all levels of

the hierarchy, e↵ectively specializing network units. Our main

contribution is a scheme to structurally induce compositional

compactness, by controlling the complexity and shape of the

parameter space for each network unit independently. The ap-

proach is based on a hierarchical variation of group-sparsity-

based regularization, that is able to regulate parameter learning

at all abstraction levels of the model. This allows us to struc-

turally induce compositional compactness, by controlling the

complexity and shape of the parameter space for each network

unit independently. As a result, the resulting models present

compact and specialized representations at all levels of abstrac-

tion and with only a fraction of the number of active parame-

ters of an unconstrained approach. Structural regularization is

a topic of increasing relevance for the deep learning commu-

nity, consequently we believe that our approach constitutes a

relevant contribution towards more robust and e�cient visual

recognition systems.

In terms of experimental evaluation, the CompactNet model

shows superior performance when compared with related ap-

proaches in the ILSVRC12 dataset. In particular, the pro-

posed method is able to generate representations that are more

compact and transferable than the ones obtained by competing

approaches, which include group-sparse regularization-based

methods and standard CNNs such as AlexNet (Krizhevsky

et al., 2012). Regarding e�ciency, CompactNets have an ex-

tremely small footprint, without sacrificing performance. By

increasing the strength of the regularization, we are able to

match the performance of AlexNet, using 25x less parameters.

As the proposed methodology is orthogonal to methods that

seek network size reduction, such as (Iandola et al., 2016), we

argue that it can be jointly applied to obtain even further size

reductions. Finally, based on qualitative analyses, we show that

the learned units are able to capture human-interpretable visual

patterns in a more specialized and compact manner than alter-

native approaches. Also, as expected, we observe that Com-

pactNets capture the compositional compactness property with

di↵erent strength depending on the depth, with a higher degree

of specialization in deeper layers. We argue that this behavior

relates to the natural growth in the number of visual patterns

needed to model more complex visual abstraction levels.

Paper Outline: The remainder of this article is organized as

follows: Section 2 reviews relevant previous works. Section 3

presents the basic elements of the proposed model. Section 4

describes the proposed learning algorithm which incorporates

compositional compactness. Section 5 presents the qualita-

tive and quantitative evaluation performed on di↵erent datasets.

Finally, Section 6 presents the conclusions and open research

questions.
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2. Related Work

The importance of compact compositional models has been

noticed in the early visual recognition literature (Potter, 1999;

Geman et al., 2002). A fruitful line of work is that of stochas-

tic visual grammars (Zhu and Mumford, 2006; Tu et al., 2013).

In these works, grammars able to to learn compact hierarchical

models of visual elements, generally using a relatively small

vocabulary and a few compositional rules, are used to repre-

sent an exponentially large number of di↵erent configurations.

These techniques have been used in various visual recognition

tasks to model elements such as faces (Suo et al., 2010), objects

(Girshick et al., 2011), and actions (Albanese et al., 2010). A

di↵erent approach is taken in (Lobel et al., 2015), where a shal-

low dictionary learning-based recognition model uses a group-

sparse regularization term to e↵ectively induce a behavior akin

to compositional compactness, but only at the top-level classi-

fication.

Compact models have also been explored in the context

of CNN-based visual recognition models. Most related ap-

proaches focus on reducing the size of the parameter space, by

avoiding redundancies given by highly correlated coe�cients

(Denil et al., 2013; Ioannou et al., 2016; Tai et al., 2016). Con-

versely, in (Wen et al., 2017; Alvarez and Salzmann, 2017), ex-

plicit regularization is used in order to generate highly corre-

lated and redundant filters in each layer, that are then e�ciently

compressed by means of a post-training low-rank approxima-

tion. Another popular approach is the use of parameter pruning

(Han et al., 2015; Li et al., 2017; Zhu and Gupta, 2018). In

these works, a previously trained CNN is pruned, by remov-

ing weights that show low contribution to the overall predic-

tion. Results show that pruned networks present almost no per-

formance loss when compared to the dense versions. Recent

works based on explicit parameter regularization show the rele-

vance of introducing compact CNN-based models (Zhou et al.,

2016; Alvarez and Salzmann, 2016; Wen et al., 2016; Scarda-

pane et al., 2017). By using group-sparsity inducing terms in

the loss function, these works are able to dynamically limit the

number of units or channels used by each of the network’s lay-

ers, leading to a dramatic reduction on the e↵ective number of

used parameters, while keeping performance competitive. Al-

though these works also use group-sparse regularization, the

scheme we propose gives rise to di↵erent regularization terms.

Specifically, our focus is related to enhancing the learning capa-

bilities of deep hierarchical models by independently exploiting

the compositional compactness present in each unit of a hierar-

chical model, while theirs is mainly on network compression.

Another line of research related to compact models has fo-

cused on architectural improvements. An example of this

is (Springenberg et al., 2015), where all pooling and fully-

connected layers are removed. This modification results in a

simpler network with competitive performance, showing that

some of the elements of traditional CNNs are not mandatory to

obtain reasonable performance. In (Changpinyo et al., 2017),

a pre-defined fraction of connections between input and output

channels is deactivated in convolutional layers, such that the

number of parameters can be drastically reduced. Although

similar in spirit, the key di↵erence with respect to our ap-

proach is the fact that connections are discarded before train-

ing, limiting the ability to adapt to data complexity. Finally,

the SqueezeNet architecture (Iandola et al., 2016) takes the no-

tion of dimensionality reduction layers of (Szegedy et al., 2015)

a step further, reducing the number of parameters 50x when

compared to the AlexNet architecture, while maintaining simi-

lar performance.

3. Model Description

Here we describe the proposed CompactNet architecture.

The model is divided into two types of layer, namely feature

extraction and classification. An L layer hierarchy is composed

of L� 1 feature extraction layers and a final classification layer.

Figure 1 shows a high-level description of these components.

3.1. Feature extraction layer

Each feature extraction layer consists of four modules. Input

feature maps (or image pixels in the first extraction layer) are

convolved with K convolutional filters of size 3⇥3 (7⇥7 in the
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Fig. 1: A high-level description of the proposed hierarchical structure. We di↵erentiate between feature extraction layers and a classification layer. Each of them is

formed by several components.

first layer). After this, a batch-normalization module is applied,

followed by a ReLU nonlinearity. Finally, a max-pooling op-

erator with receptive field of 3 pixels and a stride of 1 pixel is

applied, in order to keep only the most salient features. To keep

computational load bounded, every time the number of convo-

lutional filters is doubled, the stride in the max-pooling opera-

tion is also doubled. Finally, on each feature extraction layer,

except from the first and the ones where the number of filters is

doubled, the dimensionality of input and output feature maps is

the same.

The set of parameters of the K
l convolution filters in layer l,

are contained in the visual dictionary ⇥l, modeled as a tensor

with dimensions K
l ⇥ K

l�1 ⇥ S , where S is the size of the filters

(7 ⇥ 7 = 49 for the first module, 3 ⇥ 3 = 9 for the rest).

3.2. Classification layer

The classification layer consists of three modules. It initially

processes input feature maps by means of a spatial pyrami-

dal decomposition (Lazebnik et al., 2006) of depth d, which

generates R =
P

d

1 22(d�1) spatial regions, each containing K
L�1

feature maps. After this, each region is processed by a max-

pooling operator, producing a feature map of size R ⇥ K
L�1.

This feature map is finally processed by a linear soft-max mod-

ule, which outputs the probabilities for each of the Y possible

visual categories.

Similar to the feature extraction layers, the parameters of the

soft-max module are contained in tensor W, with dimensions

Y ⇥ K
l�1 ⇥ R.

4. Learning Compact Compositional Models

In this section we present the proposed regularized learning

scheme to estimate the CompactNet model parameters. We take

ideas from the shallow model described in (Lobel et al., 2015)

and generalize them to deep visual hierarchies.

4.1. Learning Problem

Given a set of training examples {xi, yi}Ni=1, where xi refers

to the i-th image and yi to its corresponding visual category,

we propose to obtain estimates for the parameters ⇥l and W by

solving a regularized learning problem:

argmin
W,⇥l

CW⌦(W) +C⇥

L�1X

l=1

�l(⇥l) +
1
N

NX

i=1

L(xi, yi; W,⇥), (1)

where L is the standard cross-entropy loss (we also evaluated

a hinge-loss, showing no considerable di↵erences). In this for-

mulation, ⌦ and �l are convex regularizers and CW ,C⇥ > 0 are

regularization constants. We describe next the details behind

the terms of the learning problem.

4.2. Compositional Compactness

To fully specify the formulation in Eq. (1), we need to select

appropriate regularizer. As previously described, the main ob-

jective is to capture the property of compositional compactness

by structurally controlling the complexity of the model. Our

main goal is to increase specialization and decrease the redun-

dancy of convolutional filters, leading to a more e�cient and

meaningful representation.

As shown in (Lobel et al., 2015), on a shallow model a pow-

erful and e�cient way to achieve the previous goal is to use
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a group-sparse regularizer on the top-level classifiers weights.

Such a regularizer enforces each category classifier to use only a

selected subset of feature maps (convolutional layers in the pre-

vious layer), while maintaining recognition performance. The

e↵ects of this regularization strategy are twofold. First, it gen-

erates a behavior where subsets of the learned filters are shared

by only a small number of categories, making them more spe-

cialized. Second, if a filter is not part of any subset, it is dis-

carded from the model, as it is not used by any category. We

use a similar approach here for the top-level classifier, generat-

ing pruning, specialization, and category-level sharing in filters

from the layer immediately below (L � 1). More formally, we

define the regularizer ⌦(W) as follows:

⌦(W) = (1 � ↵)
1
2
kWk2

F
+ ↵

YX

y=1

K
L�1X

k=1

kWy,k,·k. (2)

First term in Eq. (2), corresponds to a common `2-norm regu-

larizer used in SVMs and CNNs (weight decay), which seeks to

reduce the risk of overfitting. Second term,
P

Y

y=1
P

K
L�1

k=1 kWy,k,·k,
uses an `1,1,2-norm, i.e. a sum of of euclidean norms of certain

groups in the last dimension of the tensor, to independently pe-

nalize the number of feature maps used by each classifier. Both

terms are additively combined using the ↵ constant, which con-

trols their relative importance. To understand how this regular-

izer accomplishes this goal, consider that if filter k contributes

to the classification of instances from class y, then we must have

Wy,k,r , 0 for some r 2 [1,R], hence kWy,k,·k =
qP

r W
2
y,k,r , 0.

Thus, the total number of filters (feature maps) used by all

classes is given by:

YX

y=1

K
L�1X

k=1

�(

vut
RX

r=1

W
2
y,k,r > 0), (3)

where � denotes the Kronecker delta function. As common in

sparse representation-based methods, we replace the counting

norm by the `1-norm and approximate the total number of filters

used by the classifier as:

YX

y=1

K
L�1X

k=1

C(y, k) =
YX

y=1

K
L�1X

k=1

kWy,k,·k, (4)

where C(y, k) denotes the contribution of filter k to the classifi-

cation of instances from class y.

The expression in Eq. (4) exactly coincides with the second

term of Eq. (2), which can be interpreted as a convex relax-

ation for the total number of filters used by all classes (Eq. (3)).

In terms of the e↵ects of the group-sparse term of the regular-

izer, as classifiers use as few feature maps as possible, higher-

level filters are specialized to categories where they contribute.

Moreover, this also means that if the contribution of a filter to

all classes is equal to zero, then its weights will be zero, e↵ec-

tively discarding it from the model and reducing the e↵ective

size of the visual dictionary.

As noted in (Zou and Hastie, 2005; Wang et al., 2006), by

mixing an `2-norm and a sparsity-inducing norm, we are keep-

ing the best of both regularizers. In our case, this means obtain-

ing classifiers with high generalization power (`2-norm), with

compact representations (`1,1,2-norm), exactly what composi-

tional compactness seeks. An illustration of the operation of

regularizer ⌦ on tensor W can be seen in Figure 2.

R

KL-1

Y

Fig. 2: An illustration of the operation of regularizer ⌦(W). Tensor W is rep-

resented as a cuboid of dimensions Y ⇥ K
L�1 ⇥ R, while the planes Wŷ and Wỹ

represent the classifiers of categories ŷ and ỹ, respectively. Red bars, of dimen-

sions 1 ⇥ 1 ⇥ R, represent groups of zeroed parameters, consisting of all the

coe�cients from a given classifier that act on the feature map generated by a

given filter k in layer L�1. Notice that in this case, Wŷ and Wỹ discard di↵erent

feature maps, meaning the associated units are being specialized on di↵erent

categories.

Based on the regularization strategy for classifiers (Eq. (2))

and the representation described in Section 3, we propose a

strategy to regularize the remaining layers of the hierarchi-

cal model by inducing a compositional compactness behavior,

where filters from a given layer minimize the number of active

features maps from the previous layer. Specifically, we define

regularizers �l for l 2 [1, L � 1]. This strategy allows features
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in all layers to be specialized to visual patterns, that share rep-

resentations at certain levels of abstraction.

We define the contribution of a filter t in layer l � 1 to a filter

k in layer l as:

C
l(k, t) =

vut
SX

s=1

⇥l

k,t,s
2
= k⇥l

k,t,·k. (5)

Using C
l(k, t) and similarly to Eq. (2), we formally define

regularizer �l(⇥l) as follows:

�l(⇥l) = (1 � �l)
1
2
k⇥lk2

F
+ �l

K
lX

k=1

K
l�1X

t=1

k⇥l

k,t,·k. (6)

As in Eq. (2), the two terms of the regularizer are mixed

by a constant, but now this constant depends on the depth of the

dictionary, providing a method to control the level of sparsity of

each layer. This is a non-trivial aspect of our model, as it allows

us to increase or decrease the degree of specialization of the

dictionaries. In particular, as one would expect more specific

visual patterns, and a greater number of them, when abstraction

level increases, this mechanism of control allows CompactNets

to capture this situation by means of increasing specialization

with depth.

The first term (`2-norm) of Eq. (6) remains the same, while

the second one (`1,1,2-norm) focuses on groups of size S within

dictionary filters. Each of these groups is formed by the coe�-

cients that act on features generated using a certain filter t from

the layer below. Thus, as the `1,1,2-norm seeks to set to zero

all the elements in a group, filters use e↵ectively as few feature

maps from the previous layer as possible.

4.3. Learning Scheme

To solve the learning problem in Eq. (1), we use stochas-

tic gradient descent with momentum. It is important to men-

tion that the group-sparse regularizers used to induce composi-

tional compactness are non-di↵erentiable at some points, thus

forcing the use of sub-gradients (Shor, 1985). As sparse so-

lutions generally lie on points of non-di↵erentiability and sub-

gradients rarely lead accurately to such points (Shalev-Shwartz

and Tewari, 2011), we employ a thresholding strategy after

training in order to generate sparse solutions (see details in Sec-

tion 5).

5. Experimental evaluation

This section presents a comprehensive evaluation of the

CompactNet model. The main focus is to analyze the main

e↵ects of our group-sparse regularization strategy in terms of

compositional compactness and recognition accuracy. In par-

ticular, we analyze the impact of our strategy with respect to

the depth of each layer in the network. We base our analysis

mainly on the ILSVRC12 dataset, that we used to compare our

approach with respect to related approaches.

5.1. Implementation details

Evaluated Architectures: To highlight the advantages of the

CompactNet architecture with respect to models based on alter-

native regularization schemes that have appeared in the litera-

ture (Springenberg et al., 2015; Zhou et al., 2016; Alvarez and

Salzmann, 2016; Wen et al., 2016; Scardapane et al., 2017), we

implement two competing models that we refer as SimpleNet

and CompressedNet. SimpleNet consists of only the applica-

tion of an `2-norm term to the parameters, e↵ectively eliminat-

ing any regularizer-induced sparsity, while keeping the rest of

the architecture the same. This model is similar to (Springen-

berg et al., 2015). More formally, for the SimpleNet scheme we

set ↵ = 0 in Eq. (2) and �l = 0 in Eq. (6).

CompressedNet focuses on discarding as many units in every

layer as possible, akin to the models described in (Zhou et al.,

2016; Alvarez and Salzmann, 2016; Wen et al., 2016; Scarda-

pane et al., 2017), representing a relevant comparison point, as

CompactNets seek to discard groups of connections between

layers, but not whole units. More formally, the CompressedNet

architecture sets ↵ = 0 in Eq. (2) and swaps the � regularizer

for a new  regularizer, defined as follows:

 l(⇥l) = (1 � �)1
2
k⇥lk2

F
+ �

K
lX

k=1

k⇥l

k,·,·k. (7)

The regularizer defined in Eq. (7) tries to shrink the `2-norm of

the weights of each filter as far as possible, e↵ectively leaving

filters that are not needed with a zero `2-norm. A depiction

of the operation of regularizer  on tensors ⇥l can be seen in

Figure 3.
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S

Kl-1

Kl

Fig. 3: An illustration of the operation of regularizer l(⇥l). Tensor⇥l is repre-

sented as a cuboid of dimensions K
l ⇥ K

l�1 ⇥ S , where S is the dimensionality

of filters in layer l � 1. A red plane represents groups of zeroed parameters,

consisting of all the coe�cients from a given filter. Notice that in this case,

only filter ⇥l

k
is discarded.

Weight initialization: We use the procedure described in (He

et al., 2015b). This consists of initializing the parameters of

each layer l using random coe�cients with a normal distri-

bution with zero mean and standard deviation set to
q

2
S Kl�1 ,

where S is the dimensionality of filters in layer l � 1, and K
l�1

is the number of filters in layer l � 1. The classification layer

is initialized using a normal distribution with zero mean and

standard deviation set to
q

2
21KL .

Dataset Details: We use the ILSVRC12 benchmark dataset

(Russakovsky et al., 2015). This large-scale set contains 1.35M

color images (1.2M training, 50K validation, 100K testing),

evenly divided into 1000 di↵erent object categories. We use

the standard evaluation procedure, with 1.2K images per class

for training and 50 for validation.

Optimization: As states in Section 4, we solve the optimiza-

tion problem in Eq. 1 using SGD with momentum. We use

batches of 256 elements, a momentum factor of 0.9, and initial

learning rate of 0.1, including a scheduled reduction with a fac-

tor of 0.1 every 30 epochs. We train the models for 90 epochs.

Data Augmentation: We follow the procedure in (Krizhevsky

et al., 2012). First, we downsize all images to 256⇥ 256 pixels.

During training, we randomly extract one 224 ⇥ 224 crop from

each image, a di↵erent crop each time the image is processed,

and use it to compute the loss and the derivative. When testing,

we extract five 224 ⇥ 224 patches, four corner patches and the

center patch, as well as their horizontal reflections, obtaining

10 di↵erent crops. Test-time categorization is performed by

averaging the predictions made for each crop and reporting the

class with the highest average score.

Source code: We will make available a PyTorch implementa-

tion of the CompactNet in https://github.com/halobel/

CompactNet/. The implementation will also include imple-

mentations of SimpleNet and CompressedNet architectures as

well.

5.2. E↵ect of Regularization on the Parameters

In this section we analyze how the group-sparse regulariza-

tion schemes, CompactNet and CompressedNet, a↵ect the pa-

rameter space. We compare it to a case where no group-sparse

regularization is applied. More specifically, our intention is

twofold, namely i) to assess which and how many of the con-

nections between layers are discarded (zeroed), and ii) how this

varies depending on the layer and overall depth of the model.

All instantiations in this section share the following set of

common characteristics. In terms of dictionary size, we keep

the number of filters fixed at 256 for each layer. This minimizes

the impact of other structural elements, other than the regular-

ization scheme being used. Regularization constants CW and

C⇥ are both set to 1e
�4 in Eq. (1), while for the CompactNet

model, ↵ and �l are set to 0.01 in Eqs. (2) and (6), respectively

(�1 is set to 0, as the first dictionary acts on pixels). For the

CompressedNet model, � = 0.1. For a more in-depth analysis

of regularization constants values, see Section 5.3.2.

5.2.1. Sparsity of the parameters

We assess the sparsity of the parameters, i.e., the ratio be-

tween the zeroed parameters and the total number of parame-

ters, and relate it to the categorization performance of Compact-

Net, CompressedNet, and SimpleNet models. We use di↵erent

instantiations of the models with increasing depth. In all the

tests, we compute sparsity by zeroing all weights with an ab-

solute value less than 1 ⇥ 10�5. This value was experimentally

selected as the largest one that does not decrease performance.

We use top-1 error-rate as metric and report performance on
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the validation set, as test set labels are not publicly available.

Figure 4 and Table 1 present the results of the experiments.

2 3 4 5 6 7
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Effect of depth in the level of sparsity of models
with different regularization strategies
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Fig. 4: Sparsity of di↵erent instantiations of all three models, with depths rang-

ing from 2 to 7 layers. As depth increases, it is possible to observe a significant

increase in the sparsity of the parameters of CompactNet and CompressedNet

models. In contrast, SimpleNet models show only a slight increase. This in-

dicates that the total number of parameters used on deeper structures can be

drastically reduced.

Figure 4 shows that as the number of layers increases, the

sparsity of the parameters also increases in the group-sparse

regularized models (CompactNet and CompressedNet), i.e. the

number of inactive (zeroed) connections between layers in-

creases. This is to be expected, given that shallower mod-

els lack the complexity to correctly classify most examples,

thus discarding weights is counterproductive. However, deeper

models with a larger parameter space are more susceptible to

discard superfluous parameters. This indicates that on deep

models, with high expressive power, adaptive complexity con-

trol strategies based on group-sparse regularization, provide a

suitable mechanism to structurally adjust the number of active

parameters, validating our intuition regarding filter compact-

ness.

Regarding categorization performance, Table 1 shows top-1

error-rate for the same models presented in Figure 4. As ex-

pected, all methods show a steep descent in error-rate as depth

increases. However, the remarkable element about this be-

havior is that the three methods present similar performance,

with a slight advantage to CompactNet as depth increases, even

Performance as a function depth

Method 2 3 4 5 6 7

SimpleNet 74.6 64.2 55.7 48.8 43.8 41.0

CompressedNet 76.0 65.6 56.3 47.2 43.0 40.3

CompactNet 75.5 66.1 57.2 47.6 42.1 40.2

Table 1: Top-1 error error rate for di↵erent instantiations of all three models,

with depths ranging from 2 to 7 layers. Performance for all methods is similar

and increases with depth, showing subtle signs of advantage to CompactNets in

the deepest instantiations.

though the CompactNet and CompressedNet models need ap-

proximately 20% less parameters than SimpleNet. This means

that the e↵ects of capturing compositional compactness not

only helps in reducing the model footprint, but also in removing

elements that end up degrading categorization performance.

In summary, these results show that a commonly dense

model can be trained to be more compact, with the consequent

advantages in terms of performance and storage requirements.

5.2.2. Structure of the discarded parameters of CompactNets

Another aspect worth exploring of the CompactNet archi-

tecture is the structure of the discarded parameters, as it can

provide valuable information about the characteristics of the

learned representations, in terms of filter compactness, com-

plexity, and specialization of the di↵erent layers. To achieve

this, we define three metrics to quantify the sparsity of the pa-

rameters at each layer of a model.

• Dictionary sparsity: Defined for a layer l as the ratio be-

tween the number of filters with all weights set to zero, and

the total number of filters in dictionary ⇥l. In other words,

the fraction of filters that are discarded in a layer.

• Average compactness: Defined for a layer l as the ratio

between the average number of filters from layer l�1 with

contribution equal to zero, to filters/classifiers in layer l,

and the total number of filters in ⇥l�1, the dictionary of

layer l � 1. In other words, the fraction of channels that

filters in layer l discard on average. See Eqs. (4) and (5)

for more details regarding filter contribution.
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• Layer sparsity: Defined for a layer l as the ratio between

the number of zeroed parameters and the total number of

parameters in the layer. For any given layer, the sum of

dictionary sparsity and average compactness is equal or

less than the layer sparsity, as there are coe�cients that

are zeroed in an unstructured manner in filters/classifiers.

Intuitively, dictionary sparsity captures the complexity of a

layer in terms of the number of di↵erent visual patterns that it

needs to model. Average compactness captures a notion of the

complexity and specialization of filters/classifiers in a layer, as

it quantifies the average number of filters that are not used by

a given classifier at the next hierarchy level (group-based spar-

sity). The layer sparsity is included in order to explicitly com-

pare the contribution of dictionary sparsity and average com-

pactness to the overall sparsity of the layer. Figure 5 shows the

three metrics for each of the layers of a CompactNet-7 model (7

layers) trained on the ILSVRC12 dataset. Notice that the struc-

ture of the network follows the one described in 5.2 therefore

each layer has 256 filters available.
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Fig. 5: Dictionary sparsity, average compactness, and layer sparsity metrics for

each layer of a CompactNet-7 model. Most of the structurally discarded pa-

rameters come from the classification layer, and from the higher-level feature

learning layers, as illustrated by the narrow gap between average compactness

and layer sparsity. This can be intuitively explained by the fact that the captured

visual patterns present a high level of abstraction, thus having higher special-

ization to certain categories.

As Figure 5 illustrates, the contribution of the dictionary

sparsity and average compactness to the sparsity level of a layer

strongly di↵er in their behaviors. In lower layers, the level of

dictionary sparsity indicates that a significant number of filters

is dropped from the model, thus reducing the complexity of the

layers. This means that lower layers need less than the available

256 filters to provide a suitable representation of the training

data. An observation that agrees with the typical architecture

used in most current CNN models.

In terms of the level of average compactness observed in

lower layers, the low value indicates that the model learns fil-

ters with low specialization. This means that lower layers learns

highly general filters that are useful to most filters in the next

layer. This observation also agrees with the typical features

learned by CNN models (Zeiler and Fergus, 2014).

As one goes up in the hierarchy, dictionary sparsity falls to

a negligible level, indicating that higher layers need to cap-

ture a larger number of diverse visual patterns than lower ones,

and that most likely need dictionaries larger than 256 filters.

This comes tied with the fact that on higher layers, the aver-

age compactness is notably higher than in lower layers, a sign

of a higher degree of filter specialization. Furthermore, av-

erage compactness almost reaches the layer sparsity, showing

that most of the structurally discarded parameters on these lay-

ers come from the specialization of filters/classifiers. From the

point of view of a compositional model, this makes sense, as

the more specific a pattern is, it will be more compact and will

need fewer patterns from the layer below to be composed.

Finally, based on the analysis of Figure 5, we can conclude

that layers in a CompactNet model smoothly transition from

low abstraction (filters with low specialization) to high abstrac-

tion (filters with high specialization). Although CNNs are also

capable of capturing this, CompactNet additionally captures the

natural increase in dictionary size associated with increasing

specialization, reinforcing its e↵ects. It is worth noting that

CompactNets are able to capture this important insight without

any prior information. This highlights the good qualities of the

proposed model, as it is able to capture and exploit intuitive

concepts about visual pattern complexity and compositionality,

in order to build a highly compact and specialized composi-
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tional hierarchical model.

5.3. Categorization performance analysis

This section analyses whether the sparsity results and in-

sights from Section 5.2.2 have a measurable impact in terms

of categorization performance.

5.3.1. Network structure, regularization and training

Previous section highlights two key properties about the

structural compositionality of a deep model, namely i) higher

layers capture a larger number of patterns than lower ones, and

ii) filters in higher layers show higher specialization than the

ones in lower layers. In this section we adapt the network ar-

chitecture of CompactNet to take full advantage of these prop-

erties. Specifically, we introduce the following changes with

respect to the procedure presented in Section 5.2:

• Dictionary size is increased with depth in order to capture

the need for more visual pattern in deeper layers. We use

three dictionary sizes: 128, 256 and 512 filters.

• As depth increases, we linearly augment the value of the

respective regularization constant �1. This helps to enforce

that higher layers should increase pattern specialization.

We start with �1 = 0 in layer 1, up to a constant call ⇢ =

↵ = �L�1, for the last feature extraction and classification

layers.

• Models are trained for 120 epochs using the same condi-

tions as in the previous section.

In order to keep comparison fair, we also introduce similar

modifications to SimpleNet and CompressedNet models, where

applicable.

5.3.2. Sensitivity analysis

During preliminary evaluations, we identified two factors

as critical to achieving good performance with CompactNets:

depth, and regularization strength. To assess the interplay be-

tween these two factors, we perform an extensive sensitivity

analysis, measuring how performance behaves as these factors

change. We evaluated several networks on the ILSVRC12 val-

idation dataset, varying depth between 2 and 18 layers, and

⇢ 2 [0, 1]. Notice that indirectly, this analysis also covers the

sensitivity of the SimpleNet model when ⇢ = 0. Results are

presented in Figure 6.

Fig. 6: Performance sensitivity as a function of depth and regularization

strength. The best performance is achieved at depth 12 with ⇢ = 0.03. No-

tice that the lowest error-rate of the SimpleNet model (⇢ = 0, depth 10) is worst

than CompactNet’s, and is achieved with a shallower network, probably due to

overfitting.

Results show that performance depends more on depth than

⇢, up to networks with eight layers, as performance remains

approximately constant along the vertical axis. This situation

is similar to the one presented in Figure 4, where shallower

models are not powerful enough to capture relevant features for

classification. From networks with right or more layers, reg-

ularization becomes a more significant parameter, as the num-

ber of parameters grows. CompactNets present an advantage

in performance when ⇢ is nearer to zero than to one, show-

ing that deeper structures tend to benefit from a certain level of

redundancy in the learned representations (less specialization),

although most of the performance can be delivered by a much

smaller set of parameters (larger ⇢). The highest-performance

zone (dark red) can be identified to the right of the heatmap,

centered on ⇢ = 0.03, covering networks with depth between

11 and 18 layers. The lowest top-1 error rate is 31.2, and is

achieved with a network of depth 12 and ⇢ = 0.025. By re-
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laxing the compositional compactness regularizer (SimpleNet,

⇢ = 0), we see an evident increase in error-rate as depth in-

creases beyond 10 layers. The lowest error rate of SimpleNet

is 36.5 and is achieved by a 10-layer network (5.3 points worse

than the one obtained with the best configuration for a Com-

pactNet). This provides evidence that capturing compositional

compactness by means of a group-sparse regularizer might be

e↵ective in improving (or removing) representations that might

otherwise degrade performance due to overfitting. For Com-

pressedNet, we perform a similar analysis, and found the best

configuration also at 12 layers, with a top-1 error rate of 34.5. A

more in thorough performance comparison is presented in Fig-

ure 7, where the lowest top-1 error-rate obtained is presented

for each (depth, model) combination, by tuning the value of ⇢.
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Fig. 7: Classification performance on the ILSVRC12 validation dataset, for

models with di↵erent depths. Overall, CompactNets present the best perfor-

mance in deeper models, while in shallower instantiations, CompressedNets

shows an advantage.

We omit the results for instantiations with depths between

2 and 5 layers, as performance is very similar for all meth-

ods. Starting from depth 6, CompactNet shows an increasing

advantage over the other architectures. This indicates the con-

venience, in terms of performance, of inducing group-sparse-

based compositional compactness during training, instead of

network compression by unit elimination. In Figure 7, we can

also notice that the SimpleNet curve shows a sharp increase

in error-rate with deeper networks. In contrast, CompactNets

and CompressedNets behave di↵erently, with only a minor per-

formance decrease, overfitting might be present when ⇢ is low

and the architecture is too deep. To asses this, in Figure 8 we

plot the performance gap between the training and validation

sets (validation - training), for all three models, using for each

depth the value of ⇢ that generates the best performance in the

validation set.
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Fig. 8: Interestingly, as depth increases, the SimpleNet model shows the best

performance on the training set, showing clear signs of overfitting. On the other

hand, the other network models only shows a subtler performance increase,

controlling overfitting in a more e↵ective manner.

As expected, all methods show an increasing validation-

training gap with deeper architectures, although with very dif-

ferent limits and local behavior. CompactNet only shows a sub-

tler increase in the gap, with a maximum of approximately 3.5,

controlling overfitting in a more e↵ective manner. Compressed-

Nets also show a similar behavior, but with a larger gap (⇡ 8.0).

This allows us to conclude that the group-sparse regularization

terms, specially the ones related to compositional compactness,

foster the learning of filters that are less prone to capture noise

or non-discriminative visual patterns.

By varying the value of ⇢, besides controlling the complexity

of the models, we can also define di↵erent operation modes for

the networks. Specifically, we identify three interesting scenar-

ios for each group-regularized model:

• Compressed (C): the network with the smallest number of

parameters that reaches near-AlexNet performance.

• Best performance (B): the network that presented the low-

est top-1 error rate.
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• Performance match (M): the sparsest networks (less pa-

rameters) that match the performance of the remaining

models (when possible), e.g. the sparsest CompactNets

that match de performance of CompressedNet and Sim-

pleNet.

We plot these networks in Figure 9 as a function of the top-1

error rate and the number of e↵ective parameters. We include

all possible scenarios described before for CompactNets, Com-

pressedNets and SimpleNets.

2 4 6 8 10 12 14 16 18 20
# of effective parameters (millions)

30

32

34

36

38

40

42

44

To
p-

1 
er

ro
r r

at
e

CompactNet-C

CompactNet-B

CompactNet-M-SN

CompactNet-M-CN

CompressedNet-C

CompressedNet-B

CompressedNet-M-SN SimpleNet-B

2 4 6 8 10 12 14 16 18 20
30

32

34

36

38

40

42

44
Comparison of operation modes

Fig. 9: Comparison of di↵erent operation modes for CompactNet, Compressed-

Net, and SimpleNet. The total number of parameters of all models lies between

19 and 22 millions.

As an overall impression, we can conclude that CompactNets

always achieve better performance than the other models, using

less parameters. In particular, the best performing CompactNet,

besides beating CompressedNets by a 3.0 point margin, does it

using almost two million less parameters. Comparatively, when

performance is the same (M scenario), CompactNets use half

the parameters of CompressedNet and a third of the parameters

of SimpleNet. Perhaps the most surprising results is the number

of e↵ective parameters of CompactNet-C, achieving AlexNet

performance level with 20x less parameters. As expected, the

SimpleNet architecture discards a very small number of param-

eters when compared with CompactNet and CompressedNet,

showing also lower performance.

Regarding the di↵erence of CompactNets over Compressed-

Nets, either in sparsity and in performance, we argue that this

is mainly due to the fact that specialization naturally behaves

more aggressively in deeper layers than in the initial ones, be-

cause of the higher level of abstraction these features show. As

CompactNets are exactly based on these concept, they are able

to take full advantage and discard a large number of parame-

ters, without su↵ering performance loss. On the other hand, as

CompressedNets are based on the idea of discarding units, they

are more useful when abstraction is low and less convolutional

filters are needed. This means that on higher layers, where more

filters are needed, they are not as useful.

5.3.3. Generalization capabilities of the learned features

In this section, we show that by reducing the e↵ect of overfit-

ting, the group-sparse regularization term included in our model

leads to an improved transfer-learning performance compared

with an unregularized deep learning approach (Yang and Ra-

manan, 2015).

We evaluate our method by transferring the features learned

on the ILSVRC12 dataset to the 15 Scene Categories (Lazeb-

nik et al., 2006) and the MIT67 Indoor (Quattoni and Tor-

ralba, 2009) datasets. The 15 Scene Categories is a small-

scale dataset containing 4485 natural scene images divided into

15 categories, while the MIT67 Indoor is a mid-scale dataset

containing 6700 indoor scene images divided into 67 cate-

gories. These two datasets present important di↵erences with

the ILSVRC12 dataset, either in terms of size and image con-

tent, which poses an interesting setting to evaluate the transfer-

ability of the learned representations.

In order to provide a more complete analysis, we also explore

the use of low-level features other than pixels, specifically the

HoG+LBP (Wang et al., 2009) handcrafted features, commonly

used to train shallow models from scratch on these datasets.

We evaluate the following mechanisms to generate and trans-

fer features:

• CNN features: FC6 feature from an ImageNet trained

AlexNet are fed to a multiclass linear SVM trained on the

target datasets. Results are based on the experiments de-

scribed in (Yang and Ramanan, 2015).

• CompactNet/CompressedNet features: Same as the
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previous mechanism, but using a CompactNet-12 or

CompressedNet-12 model instead of AlexNet.

• CompactNet/CompressedNet fine-tunning: A

CompactNet-12 or CompressedNet-12 model is first

trained on the ILSVRC12 dataset and then fine-tunned on

the target dataset, dropping the group-sparse regulariza-

tion terms. The classification layer is trained from scratch

using a larger learning-rate than the rest of the layers.

• CompactNet/CompressedNet from scratch: A Com-

pactNet or CompressedNet model is trained from scratch

on the target dataset, using raw image pixels or HOG+LBP

as low-level features. The reported depth is the one with

best performance.

In terms of training and evaluation protocols, we use data

augmentation in all datasets in the same manner as in previous

experiments. For the 15 Scene Categories dataset we use five

random splits of the data, with 100 images per class for train-

ing and the rest for testing. For MIT67 Indoor we use with 80

images per class for training and 20 for testing. For the sake

of completeness, we also include performance numbers on the

ILSVRC12 dataset, in order to assess the use of hand-crafted

features on large-scale datasets. Table 2 shows the results for

the aforementioned feature generating mechanisms, using the

top-1 error rate as performance metric.

Although performance varies strongly with the di↵erent

combinations of dataset, method, and feature type, we can

establish some interesting relations among them. On 15

Scene Categories, results suggest that handcrafted features

(HoG+LBP) with a somewhat shallow architecture (4 layers)

trained from scratch are as good as CompactNet or Com-

pressedNet transferred features. Moreover, performance us-

ing CompactNet or CompressedNet transferred features is su-

perior than the one obtained by CNN transferred features, ac-

knowledging the usefulness of group-sparse regularization for

transfer-learning tasks. However, using pixels with a model

trained from scratch delivers poorer performance than any other

configuration by a large margin.

ILSVRC12

Method Pixels HoG+LBP

CompressedNet scratch (12 layers) 38.7 46.3

CompactNet scratch (12 layers) 37.6 45.6

15 Scene Categories

Method Pixels HoG+LBP

CNN features 13.2 -

CompressedNet features 11.8 15.0

CompactNet features 11.9 15.1

CompressedNet fine-tunning 12.9 14.2

CompactNet fine-tunning 12.3 14.0

CompressedNet scratch (3 layers) 27.6 12.0

CompactNet scratch (3 layers) 27.5 11.7

MIT67 Indoor

Method Pixels HoG+LBP

CNN features 40.5 -

CompressedNet features 40.8 42.0

CompactNet features 40.2 42.2

CompressedNet fine-tunning 38.6 39.3

CompactNet fine-tunning 38.6 39.5

CompressedNet scratch (4 layers) 60.8 41.2

CompactNet scratch (4 layers) 61.1 40.8

Table 2: Performance of di↵erent mechanisms for generating features on a

transfer-learning setting. Features generated using a CompactNet model show

remarkable performance on all tested datasets.

On MIT67 Indoor, the di↵erence in performance between

configurations is smaller than in 15 Scene Categories, showing

the best performance when features are fine-tunned, with the

same error-rate for the CompactNet and CompressedNet mod-

els. Performance of transferred features without fine-tunning is

similar for all methods, while performance of models trained

from scratch using pixels keeps delivering a worse error-rate.

Finally, based on the results in the ILSVRC12 dataset, pix-

els as low-level features outperform handcrafted features when

using deep structures on large-scale datasets, opposed to the sit-

uation in small- and mid-scale datasets. This is something to be
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expected, as the large amount of data in the ILSVRC12 dataset

allows deep models to discover patterns in raw pixels that are

discarded by engineered features, because of their handcrafted

nature.

5.3.4. Performance comparison with other methods

In this section, we compare the results obtained by our ap-

proach with several related methods. We focus our comparison

on approaches that have a similar structure and/or number of pa-

rameters, in order to be as fair as possible. We add to this com-

parison methods that include some form of complexity control,

either by means of architecture or regularization. We also in-

clude state-of-the-art approaches that deliver high recognition

performance, at the cost of a large number of parameters, or

sophisticated architectures. Finally, As our approach is orthog-

onal to these, we include preliminar results combining our reg-

ularization approach with advanced architectures, namely VGG

and Resnet, in order to provide insights regarding the potential

benefits of a joint application.

Table 3 shows performance results on the large-scale

ILSVRC12 dataset. Compared with previous analyses, we add

two new elements. First, we include the top-5 error-rate per-

formance metric, which is part of the standard procedure when

comparing performance on this dataset. Second, we include

an extra column indicating the e↵ective number of parameters

used by the methods. We sort methods into five groups: Ba-

sic, Advanced, Architectural compression, Group-Sparse (GS)

compression and Compositional Compactness (CC).

When comparing the CompactNet model with basic meth-

ods, we see that despite the reduced number of parameters ef-

fectively used, our approach is able to outperform AlexNet and

its highly tuned version, ZNet (Zeiler and Fergus, 2014). Every

instantiation of CompactNet is able to clearly surpass or reach

the performance of AlexNet, and CompactNet-M-SN surpasses

the performance of ZNet, using an order of magnitude less pa-

rameters. We argue that representations learned by traditional

hierarchical techniques like AlexNet or ZNet, present a signifi-

cant level of redundancy, and our approach is able to compress,

fuse or even discarded them. The CompressedNet architecture

ILSVRC12

Type Method Top-1 Top-5 # Params.

Basic
AlexNet (Krizhevsky et al., 2012) 40.7 18.2 62M

ZNet (Zeiler and Fergus, 2014) 38.4 16.5 62M

Arch. compr.

ZNet no FC (Zeiler and Fergus, 2014) 44.8 22.4 8M

All conv. (Springenberg et al., 2015) 41.2 - 10M

Low-rank (Tai et al., 2016) - 19.4 12.5M

SqueezeNet (Iandola et al., 2016) 40.0 18.2 1.3M

GS compr.

AlexNetGS (Zhou et al., 2016) 46.1 - 21.4M

VGG13GS (Zhou et al., 2016) 39.3 - 51.5M

VGG13C

GS
(Alvarez and Salzmann, 2016) 37.3 - 25.0M

Advanced

VGG11 (Simonyan and Zisserman, 2015) 29.4 10.1 132.9M

VGG16 (Simonyan and Zisserman, 2015) 26.5 8.5 138.4M

Inception v3 (Szegedy et al., 2017) 20.8 5.4 27.2M

ResNet18 (He et al., 2015a) 28.2 9.4 11.7M

ResNet152 (He et al., 2015a) 20.3 5.1 60.2M

DenseNet161 (Huang et al., 2017) 21.3 5.6 28.7M

Ours basic SimpleNet-B 36.5 15.7 17.5M

Ours GS compr.

CompressedNet-B 34.5 14.8 16.3M

CompressedNet-C 41.2 18.0 10.1M

CompressedNet-M-SN 36.6 15.2 12.1M

Ours CC

CompactNet-B 31.2 11.1 14.4M

CompactNet-C 41.0 17.9 3.6M

CompactNet-M-SN 36.3 15.3 6.6M

CompactNet-M-CN 34.7 14.4 8.7M

Advanced CC
VGG11CC 27.9 9.0 63M

ResNet18CC 26.5 8.2 9.7M

Table 3: Categorization results comparison of di↵erent related hierarchical

compositional methods on the ILSVRC12 dataset. Overall, our method is able

to deliver competitive performance, using only a fraction of the parameters of

other deep hierarchical methods. It is important to note the when compared

to closely related work, i.e., other group-sparse regularized methods, Compact-

Nets show a clear advantage, in terms of e�ciency and e↵ectiveness. Moreover,

when mixed with state-of-the-art architectures, our scheme is able to improve

upon their original performance numbers, using fewer parameters.

also displays superior performance when compared to basic ar-

chitectures, indicating that group-sparse regularization can gen-

erate improvements in performance, no matter the form of its

application. Finally, the SimpleNet architecture is able to reach

near AlexNet performance, using around 25% of the parame-

ters. This result is in line with other works (Springenberg et al.,

2015), that report gains or no performance loss, when removing

fully-connected layers.

Next, if we focus on methods that change the structure of
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traditional CNN models in order to reduce the total number of

parameters, we can see that while their number of parameters

is relatively similar to ours, the error-rates of CompactNet and

CompressedNet is lower, validating the importance of our pro-

posed approach to shape the parameter space in a meaningful

way. An interesting comparison can be made with SqueezeNet,

which is an architecture that relies heavily on 1 ⇥ 1 convolu-

tional filters to reduce the number of active parameters. The

only configuration that is able to reach a comparable result

is CompactNet-C, with 3.6M e↵ective parameters. Although

SqueezeNet remains the most e�cient method by a clear mar-

gin, it is interesting to notice that by only using group-sparse

regularization, the size of parameter space can be shrinked al-

most to the level of a highly tuned architecture.

A relevant comparison is with methods that use some form

of group-sparse-based regularization. All methods use a strat-

egy akin to CompressedNets, trying to compress the network by

means of unit elimination, with subtle di↵erences in the form of

the regularizer and the architecture. Results indicate that in all

cases, CompactNets obtain better performance and with fewer

parameters, validating our intuition that the proposed strategy

generates an e�cient way to shape the parameter space. It is

worth noting that also CompressedNets perform better that all

the other group-sparse regularization-based works. This di↵er-

ence might be explained by the di↵erent underlying architec-

tures or by a di↵erent tuning of regularization constants, which

play a critical role in performance, as described in Section 5.3.2.

As a final remark, these results prove that in terms of perfor-

mance, it is more important to specialize filters than to discard

them, and that this also generates a larger reductions in dimen-

sionality.

Finally, when compared with advanced architectures (Si-

monyan and Zisserman, 2015; Szegedy et al., 2017; He et al.,

2015a; Huang et al., 2017), CompactNet-B performance is

marginally lower than state-of-the-art deep models with a

similar number of layers and/or parameters (VGG11 and

ResNet18). This confirms the relevance of group-sparse-based

compositional compactness to generate high quality represen-

tations. However, the di↵erence in performance with the rest

of the advanced methods is larger and indicates that in order

to reach lower error-rates with the CompactNet architecture,

structural improvements are needed. We assess this hypothesis

with a preliminar set of experiments, that incorporate the com-

positional compactness regularization into VGG and ResNet,

generating two new network models, namely VGG11CC and

ResNet18CC . Specifically, we apply the ⌦ and � regularizers in

the same fashion as in CompactNets, except for layers whose

inputs are not convolutional feature maps or a spatial-pyramid

decomposition. In these cases. the value of R and S in Eqs. 2

and 6 is set to 1.

Results show that our approach is able to enhance the recog-

nition performance, while considerably reducing the number of

e↵ective parameters. Specifically, for VGG11CC , we decrease

top-1 and top-5 errors between 1 and 2 performance points,

while reducing the number of e↵ective parameters to less than

50% of the original VGG11. This shows that our approach is

also e↵ective for the representations learned in fully-connected

layers. In the case of ResNet18CC , top-1 and top-5 errors are

also decreased similarly, and the number of e↵ective parameters

is reduced to 17%. While this decrease is smaller that the one

observed in VGGCC , it is still important, as the the ResNet ar-

chitecture limits the use of fully-connected layers just for clas-

sification. These results indicate that the proposed scheme can

be successfully applied to di↵erent architectures, e↵ectively bi-

asing the learning process to generate compact visual represen-

tations with high discriminative power. Also, this opens the

door to further include novel architectures into our framework

or vice versa.

5.4. Interpretability and specialization of units

Besides promoting a compact representation, compositional

compactness can provide a mean to specialize units in CNNs,

by either i) forwarding categorical information from classifiers

to selected higher-layer units, or by ii) selecting only a subset

of the available feature maps to generate features. Both of these

elements can be captured by the proposed group-sparse regu-

larizers, ⌦, case i), and �, case ii).
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To qualitatively assess the aforementioned e↵ects of the reg-

ularizers, we employ the recently proposed Network Dissection

technique (Bau et al., 2017), and analyze the characteristics of

the semantically interpretable units detected by this method. In

short, the Network Dissection technique computes the correla-

tion between the activation of units from a given layer, and a

series of human-interpretable concepts of di↵erent abstraction

levels, that are present in a fully annotated dataset. Using this

information and a dynamic thresholding scheme, one can com-

pute the number of units that are highly associated with con-

cepts, and how many units are associated with each of these.

As shown in (Bau et al., 2017), interpretability and perfor-

mance are not competing objectives, meaning that high perfor-

mance can be achieved by either highly interpretable networks,

or by networks that capture only abstract representations. Tak-

ing this into account, one can think that at a similar performance

level, a way to measure specialization of units of di↵erent net-

works is not by counting how many interpretable units exists,

but by counting how many units are needed on average to cap-

ture a visual concept. To this end, we define the specialization

coe�cient, ŝ, as the ratio between the number of unique inter-

pretable visual concepts captured by a model, and the number

of interpretable units. The higher this ratio is, the more special-

ized units are, as less of them are required to capture the visual

concepts, while maintaining a similar level of performance.

We compute the specialization coe�cient of the last layer

before the classification layer (or fully-connected layers where

applicable) of several network architectures trained on the

ILSVRC12 dataset. Notice that by the e↵ect of the ⌦ reg-

ularizer in the CompactNet model, this layer’s units receive

categorical information only from few classifiers, providing

semantically-driven specialization. To keep comparison fair,

the number of parameters and of units per layer is kept the same

whenever possible. Also, when available, we take results from

the network dissection project website 1. Table 4 presents our

results.

When inspecting the values for the specialization coe�cient

1http://netdissect.csail.mit.edu/

Specialization coe�cients

Method # units concepts ŝ

AlexNet (Krizhevsky et al., 2012) 256 47 0.36

VGG16 (Simonyan and Zisserman, 2015) 512 99 0.31

Inception v3 (Szegedy et al., 2017) 1024 108 0.17

ResNet152 (He et al., 2015a) 2048 195 0.10

DenseNet161 (Huang et al., 2017) 2208 166 0.19

SimpleNet-B 512 87 0.38

CompressedNet-C 512 42 0.53

CompressedNet-M-SN 512 85 0.50

CompressedNet-B 512 93 0.41

CompactNet-C 512 48 0.57

CompactNet-M-CN 512 84 0.48

CompactNet-B 512 104 0.44

Table 4: Specialization coe�cients for di↵erent network architectures. Com-

pactNet models, followed by CompressedNet models, obtain the larger value

of ŝ by a considerable margin, indicating that group-sparse regularization is an

a↵ective approach to increase unit specialization in neural networks.

ŝ of the di↵erent architectures, we can notice that the variants

of the CompactNet model obtain a higher value than all other

architectures by a large margin, with the exception of the Com-

pressedNet architecture. The CompactNet-C presents the larger

value for the coe�cient, which coincides with the strong reg-

ularization strategy that it uses. This provides more evidence

that our proposed group-sparse regularization strategy is e↵ec-

tively capturing unit specialization by categorical information

forwarding of selected classifiers, and by means of composi-

tional compactness. The results of CompressedNet-C are also

interesting, as they indicate that one way to make an e�cient

use of a limited number of filters is by focusing on specializing

them.

When comparing with o↵-the-shelf CNN architectures with-

out group-sparse regularization, like SimpleNet, AlexNet or

VGG16, one can observe that specialization decreases notice-

ably. VGG16 is an interesting case to analyze, as it uses the

same filter size and number of filters per layer as our approach,

but with a much larger number of parameters. This abundance

of parameters produces many redundant units that capture the

same visual concept, wasting representational power that could
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be used to capture di↵erent visual patterns.

Something similar happens with more complex or deeper ar-

chitectures, such as Inception, ResNet and DenseNet, where the

di↵erence in specialization is even larger. Although the number

of parameters of these networks is not as large as in VGG16,

they are considerably deeper and employ a significantly larger

number of filters in deeper layers, than the one used by our ap-

proach. We argue that these structural di↵erences induce the

learning of a large number of filters, that jointly capture the ap-

pearance of a certain visual pattern with high precision.

6. Conclusions and Future Work

In this article, we have proposed the CompactNet model, a

novel method for visual recognition that uses explicit group-

sparse terms in the objective function, in order to induce com-

positional compactness on the learned representation. As a

main contribution, our experiments provide evidence that the

proposed method learns specialized and compact representa-

tions, relevant properties for the e↵ectiveness and scalability of

deep hierarchical compositional models. Moreover, extensive

experimental validation performed on various datasets and ar-

chitectures allowed us to demonstrate the generalization power

of the visual patterns captured by the mid-level layers. Fi-

nally, we proved that specialization is highly e↵ective to man-

age model complexity, leading to compact representations that

achieve remarkable performance using a fraction of the param-

eters used by previous approaches.

In future work, we plan to investigate the e↵ect of di↵er-

ent regularization strategies, that might be better suited to deep

structures. Also, we will further integrate our regularization

strategy with modern deep architectures.
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