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Optimization Landscape of Neural Networks

Abstract: Many tasks in machine learning involve solving a convex opti-

mization problem, which significantly facilitates the analysis of properties of

the resulting algorithms such as optimality, robustness and generalization.

An important challenge in training neural networks is that the associated

optimization problem is non-convex, which complicates the analysis because

global optima can be difficult to characterize and the optimization landscape

can also include spurious local minima and saddle points. As a consequence,

different algorithms might find different weights depending on initialization,

parameter tuning, etc. Despite this challenge, existing algorithms routinely

converge to good solutions in practice, which suggests that the landscape

might be simpler than expected, at least for certain classes of networks.

This chapter summarizes recent advances on the analysis of the optimiza-

tion landscape of neural network training. We first review classical results

for linear networks trained with the squared loss and without regularization.

Such results show that under certain conditions on the input-output data

spurious local minima are guaranteed not to exist, i.e. critical points are ei-

ther saddle points or global minima. Moreover, the globally optimal weights

can be found by factorizing certain matrices obtained from the input-output

covariance matrices. We then review recent results for deep networks with

parallel structure, positively homogeneous network mapping and regulariza-

tion, and trained with a convex loss. Such results show that the non-convex

objective on the weights can be lower-bounded by a convex objective on

the network mapping. Moreover, when the network is sufficiently wide, local

minima of the non-convex objective that satisfy a certain condition yield

global minima of both the non-convex and convex objectives, and that there

is always a non-increasing path to a global minimizer from any initialization.

a From Elliptic Cohomology: Geometry, Applications, and Higher Chromatic Analogues, edited
by Haynes R. Miller and Douglas C. Ravenel c© 2009 Cambridge University Press.
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1.1 Introduction

Many machine learning tasks involve solving an optimization problem of the

form

min
W
L(Φ(X,W),Y) + λΘ(W). (1.1)

For example, in the case of classification, L(Φ(X,W),Y) is a loss function

that measures the agreement between the true matrix of labels, Y, and the

matrix of predicted labels, Φ(X,W), where X is the input data matrix,

W represents the classifier parameters, Θ(W) is a regularization function

designed to prevent overfitting1, and λ > 0 is a parameter that controls the

trade-off between the loss function and the regularization function. Another

example is regression, where the setting is essentially the same, except that

Y is typically continued valued, while in classification Y is categorical.

Some machine learning problems, such as linear regression, support vector

machines, `1 minimization, and nuclear norm minimization, involve solving

a convex optimization problem, where both the loss and the regularization

functions are assumed to be convex functions of W. For example, in linear

regression with the squared loss and Tikhonov regularization, we have2

L(Φ(X,W),Y) = ‖Y −W>X‖2F and Θ(W) = ‖W‖2F . (1.2)

When the optimization problem is convex, non-global local minima and

saddle points are guaranteed not to exist, which significantly facilitates the

analysis of optimization algorithms, especially the study of their conver-

gence to a global minimizer. In addition, convexity allows one to analyze

properties of the resulting machine learning algorithm, such as robustness

and generalization, without having to worry about the particulars of the

optimization method, such as initialization, step size (learning rate), etc., as

the global optima are easily characterized and many optimization schemes

exist which provide guaranteed convergence to a global minimizer.3

Unfortunately, many other machine learning problems – particularly those

that seek to learn an appropriate representation of features directly from the

1 Note that Θ could also depend on X, but we will omit this for notational simplicity.
2 The squared loss between vectors y and z is L(y, z) = ‖y − z‖22. Here we con-

sider a dataset (X,Y) with m training examples arranged as columns of a matrix

(X,Y) =
(
[x(1), . . . ,x(m)], [y(1), . . . ,y(m)]

)
. The sum of the squared losses over the training

examples
∑m
i=1 ‖y(i) − z(i)‖22 becomes the Frobenius norm ‖Y − Z‖2F .

3 For convex learning problems, the convergence of the optimization method to a global minimum
does depend on initialization and parameter tuning, but the analysis of generalization does not.
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data – with principal component analysis (PCA), nonnegative matrix fac-

torization, sparse dictionary learning, tensor factorization and deep learn-

ing being well-known examples – involve solving a non-convex optimization

problem of the form:

min
{W[l]}Ll=1

L(Φ(X,W[1], . . . ,W[L]),Y) + λΘ(W[1], . . . ,W[L]), (1.3)

where Φ is an arbitrary, convexity destroying mapping. In PCA, for example,

the goal is to factorize a given data matrix Y as the product of two matri-

ces W[1] and W[2], subject to the constraint that the columns of W[1] are

orthonormal. In this case, Φ(X,W[1],W[2]) = W[1]W[2]> and Θ enforces

the orthogonality constraints W[1]>W[1] = I, both of which make the op-

timization problem non-convex. Similarly, in deep neural network training,

the output of the network is typically generated by applying an alternating

series of linear and non-linear functions to the input data:

Φ(X,W[1], . . . ,W[L])=ψL(W[L]ψL−1(W[L−1] · · ·ψ2(W[2]ψ1(W[1]X)) · · · )),
(1.4)

where each W[l] is an appropriately sized matrix that contains the con-

nection weights between layers l − 1 and l of the network, and the ψl(·)
functions apply some form of non-linearity after each matrix multiplication,

e.g., a sigmoid function, rectified linear unit (ReLU), max-pooling.4

For a very small number of non-convex problems, e.g., PCA, one is fortu-

nate, and a global minimizer can be found in closed form. For other problems,

e.g., `0 minimization, rank minimization, and low-rank matrix completion,

one can replace the non-convex objective by a convex surrogate and show

that under certain conditions the solutions to both problems are the same.5

In most cases, however, the optimal solutions cannot be computed in closed

form, and a good convex surrogate may not be easy to find. This presents

significant challenges to existing optimization algorithms – including (but

certainly not limited to) alternating minimization, gradient descent, stochas-

tic gradient descent, block coordinate descent, back-propagation, and quasi-

Newton methods – which are typically only guaranteed to converge to a

critical point of the objective function (Mairal et al., 2010; Rumelhart et al.,

1988; Wright and Nocedal, 1999; Xu and Yin, 2013). As the set of critical

points for non-convex problems includes not only global minima, but also

spurious (non-global) local minima, local maxima, saddle points and sad-

4 Here we have shown the linear operations to be simple matrix multiplications to simplify
notation, but this easily generalizes to other linear operators (e.g., convolution) and affine
operators (i.e., using bias terms).

5 See e.g., Donoho (2006); Candès and Tao (2010) for the relationships between `0 and `1 mini-
mization.
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dle plateaus, as illustrated in Figure 1.1, the non-convexity of the problem

leaves the model somewhat ill-posed in the sense that it is not just the model

formulation that is important but also implementation details, such as how

the model is initialized and particulars of the optimization algorithm, which

can have a significant impact on the performance of the model.Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 1.1 Example critical points of a non-convex function (shown in red). (a,c)

Plateaus. (b,d) Global minima. (e,g) Local maxima. (f,h) Local minima.

Despite these challenges, optimization methods that combine Backprop-

agation (Werbos, 1974) with variants of Stochastic Gradient Descent (Rob-

bins and Monro, 1951), such as Nesterov Accelerated Gradient (Nesterov,

1983), Adam (Kingma and Ba, 2014) and Adagrad (Duchi et al., 2017),

appear to routinely yield good solutions for training deep networks. Recent

work attempting to understand this phenomenon can be broadly classified

along three main themes:

(i) Benign optimization landscape: While the optimization problem in (1.3) is

not convex for deep network training, there are certain classes of networks

for which there are no spurious local minima (Baldi and Hornik, 1989;

Kawaguchi, 2016; Haeffele and Vidal, 2017), local minima concentrate

near the global optimum (Choromanska et al., 2015), or critical points

are more likely to be saddle points rather than spurious local minima

Dauphin et al. (2014). A similar benign landscape has also been observed

for non-convex problems arising in phase retrieval (Sun et al., 2016),

dictionary learning (Sun et al., 2017) and blind deconvolution (Zhang

et al., 2018).

(ii) Optimization dynamics lead to global optima: In addition to the study of

the landscape of the learning objective, there has also been work focused

on how specific algorithms (largely gradient descent-based) perform when

optimizing neural networks. For example, Gori and Tesi (1991, 1992) show

that gradient descent generally finds a global minimizer for linearly sepa-

rable data. More generally, work has also shown that if the optimization

landscape satisfies the strict saddle property (where the Hessian evalu-

ated at every saddle point has a sufficiently negative eigenvalue) then

gradient descent (and many other first-order descent techniques) is guar-

anteed to converge to a local minimum and not get stuck in saddle points
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(Ge et al., 2015; Lee et al., 2019). Using these results, it has been shown

that gradient descent converges to a global minimum (Kawaguchi, 2016;

Nouiehed and Razaviyayn, 2018; Zhu et al., 2019) for linear neural net-

works that satisfy the strict saddle conditions. Unfortunately, however,

the strict saddle property does not typically hold for non-linear neural

networks. Nevertheless, several recent studies have shown that if the net-

work is sufficiently large, then under certain conditions gradient descent

will converge at a linear rate to global minimizers. However, the necessary

conditions are potentially quite strict. Moreover, it is unclear if such re-

sults can be generalized to other formulations that include regularization

on the network parameters (Du et al., 2019; Allen-Zhu et al., 2019).

(iii) Implicit bias of the optimization algorithm: Another possible explana-

tion for the observed success of deep learning is that the optimization

algorithm either explores only a subset of the landscape (depending on

properties of the data or initialization of the algorithm) or automatically

induces a regularizer which avoids spurious local minima. For example,

Gunasekar et al. (2017, 2018a,b) show that gradient descent applied to

certain classes of linear networks automatically induces a bias towards so-

lutions that minimize a certain norm. Further, Arora et al. (2019) extend

this idea to deep linear models are argue that depth in linear networks

trained with gradient descent induces a low-rank regularization through

the dynamics gradient descent. Further, other optimization techniques

such as dropout (Srivastava et al., 2014), which adds stochastic noise by

randomly setting the output of neurons to zero during training, have been

shown to induce low-rank structures in the solution (Cavazza et al., 2018;

Mianjy et al., 2018; Pal et al., 2020).

This chapter concentrates on the first theme by presenting an overview

of the study of the optimization landscape of neural network training. In

Section 1.3 we study the landscape of linear networks. Specifically, in Section

1.3.1 we review classical results from Baldi and Hornik (1989) for single-

hidden layer linear networks trained using the squared loss, which show

that under certain conditions on the network width and the input-output

data every critical point is either a global minimum or a saddle point, as well

as recent results from (Nouiehed and Razaviyayn, 2018; Zhu et al., 2019)

which show that all saddle points are strict (i.e., at least one eigenvalue

of the Hessian is negative). Moreover, (Baldi and Hornik, 1989; Nouiehed

and Razaviyayn, 2018; Zhu et al., 2019) also show that the globally optimal

weights can be found by factorizing certain matrix obtained from the input-

output covariance matrices. Then, in Section 1.3.2 we review the work of
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Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 1.2 Guaranteed properties of the proposed framework. Starting from any initial-

ization, a non-increasing path exists to a global minimizer. Starting from points on a

plateau, a simple ”sliding” method exists to find the edge of the plateau (green points).

Kawaguchi (2016), which extends these results to networks of any depth

and width by showing that critical points are also either global minima or

saddle points. In addition, Kawaguchi (2016) shows that saddle points of

networks with one hidden layer are strict, but networks with two or more

layers can have “bad” (non-strict) saddle points.

In Section 1.4 we study the landscape of nonlinear networks. Specifically,

we review recent results from Haeffele and Vidal (2017, 2019) that study

conditions under which the optimization landscape for the non-convex op-

timization problem in (1.3) is such that all critical points are either global

minimizers or saddle points/plateaus, as shown in Figure 1.2. Their results

show that if the network size is large enough and the functions Φ and Θ are

sums of positively homogeneous functions of the same degree, then a mono-

tonically decreasing path to a global minimizer exists from every point.

1.2 Basics of Statistical Learning

Let (x,y) ∈ X × Y be a pair of random variables drawn from an unknown

distribution P(x,y), where X is called the input space and Y the output

space. Assume we wish to predict y from an observation about x by finding

a hypothesis f̂ ∈ YX , i.e. f̂ : X → Y, that minimizes the expected loss or

risk

min
f∈F

[
R(f)

.
= Ex,y[L(f(x),y)]

]
. (1.5)

Here F ⊂ YX is the space of hypotheses (e.g., the space of linear functions

or the space of measurable functions from X to Y) and L : Y×Y → [0,∞] is

a loss function, where L(f(x),y) gives the cost of predicting y as f(x) (e.g.,

the zero-one loss 1y 6=f(x) for classification or the squared loss ‖y − f(x)‖22
for regression). The smallest expected risk R(f̂) is called the Bayes error.

Since P(x,y) is unknown, f̂ and R(f̂) cannot be computed. Instead, we

assume we are given a training set S = {(x(i),y(i))}mi=1 of i.i.d. samples from
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P(x,y) and seek to find a hypothesis f̂F ,S that minimizes the empirical risk

min
f∈F

[
RS(f)

.
=

1

m

m∑
i=1

L(f(x(i)),y(i))
]
. (1.6)

Since the objective functions in (1.5) and (1.6) are different, a priori there

is no guarantee that f̂F ,S or its risk, R(f̂F ,S), will be close to f̂ or R(f̂),

respectively. This leads to the question of generalization, which seeks to

understand the performance of f̂F ,S not only on the training set S, but on

the entire population. In principle, we could use the error R(f̂F ,S)−R(f̂) to

assess the quality of f̂F ,S . However, since f̂F ,S depends on the data S, f̂F ,S
is a random function and R(f̂F ,S) is a random variable. While we could use

the expectation of R(f̂F ,S) with respect to the data, ES [R(f̂F ,S) − R(f̂)],

or verify if f̂F ,S is universally consistent, i.e. check if

lim
m→∞

R(f̂F ,S) = R(f̂) almost surely, (1.7)

both approaches are difficult to implement because P(x,y) is unknown.

To address this issue, a common practice is to decompose the error as

R(f̂F ,S)−R(f̂) =
(
R(f̂F ,S)−RS(f̂F ,S)

)
+
(
RS(f̂F ,S)−RS(f̂)

)
+
(
RS(f̂)−R(f̂)

) (1.8)

and use the fact that the second term is nonpositive and the third term has

zero expectation to arrive at an upper bound on the expected error

ES [R(f̂F ,S)−R(f̂)] ≤ ES [R(f̂F ,S)−RS(f̂F ,S)]

≤ ES [sup
f∈F
R(f)−RS(f)]. (1.9)

As the bound on the right hand side may not be easily computable, a typical

approach is to derive an easier to compute upper bound, say Θ(f), and then

solve the regularized empirical risk minimization problem

min
f∈F
RS(f) + Θ(f). (1.10)

In other words, rather than minimizing the empirical risk, RS(f), we usu-

ally minimize the regularized empirical risk, RS(f) + Θ(f), in the hope of

controlling the error ES [R(f̂F ,S)−R(f̂)].

Therefore, this chapter will focus on understanding the landscape of the

optimization problem in (1.10), although we will also make connections with

the optimization problem in (1.5) whenever possible (e.g., for single-hidden

layer linear networks trained with the squared loss). We refer the reader to

other chapters in this book for a study of the generalization properties.
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1.3 Optimization Landscape of Linear Networks

In this section we study the landscape of linear networks trained using the

squared loss. In Section 1.3.1 we show that under certain conditions every

critical point of a single-hidden layer linear network is either a global min-

ima or a strict saddle point, and that the globally optimal weights can be

obtained using linear-algebraic methods. In Section 1.3.2 we show that crit-

ical points of linear networks with more than two layers are either a global

minima or a saddle point, but saddle points may not be strict.

1.3.1 Single-Hidden Layer Linear Networks with Squared Loss

and Fixed Size Regularization

Let us first consider the case of linear networks with n0 inputs, n2 outputs,

and a single hidden layer with n1 neurons. In this case, the hypothesis space

F can be parametrized by the network weights (W[1],W[2]) = (U,V) as6

F = {f ∈YX : f(x) = UV>x, where U∈Rn2×n1 and V∈Rn0×n1}. (1.11)

In this section, we study the optimization landscape for single-hidden

layer linear networks trained using the squared loss, L(z,y) = ‖y− z‖22. No

regularization on the network weights is assumed, except that the network

size n1 is assumed to be known and sufficiently small relative to the input-

output dimensions, i.e., n1 ≤ min{n0, n2}. Under these assumptions, the

problem of minimizing the expected risk reduces to7

min
U,V

[
R(U,V)

.
= Ex,y[‖y −UV>x‖22]

]
. (1.12)

Letting Σxx = E[xx>] ∈ Rn0×n0 , Σxy = E[xy>] ∈ Rn0×n2 , Σyx = E[yx>] =

Σ>xy ∈ Rn2×n0 , and Σyy = E[yy>] ∈ Rn2×n2 , the expected risk can be

rewritten as:

R(U,V) = trace(Σyy − 2ΣyxVU> + UV>ΣxxVU>). (1.13)

Consider now the problem of minimizing the empirical risk

min
U,V

[
RS(U,V) =

1

m

m∑
i=1

‖y(i) −UV>x(i)‖22 =
1

m
‖Y −UV>X‖2F

]
, (1.14)

where S = {(x(i),y(i))}mi=1 is the training set, and X = [x(1), . . . ,x(m)] and

6 For simplicity of notation, if we only have two groups of parameters we will use (U,V) rather

than (W[1],W[2]).
7 With an abuse of notation, we will write the risk as a function of the network weights, i.e.,
R(U,V), rather than as a function of the input-output map, i.e., R(f).



1.3 Optimization Landscape of Linear Networks 9

Y = [y(1), . . . ,y(m)] are the input and output data matrices. It is easy to

see that the empirical risk RS(U,V) is equal to R(U,V), except that the

covariance matrices Σxx, Σxy and Σyy need to be substituted by their

empirical estimates 1
mXX>, 1

mXY> and 1
mYY>, respectively. Therefore,

in this case the analysis of the optimization landscape for both the expected

and empirical risk can be done by analyzing the landscape of R(U,V).

To motivate the analysis of the landscape of R(U,V), let us first analyze

the landscape of the risk as a function of the product of the weights, i.e.,

Z = UV>, which is given by R(Z) = trace(Σyy − 2ΣyxZ> + ZΣxxZ>).

When there is no constraint on Z (e.g., when U and V are full column

rank), the risk is a convex function of Z and the first order condition for

optimality is given by ZΣxx = Σyx. Thus, if Σxx is invertible, the global

minimum is unique and is given by Z∗ = U∗V∗> = ΣyxΣ−1
xx . Of course,

this provides a characterization of the optimal Z, but not of the optimal U

and V. The challenge in characterizing the landscape of R(U,V) is hence

to understand the effect of the low rank constraint n1 ≤ min{n0, n2} or to

consider the possibility that critical points for U or V might not be low-rank.

The following lemma characterizes properties of the critical points of

R(U,V). The original statements and proofs for these results can be found

in Baldi and Hornik (1989). Here we provide a unified treatment for both

the expected and empirical risk, as well as alternative derivations.

Lemma 1.1 If (U,V) is a critical point of R, then

UV>ΣxxV = ΣyxV and ΣxxVU>U = ΣxyU. (1.15)

Moreover, if Σxx is invertible, then the following three properties hold.

(i) If V is full column rank, then U = ΣyxV(V>ΣxxV)−1.

(ii) If U is full column rank, then V = Σ−1
xxΣxyU(U>U)−1.

(iii) Let Σ = ΣyxΣ−1
xxΣxy. If U is full column rank and PU = U(U>U)−1U>,

then ΣPU = (ΣPU)> = PUΣ.

Proof The gradient of R w.r.t. U is given by

∂R
∂U

= −2(Σyx −UV>Σxx)V = 0 =⇒ UV>ΣxxV = ΣyxV. (1.16)

Therefore, when Σxx is invertible and V is full column rank we have

U = ΣyxV(V>ΣxxV)−1. (1.17)

as claimed in (i). On the other hand, the gradient of R w.r.t. V is given by

∂R
∂V

= −2(Σxy −ΣxxVU>)U = 0 =⇒ ΣxxVU>U = ΣxyU. (1.18)
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Therefore, when Σxx is invertible and U is full column rank we have

V = Σ−1
xxΣxyU(U>U)−1, (1.19)

as claimed in (ii). Moreover, notice that

UV> = U(U>U)−1U>ΣyxΣ−1
xx = PUΣyxΣ−1

xx . (1.20)

Combining this with the first equation in (1.15) we obtain

UV>ΣxxVU> = ΣyxVU> (1.21)

PUΣyxΣ−1
xxΣxxΣ−1

xxΣxyPU = ΣyxΣ−1
xxΣxyPU (1.22)

PUΣPU = ΣPU. (1.23)

As a consequence, ΣPU = (ΣPU)> = PUΣ, as claimed in (iii).

Baldi and Hornik (1989) used these properties to show that, under certain

conditions, the expected loss has a unique global minimum (up to an equiva-

lence) and that all other critical points are saddle points. Recently, Nouiehed

and Razaviyayn (2018); Zhu et al. (2019) extended such results to show that

all saddle points are strict. Recall that a critical point is a strict saddle if the

Hessian evaluated at this point has a strictly negative eigenvalue, indicating

that not only it is not a local minimum, but also the objective function has

a negative curvature at this point. The following theorem characterizes the

landscape of the risk functional for single-hidden layer linear networks.

Theorem 1.2 Assume Σxx is invertible and Σ = ΣyxΣ−1
xxΣxy is full

rank with n2 distinct eigenvalues λ1 > λ2 > · · · > λn2. Let Σ = QΛQ>

the eigendecomposition of Σ, where the columns of Q ∈ Rn2×n2 contain

the corresponding eigenvectors. Let QJ denote the submatrix of Q whose

columns are indexed by J . Then, the following holds.

• If U is full column rank, the set of critical points of R(U,V) is given by

U = QJC and V = Σ−1
xxΣxyQJC−>, (1.24)

where J is an ordered subset of [n2] of cardinality n1, i.e. J ⊂ [n2] and

|J | = n1, and C ∈ Rn1×n1 is an arbitrary invertible matrix.

• If U is full column rank, then critical points with J 6= [n1] are strict

saddles, i.e., the Hessian evaluated at this point has a strictly negative

eigenvalue, while critical points with J = [n1] are global minima. Specifi-
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cally, the set of global minima (U,V) of the risk R is given by

U = Q1:n1C,

V = Σ−1
xxΣxyQ1:n1C

−>,

UV> = Q1:n1Q
>
1:n1

ΣyxΣ−1
xx ,

(1.25)

where C is an arbitrary invertible matrix.

• If U is rank deficient, then any critical point is a strict saddle.

Proof The proof of part (i) is based on Baldi and Hornik (1989), while the

proofs of parts (ii) and (iii) are based on Nouiehed and Razaviyayn (2018)

and Zhu et al. (2019). For part (i), note that

PQ>U = Q>U(U>QQ>U)−1U>Q = Q>U(U>U)−1U>Q = Q>PUQ,

which together with Lemma 1.1 (iii) gives

PQ>UΛ = Q>PUQΛQ>Q = Q>PUΣQ = Q>ΣPUQ = ΛPQ>U.

Since Λ is a diagonal matrix with diagonal entries λ1 > λ2 > · · · > λn2 > 0,

it follows that PQ>U is also a diagonal matrix. Notice that PQ>U is an

orthogonal projector of rank n1, i.e., it has n1 eigenvalues 1 and n2 − n1

eigenvalues 0. Therefore, PQ>U = IJ I>J , where J ⊂ [n2] is an ordered subset

of [n2] with cardinality |J | = n1. Here, we denote by IJ the submatrix of

the identity matrix I obtained by only keeping the columns indexed by J .

It follows that

PU = QPQ>UQ> = QIJ I>JQ> = QJQ>J ,

which implies that U and QJ have the same column spaces. Thus, there

exists an invertible n1 × n1 matrix C such that U = QJC. Now according

to Lemma 1.1 (ii), we have V = Σ−1
xxΣxyQJC−>.

We now prove the first statement in part (ii), i.e., for any J 6= [n1], the

corresponding critical point has strictly negative curvature. Towards that
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goal, standard computations give the Hessian quadrature form8

∇2R(U,V)[∆,∆] = ‖(U∆>V+∆UV>)Σ
1/2
xx ‖2F+2〈∆U∆>V,UV>Σxx−Σyx〉.

(1.26)

for any ∆ = (∆U,∆V) ∈ Rn2×n1 × Rn0×n1 .

Since J 6= [n1], there exists k ≤ n1 such that k /∈ J . Let J be the largest

element of J , and choose ∆U = qke
>
n1

C and ∆V = Σ−1
xxΣxyqke

>
n1

C−>,

where qk is the k-th column of Q and en1 is the n1-th standard basis vector

of appropriate dimension, i.e., all entries of en1 ∈ Rn1 are zero except for

the last entry which is equal to 1. The first term in (1.26) reduces to

‖(U∆>V + ∆UV>)Σ
1/2
xx ‖2F = ‖QJ en1q

>
k ΣyxΣ

−1/2
xx + qke

>
n1

Q>JΣyxΣ
−1/2
xx ‖2F

= ‖qJq>k ΣyxΣ
−1/2
xx ‖2F + ‖qkq>J ΣyxΣ

−1/2
xx ‖2F

≤ ‖q>k ΣyxΣ
−1/2
xx ‖22 + ‖q>J ΣyxΣ

−1/2
xx ‖22

= λk + λJ .

Similarly, the second term in (1.26) can be computed as

〈∆U∆>V,UV>Σxx −Σyx〉 = 〈qkq>k ΣyxΣ−1
xx ,QJQ>JΣyx −Σyx〉

= −〈qkq>k ΣyxΣ−1
xx ,Σyx〉 = −λk.

Therefore, since k ≤ n1 and J > n1, we have

∇2R(U,V)[∆,∆] = λk + λJ − 2λk = λJ − λk < 0.

As a consequence, all critical points with J 6= [n1] are strict saddles, and all

critical points with J = [n1] are a global minimum.

To show part (iii), notice that when rank(U) < n1, there exists a non-

zero vector a ∈ Rn1 such that Ua = 0. Since Σxx and Σ = ΣyxΣ−1
xxΣxy are

assumed to be invertible, Σxy must be full column rank n2, hence n2 ≤ n0.

Since the rank of UV>Σxx is at most the rank of U and Σyx has rank n2,

we know UV>Σxx − Σyx 6= 0. Without loss of generality, we assume its

8 For a scalar function f(W) : Rm×n → R, its Hessian∇2f(W) is a 4D tensor, or an (mn)×(mn)
matrix if we vectorize the variable W. An alternative way to represent the Hessian is by a

bilinear form defined via [∇2f(W)](A,B) =
∑
i,j,k,l

∂2f(W )
∂Wij∂Wkl

AijBkl for any A,B ∈ Rm×n.

When n = 1, i.e., ∇2f(W) ∈ Rm×m and A and B are vectors, this bilinear form reduces to the
standard matrix-vector multiplication [∇2f(W)](A,B) = A>∇2f(W)B. Thus, the bilinear
form allows us to represent the Hessian in a simple way even when the variable is a matrix. Also,
without explicitly computing the eigenvalues of ∇2f(W), we know it has a strictly negative
eigenvalue if we can find a direction ∆ ∈ Rm×n such that [∇2f(W)](∆,∆) < 0. Note that this
quadratic form appears naturally in the Taylor expansion f(W+ ∆) = f(W) + 〈∇f(W),∆〉+
1
2

[∇2f(W)](∆,∆) + · · · , which indeed provides a simple but very useful trick to compute

[∇2f(W)](∆,∆) as long as f(W + ∆) can be easily expanded. For example, when f(W) =
1
2
‖Y−W‖2F , we have f(W+ ∆) = 1

2
‖Y−W−∆‖2F = 1

2
‖Y−W‖2F + 〈W−Y,∆〉+ 1

2
‖∆‖2F ,

which implies that [∇2f(W)](∆,∆) = ‖∆‖2F .
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(i, j)-th entry is non-zero, and we choose ∆U = eia
> and ∆V = αẽja

>,

where ei ∈ Rn2 and ẽj ∈ Rn0 are the standard basis vectors, whose entries

are equal to zero except for their i-th and j-th elements, respectively. With

this, we compute the first term in (1.26) as

‖(U∆>V + ∆UV>)Σ
1/2
xx ‖2F = ‖(αUaẽ>j + eia

>V>)Σ
1/2
xx ‖2F = ‖eia>V>Σ

1/2
xx ‖2F

and the second term in (1.26) by

〈∆U∆>V,UV>Σxx −Σyx〉 = 〈α‖a‖2eiẽ>j ,UV>Σxx −Σyx〉
= α‖a‖2(UV>Σxx −Σyx)ij ,

from which it follows that

∇2R(U,V)[∆,∆] = ‖eia>V>Σ
1/2
xx ‖2F + 2α‖a‖2(UV>Σxx −Σyx)ij ,

where the right hand side can always be negative by choosing appropriate

α. Thus, R has negative curvature when U is rank deficient.

Theorem 1.2 implies that, under certain conditions on the input-output

covariance matrices, Σxx, Σyx and Σyy, both the expected and empirical

risk of a single-hidden layer linear neural network with the squared loss

have no spurious local minima and the saddle points are strict. This benign

geometry ensures that a number of local search algorithms (such as gradient

descent) converge to a global minimum when training a single-hidden layer

linear neural network (Ge et al., 2015; Lee et al., 2019).

But what if the conditions in Theorem 1.2 are violated? When Σxx is

invertible but Σ is rank deficient, a more sophisticated analysis shows that

one can still characterize the set of critical points with full column rank

U as in (1.24) but with a slightly different form (Zhu et al., 2019). Then,

following the sequence of arguments in the proof of Theorem 1.2, one can

show that a critical point (U,V) that is not a global minimum has strictly

negative curvature by finding a direction (which depends on whether U is

full column rank) such that the corresponding Hessian quadrature form is

strictly negative.

When Σxx is also not invertible, it seems difficult to characterize all the

critical points as in (1.24). Nevertheless, by exploiting the local openness

property of the risk R(U,V), Nouiehed and Razaviyayn (2018) show that

any local minimum is a global minimum for all possible input-output co-

variance matrices, Σxx, Σyx and Σyy. We summarize these results in the

following Theorem, but we refer to Nouiehed and Razaviyayn (2018); Zhu

et al. (2019) for the full proof.
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Theorem 1.3 (Nouiehed and Razaviyayn (2018); Zhu et al. (2019)) Any

local minimum of R is a global minimum. Moreover, if Σxx is invertible,

then any critical point of R that is not a global minimum is a strict saddle.

1.3.2 Deep Linear Networks with Squared Loss

In this section we extend the analysis of the optimization landscape of single-

hidden layer linear networks trained using the unregularized squared loss to

deep linear networks. We consider a network with dimensions n0, n1, . . . , nL,

where n0 is the input dimension, nL is the output dimension, n1, . . . , nL−1

are the hidden layer dimensions, W[l] ∈ Rnl×nl−1 is the matrix of weights be-

tween layers l−1 and l, and L is the number of weight layers. The hypothesis

space F can be parametrized in terms of the network weights W = {W[l]}Ll=1

as

F={f ∈YX : f(x)=W[L]W[L−1] · · ·W[1]x, where W[l]∈Rnl×nl−1}. (1.27)

Therefore, the problem of minimizing the expected risk becomes

min
{W[l]}Ll=1

[
R(W)

.
= Ex,y[‖y −W[L]W[L−1] · · ·W[1]x‖22]

]
. (1.28)

Similar to the single-hidden layer case in (1.13), the expected risk can be

rewritten as:

R(W) = trace(Σyy − 2ΣyxW>
1:L + W1:LΣxxW>

1:L), (1.29)

where WL:1 = W[L]W[L−1] · · ·W[1]. Also similar to the single-hidden layer

case in (1.14), the problem of minimizing the empirical risk

min
{W[l]}Ll=1

[
RS(W)

.
=

1

m
‖Y −WL:1X‖2F

]
, (1.30)

where X and Y are the input and output data matrices, is equivalent to min-

imizing R(W), except that Σxx, Σxy and Σyy need to be substituted by

their empirical estimates 1
mXX>, 1

mXY> and 1
mYY>, respectively. Thus,

the analysis of the optimization landscape of both the expected and empir-

ical risk can be done by analyzing the landscape of R(W). As discussed in

Section 1.3.1, when there is no constraint on WL:1 (e.g., when the dimensions

of the hidden layers is sufficiently large) and Σxx is invertible, the optimal

input-output weight matrix is given by W∗
L:1 = ΣyxΣ−1

xx . However, this re-

sult does not provide a characterization of the optimal weight matrices W[l]

for each layer. Thus, the challenge in characterizing the landscape of R(W)

is to understand the effect of the low-rank constraint nl ≤ min{n0, nL} or to

consider the possibility that critical points for W[l] might not be low-rank.
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Recent work by Kawaguchi (2016) provides a formal analysis of the op-

timization landscape of R(W). In particular, by using a purely determinis-

tic approach that exploits both first-order and second-order information at

critical points (as also used in the proof of Theorem 1.2), Kawaguchi (2016)

characterizes the following properties of critical points of R(W).

Theorem 1.4 (Kawaguchi (2016)) Assume that Σxx and Σxy are of full

rank with nL ≤ n0 and that Σ = ΣyxΣ−1
xxΣxy is of full rank with nL distinct

eigenvalues. Then R(W) has the following properties:

• Any local minimum is a global minimum.

• Every critical point that is not a global minimum is a saddle point.

• A saddle point W such that rank(W[L−1] · · ·W[2]) = min1≤l≤L−1 nl is

strict, i.e., the Hessian of R at W has a strictly negative eigenvalue.

• A saddle point W such that rank(W[L−1] · · ·W[2]) < min1≤l≤L−1 nl may

not be strict, i.e., the Hessian at W may not have any negative eigenvalue.

On the one hand, similar to Theorem 1.2 for one-hidden layer linear net-

works, Theorem 1.4 guarantees that under similar conditions on Σxx and

Σxy, any local minimum of the risk is a global minimum. On the other hand,

unlike the results for single-hidden layer linear network where every saddle

point is strict, Theorem 1.4 shows that networks with two or more hidden

layers can have “bad” (non-strict) saddle points, which are also referred to

as degenerate saddle points or higher order saddle points, since the first and

second order derivatives cannot distinguish them from local optima. To illus-

trate why depth introduces degenerate saddle points, consider the simplest

case where L = 3 and n0 = n1 = n2 = n3 = 1. In this case, the risk becomes

R(w[1], w[2], w[3]) = σyy − 2σyxw
[1]w[2]w[3] + σxx(w[1]w[2]w[3])2. (1.31)

By computing the gradient (derivatives) and Hessian (second-order deriva-

tives), it is easy to see that (0, 0, 0) is a critical point, but the Hessian is

the zero matrix, which has no negative eigenvalue. This also holds true for

general deep linear networks. Intuitively, when the network has more layers,

the objective function tends to be flatter at the origin, making the origin a

higher-order saddle. This is similar to the fact that 0 is a critical point of

both functions (1−u2)2 and (1−u3)2: the former has negative second-order

derivative at 0, while the later has second-order derivative 0 at this point.

We end up the discussion for deep linear networks by noting that there is

recent work that improves upon Theorem 1.4, mostly with weaker conditions

to guarantee the absence of spurious local minima. For example, to show

that any local minimum is a global minimum, Lu and Kawaguchi (2017)
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require Σxx and Σxy to be full rank, while Laurent and Brecht (2018) only

require that the size of the hidden layers be bigger than or equal to the

input or output dimensions, i.e., n1, . . . , nL−1 ≥ min{n0, nL}, which could

potentially help guide the design of network architectures.

1.4 Optimization Landscape of Nonlinear Networks

In this section, we review recent work by Haeffele and Vidal (2015, 2017) on

the analysis of the landscape of a class of nonlinear networks with positively

homogeneous activation functions, such as Rectified Linear Units (ReLU),

max-pooling, etc. Critical to the analysis tools that are employed is to con-

sider networks regularized by a function that is also positively homogeneous

of the same degree as the network mapping. These results apply to a class of

deep networks whose output is formed as the sum of the outputs of multiple

positively homogeneous subnetworks connected in parallel (see right panel

in Figure 1.3), where the architecture of a subnetwork can be arbitrary pro-

vided the overall mapping of the subnetwork is a positively homogeneous

function of the network parameters. Specifically, we show that when the

network is sufficiently wide then a path to a global minimizer always exists

from any initialization (i.e., local minima which require one to increase the

objective to escape are guaranteed not to exist).

As a motivating example, before considering the case of deep positively

homogeneous networks, in Section 1.4.1 we revisit the case of shallow linear

networks discussed in Section 1.3.1, as this simple particular case conveys

the key insights behind the more general cases discussed in Section 1.4.2.

The primary difference with the case of shallow linear networks discussed in

Section 1.3.1 is that, rather than fixing the number of columns in (U,V) a

priori, we constrain the hypothesis space using Tykhonov regularization on

(U,V) while allowing the number of columns in (U,V) to be variable. As we

will see, the Tykhonov regularization results in promoting low-rank solutions

even though we do not place an explicit constraint on the number of columns

in (U,V). The extension of these results to deep positively homogeneous

networks will highlight the importance of using similar explicit regularization

to constrain the overall size of the network.

1.4.1 Motivating Example

Consider the empirical risk minimization problem in (1.14) for a single-

hidden layer linear network with n0 inputs, n1 hidden neurons, and n2 out-
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0

ReLU Network with 
One Hidden Layer

Multilayer Parallel Network

Figure 1.3 Example networks. (Left panel) ReLU network with a single hidden layer

with the mapping Φn1 described by the equation in (1.44) with (n1 = 4). Each color

corresponds to one element of the elemental mapping φ(X,W
[1]
i ,W

[2]
i ). The colored

hidden units have rectifying non-linearities, while the black units are linear. (Right

panel) Multilayer ReLU network with 3 fully connected parallel subnetworks (r = 3),

where each color corresponds to the subnetwork described the elemental mapping

φ(X,W
[1]
i ,W

[2]
i ,W

[3]
i ,W

[4]
i ).

puts, which is equivalent to:

min
U,V

1
2‖Y −UV>X‖2F , (1.32)

where U ∈ Rn2×n1 and V ∈ Rn0×n1 are the network weights. We showed in

Section 1.3.1 that, under certain conditions, this problem has no spurious

local minima and all saddle points are strict. In particular, we assumed that

the number of hidden neurons is fixed and limited by the input and output

dimensions, specifically, n1 ≤ min{n0, n2}.
In what follows, we relax this constraint on the network size and optimize

over both the network size and weights. Arguably, this requires some form of

regularization on the network weights that allows us to control the growth of

the network size. A commonly used regularizer is weight decay, Θ(U,V) =

‖U‖2F + ‖V‖2F , also known as Tykhonov regularization. Here, we use weight

decay to regularize (1.32) in the particular case where X = I for simplicity

of presentation,9

min
n1∈N+

min
U∈Rn2×n1
V∈Rn0×n1

1

2
‖Y −UV>‖2F +

λ

2
(‖U‖2F + ‖V‖2F ), (1.33)

where λ > 0 is a regularization parameter.

There are several reasons for considering this particular case. First, (1.33)

can be understood as a matrix factorization problem, where given a matrix

Y ∈ Rn2×n0 , the goal is to factorize it as Y ≈ UV>, where U ∈ Rn2×n1

9 Note that with this simplification the problem becomes an unsupervised learning problem (ma-
trix factorization) instead of the original supervised learning problem (linear network training).
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and V ∈ Rn0×n1 . Second, it is known that weight decay is closely connected

to the nuclear norm of the product of the factorized matrices Z = UV>,

where recall that the nuclear norm ‖Z‖∗ is the sum of the singular values of

a matrix Z, via the so-called variational form of the nuclear norm (Srebro

et al., 2004):

‖Z‖∗ = min
n1∈N+

min
U,V:

UV>=Z

1

2
(‖U‖2F + ‖V‖2F ), (1.34)

where the above equation states that given a matrix Z, if one considers all

possible factorizations of Z into UV> then finding a factorization Z = UV>

which minimizes the Tykhonov regularization on (U,V) will be equal to the

nuclear norm of Z. Third, recall that the nuclear norm is a convex relaxation

of the rank of the matrix, which is known to encourage low-rank solutions.

As a result, this will allow us to control the network width, n1, and ensure

capacity control via matrix factorization techniques without placing explicit

constraints on n1. Indeed, due to the variational definition of the nuclear

norm in (1.34), the objective in (1.33) will be closely related to a convex

optimization problem with nuclear norm regularization:

min
Z

1

2
‖Y − Z‖2F + λ‖Z‖∗. (1.35)

The strong similarity between (1.34) and the regularizer in (1.33) suggests

looking at the convex problem in (1.35), whose solution can be found in

closed form from the SVD of Y. Specifically, if Y = UYΣYV>Y is the SVD

of Y, then the global minimizer of (1.35) is given by the singular value

thresholding operator Z = Dλ(Y) = UY(ΣY−λI)+V>Y, where the singular

vectors of Y (columns of UY and VY) are maintained, while the singular

values of Y (diagonal entries of ΣY) are shrunk by λ and then thresholded

at zero, i.e., a+ = max(a, 0).

But how do these results for the convex problem in (1.35) relate to solu-

tions to the non-convex problem in (1.33)? First, observe that (1.34) implies

that the convex problem provides a global lower bound for the non-convex

problem. Specifically, for any (U,V,Z) such that Z = UV> (1.34) implies

1

2
‖Y − Z‖2F + λ‖Z‖∗ ≤

1

2
‖Y −UV>‖2F +

λ

2
(‖U‖2F + ‖V2‖2F ). (1.36)

Additionally, this lower bound is always tight once n1 becomes sufficiently

large in the sense that for any Z one can find a (U,V) such that Z = UV>

and the inequality above will be an equality. As a result, a global minimum

(U,V) of the non-convex problem (1.33) gives a global minimum Z = UV>

for the convex problem (1.35), and due to the global lower-bound in (1.36)
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this further implies that we have a global minimum of both the convex and

non-convex problems, as we show next.

Theorem 1.5 Let ui and vi be the ith columns of U and V, respectively.

If (U,V, n1) is a local minimum of (1.33) such that for some i ∈ [n1] we

have ui = 0 and vi = 0, then (i) Z = UV> is a global minimum of (1.35),

and (ii) (U,V, n1) is a global minimum of (1.33) and (1.34).

Proof Recall the Fenchel conjugate of a function Ω is defined as Ω∗(Q) =

supZ〈Q,Z〉 −Ω(Z), leading to Fenchel’s inequality 〈Q,Z〉 ≤ Ω(Z) + Ω∗(Q).

Also recall the subgradient of a convex function Ω at Z is defined as ∂Ω(Z) =

{Q : Ω(Z̄) ≥ Ω(Z) + 〈Q, Z̄ − Z〉,∀Z̄} = {Q : 〈Q,Z〉 = Ω(Z) + Ω∗(Q)}.
Applying this to the nuclear norm Ω(Z) = ‖Z‖∗ and using (1.34), we obtain

Ω∗(Q)= sup
Z
〈Q,Z〉 − ‖Z‖∗ = sup

n1∈N+

sup
Ũ,Ṽ

〈Q, ŨṼ>〉 − 1

2
(‖Ũ‖2F + ‖Ṽ‖2F )

= sup
n1∈N+

sup
Ũ,Ṽ

n1∑
i=1

(
ũ>i Qṽi −

1

2
(‖ũi‖22 + ‖ṽi‖22)

)
=

{
0 if u>Qv ≤ 1

2(‖u‖22 + ‖v‖22) ∀(u,v)

∞ else,
(1.37)

which then implies

∂‖Z‖∗={Q : 〈Q,Z〉=‖Z‖∗ and u>Qv ≤ 1
2(‖u‖22+‖v‖22) ∀(u,v)}. (1.38)

To show (i), we need to show that 0 ∈ Z − Y + λ∂‖Z‖∗ or Y − Z ∈
λ∂‖Z‖∗. Let us first show that Q = Y−Z

λ satisfies the inequality in (1.38).

Assume without loss of generality that the last column of U and V are zero,

choose any u ∈ Rn2 , v ∈ Rn0 , and ε > 0 and let Uε = U + ε1/2ue>n1
and

Vε = V + ε1/2ve>n1
so that Zε = UεV

>
ε = UV> + εuv> = Z + εuv>. Since

(U,V, n1) is a local minimum of (1.33), for all (u,v) there exists δ > 0 such

that for all ε ∈ (0, δ) we have:

1

2
‖Y − Zε‖2F +

λ

2
(‖Uε‖2F + ‖Vε‖2F )− 1

2
‖Y − Z‖2F −

λ

2
(‖U‖2F + ‖V‖2F ) ≥ 0

1

2
(−2〈Y,Zε−Z〉+ 〈Zε+Z,Zε−Z〉) +

λ

2
(‖Uε‖2F−‖U‖2F + ‖Vε‖2F−‖V‖2F ) ≥ 0

ε

2
(−2〈Y,uv>〉+ 〈2Z + εuv>,uv>〉) +

λε

2
(‖u‖22 + ‖v‖22) ≥ 0

u>(Z−Y)v +
ε

2
‖u‖22‖v‖22 +

λ

2
(‖u‖22 + ‖v‖22) ≥ 0.

Letting ε↘ 0, gives u> (Y−Z)
λ v ≤ 1

2(‖u‖22 + ‖v‖22), ∀(u,v) as claimed.



20 Optimization Landscape of Neural Networks

Let us now show that Q = Y−Z
λ satisfies the equality in (1.38). Because

the inequality in (1.38) holds, we know that Ω∗(Q) = 0, which together

with Fenchel’s inequality gives 〈Q,Z〉 ≤ ‖Z‖∗. Then, since Z = UV>, it

follows from (1.34) that ‖Z‖∗ ≤ 1
2(‖U‖2F + ‖V‖2F ). Therefore, to show that

〈Q,Z〉 = ‖Z‖∗ it suffices to show that 〈Q,Z〉 = 1
2(‖U‖2F + ‖V‖2F ). For this

particular problem it is possible to show that this equality is satisfied simply

by considering the first-order optimality conditions, which must be satisfied

since (U,V, n1) is a local minimum:

−(Y −UV>)V + λU = 0 and − (Y −UV>)>U + λV = 0. (1.39)

It follows that

U>(Y −UV>)V = λU>U and U>(Y −UV>)V> = λV>V. (1.40)

Summing, taking the trace and dividing by λ gives the desired result

〈Y−UV>

λ ,UV>〉 =
1

2
(‖U‖2F + ‖V‖2F ) = ‖Z‖∗. (1.41)

As a consequence, W ∈ ∂‖Z‖∗ and hence Z = UV> is a global minimum

of the convex problem in (1.35), thus concluding the proof of (i).

As an alternative to the above approach, to develop an intuition for more

general results, we will also provide an alternative proof of the equality in

(1.41) without relying on the objective being differentiable w.r.t. (U,V)

and only requiring the loss function to be differentiable w.r.t. Z = UV>. In

particular, let Uτ = (1 + τ)1/2U, Vτ = (1 + τ)1/2V, and Zτ = UτV
>
τ =

(1+τ)UV> = (1+τ)Z. Again since (U,V, n1) is a local minimum for τ > 0

sufficiently small we have:

1

2
‖Y − Zτ‖2F +

λ

2
(‖Uτ‖2F + ‖Vτ‖2F )− 1

2
‖Y − Z‖2F −

λ

2
(‖U‖2F + ‖V‖2F ) ≥ 0

1

2
‖Y − (1 + τ)Z‖2F −

1

2
‖Y − Z‖2F +

λ

2
(τ‖U‖2F + τ‖V‖2F ) ≥ 0

1

τ

(
1

2
‖Y − Z− τZ‖2F −

1

2
‖Y − Z‖2F

)
≥ −λ

2
(‖U‖2F + ‖V‖2F ).

Taking the limit τ ↘ 0 (where recall that the above limit on the l.h.s. is the

directional derivative of the loss in the direction Z) gives:

〈Z−Y,Z〉 ≥ −λ
2

(‖U‖2F + ‖V‖2F ) =⇒ 〈Y−UV>

λ ,UV>〉 ≤ 1

2
(‖U‖2F + ‖V‖2F ).

If we then let Ūτ = (1 − τ)1/2U, V̄τ = (1 − τ)1/2V, and Z̄τ = ŪτV̄
>
τ =

(1−τ)Z, then by repeating an identical set of arguments as before we obtain
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the opposite inequality:

1

2
‖Y − Z̄τ‖2F +

λ

2
(‖Ūτ‖2F + ‖V̄τ‖2F )− 1

2
‖Y − Z‖2F −

λ

2
(‖U‖2F + ‖V‖2F ) ≥ 0

1

2
‖Y − (1− τ)Z‖2F −

1

2
‖Y − Z‖2F −

λ

2
(τ‖U‖2F + τ‖V‖2F ) ≥ 0

1

τ

(
1

2
‖Y − Z + τZ‖2F −

1

2
‖Y − Z‖2F

)
≥ λ

2
(‖U‖2F + ‖V‖2F )

taking the limit τ ↘ 0 =⇒

〈Z−Y,−Z〉 ≥ λ

2
(‖U‖2F + ‖V‖2F ) =⇒ 〈Y−UV>

λ ,UV>〉 ≥ 1

2
(‖U‖2F + ‖V‖2F ).

As a result, we have again shown that (1.41) must be true without relying on

the differentiability of the objective w.r.t. (U,V), only the differentiablity

of the loss function w.r.t. Z when we take the limits as τ ↘ 0.

Finally, to see that claim (ii) is true, observe the equality on the right

hand side of (1.41) implies that (U,V, n1) is an optimal factorization, i.e.,

a global minimum of (1.34). Finally, since the convex problem in (1.35) is

a global lower bound for the non-convex problem in (1.33) and Z = UV>

is a global minimum of the convex problem, it follows that (U,V, n1) must

be a global minimum of the non-convex problem.

In summary, we have shown that the non-convex problem matrix fac-

torization problem in (U,V) admits a global lower bound in the product

space Z = UV>. Moreover, the lower bound is a convex function of Z, and

the global minima agree, i.e., if (U,V, n1) is a global minimum of the non-

convex problem, then UV> is a global minimum of the convex problem.

In addition, Theorem 1.5 provides a characterization of local minima of the

non-convex problem which are also global: local minima with one column

of U and the corresponding column of V being zero. Such a statement can

be easily extended to local minima (U,V, n1) that are rank deficient, i.e.,

there exists e 6= 0 such that Ue = 0 and Ve = 0, since the only part of

the proof that depends on columns of U and V being zero is the definition

of Uε and Vε, which can be readily replaced by Uε = U + ε1/2ue> and

Vε = V + ε1/2ve> with ‖e‖2 = 1. In addition, observe that the proof of

Theorem 1.5 relies only on the following sufficient and necessary conditions

for global optimality of any (U,V, n1).

Corollary 1.6 (U,V, n1) is a global minimum of (1.33) if and only if it

satisfies the following conditions

(i) 〈Y −UV>,UV>〉 = λ
2 (‖U‖2F + ‖V‖2F ).
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(ii) u>(Y −UV>)v ≤ λ
2 (‖u‖22 + ‖v‖22) for all (u,v).

Recall that the global minimum of the convex problem (1.35) is given

by the singular value thresholding of Y, Z = Dλ(Y) = UY(ΣY − λI)+V>Y,

where Y = UYΣYV>Y is the SVD of Y. It follows that a global minimum of

(1.33) can be obtained as U = UY(ΣY −λI)
1/2
+ and V = VY(ΣY −λI)

1/2
+ .

In practice, while a globally optimal solution to (1.35) can be found using

linear algebraic techniques, computing the SVD of Y is highly inefficient

for large matrices Y. Therefore, we may still be interested in solving (1.35)

using, e.g., gradient descent. In this case, we may be interested in using

Corollary 1.6 to check if a global minimum has been found. Observe from

the proof of Theorem 1.5 that condition (i) is satisfied by any first-order

point, and that optimization methods are often guaranteed to converge to

first order points. Therefore, the important condition to check is condition

(ii). It can be shown that condition (ii) is equivalent to σmax(Y−UV>) ≤ λ,

which involves computing only the largest singular value of a matrix. Now,

what if condition (ii) is violated? In this case, one might wonder if condition

(ii) may be used to escape the non-global local minimum. Indeed, if condition

(ii) is violated, then there exists (u,v) such that u>(Y−UV>)v > λ
2 (‖u‖22+

‖v‖22). Then, it follows from the proof of Theorem 1.5 that if we choose

Uε = [U ε1/2u] and Vε = [V ε1/2v] for ε small enough, then we can reduce

the objective. This suggest an algorithm for minimizing (1.33) which consists

of the following two steps

(i) For a fixed n1, use a local descent strategy to minimize (1.33) with respect

to U and V until convergence to a first-order point.

(ii) Check if condition (ii) is satisfied, which is equivalent to solving the fol-

lowing optimization problem (called the polar problem)

max
u,v

u>(Y −UV>)v

‖u‖22 + ‖v‖22
≤ λ

2
⇐⇒ max

u,v

u>(Y −UV>)v

‖u‖2‖v‖2
≤ λ. (1.42)

If the condition holds, then a global minimum has been found. Otherwise,

let (u,v) be a solution to the polar problem,10 augment U and V with

one additional column as Uε = [U ε1/2u] and Vε = [V ε1/2v] for some

ε > 0, and go to (i).

We refer the reader to Haeffele and Vidal (2019) for a more precise and

detailed description of this meta-algorithm.

10 Note that a solution to the polar problem is given by the left and right singular vectors of
Y −UV> associated with its largest singular value.
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1.4.2 Positively Homogeneous Networks

The above discussion on matrix factorization can be extended to neural

networks with one hidden layer by properly adjusting the definitions of the

maps Φ and Θ. In the above matrix factorization example (returning to the

use of W to notate the model parameters), Φ and Θ can be re-written as

Φ(X,W[1],W[2]) = W[2](W[1])> =

n1∑
i=1

w
[2]
i (w

[1]
i )>, and (1.43)

Θ(W[1],W[2]) =
1

2
(‖W[1]‖2F + ‖W[2]‖2F ) =

n1∑
i=1

1

2
(‖w[1]

i ‖
2
2 + ‖w[2]

i ‖
2
2),

where w
[1]
i and w

[2]
i are the ith columns of W[1] and W[2], respectively. A

key observation is that the map Φ and regularization Θ decompose as sums

of functions over the columns of W[1] and W[2]. Further, these functions are

both positively homogeneous11 with degree 2.

Turning to single-hidden-layer neural networks, if we again let n1 denote

the number of neurons in the hidden layer this motivates the following more

general definitions for Φ and Θ:

Φn1(X,W[1],W[2]) =

n1∑
i=1

φ(X,w
[1]
i ,w

[2]
i ), and

Θn1(W[1],W[2]) =

n1∑
i=1

θ(w
[1]
i ,w

[2]
i ),

(1.44)

where φ(X,w[1],w[2]) and θ(w[1],w[2]) are functions which are both pos-

itively homogeneous of the same degree p > 0 w.r.t. (w[1],w[2]). Clearly,

φ(X,w[1],w[2]) = w[1](w[2])> and θ(w[1],w[2]) = 1
2(‖w[1]‖22 + ‖w[2]‖22) sat-

isfy this property, with p = 2. But notice that it is also satisfied, for

example, by the map φ(X,w[1],w[2]) = w[2]ReLU((w1)>X), where recall

ReLU(z) = max(z, 0) is a ReLU applied to each entry of (w[1])>X. The

fundamental observation is that both linear transformations and ReLU non-

linearities12 are positively homogeneous functions, and so the composition

of such functions is also positively homogeneous. With these definitions, it

is easy to see that the output of a two-layer neural network with ReLU non-

linearity on the hidden units, such as the one illustrated in the left panel of

Figure 1.3, can be expressed by the map Φ in (1.44).

11 Recall that a function f is said to be positively homogeneous with degree-p if ∀α ≥ 0 one
has f(αx) = αpf(x).

12 Notice that many other neural network operators such as max-pooling, leaky ReLUs, raising
to a polynomial power, and convolution are also positively homogeneous.
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This same approach can be generalized beyond single-hidden-layer net-

works to the more general multi-layer parallel network shown in the right

panel of Fig. 1.3 by considering more general φ and θ functions. In par-

ticular, we define the mapping of the multi-layer parallel network and its

corresponding regularization function as the sum of the corresponding map-

pings and regularization functions for r parallel subnetworks with identical

architectures but possibly different weights. Specifically, we define the map-

ping of the multi-layer parallel network and its regularization function as

Φr(X,W
[1], . . . ,W[L]) =

r∑
i=1

φ(X,W
[1]
i , . . . ,W

[L]
i ), and

Θr(W
[1], . . . ,W[L]) =

r∑
i=1

θ(W
[1]
i , . . . ,W

[L]
i ),

(1.45)

where W
[l]
i denotes the weight parameters for the lth layer of the ith sub-

network, W[l] = {W[l]
i }ri=1 is the set of weight parameters for the lth layer of

all r subnetworks, and the network mapping φ(X,W
[1]
i , . . . ,W

[L]
i ) and regu-

larization function θ(W
[1]
i , . . . ,W

[L]
i ) are positively homogeneous functions

of degree p > 0 on the weights of the ith subnetwork (W
[1]
i , . . . ,W

[L]
i ).13

Therefore, we can write the training problem for a network which consists

of the sum of parallel subnetworks (where we also search over the number

of subnetworks, r) as:

min
r∈N+

min
W[1],...,W[L]

L(Y,Φr(X,W
[1], . . . ,W[L]))+λΘr(W

[1], . . . ,W[L]). (1.46)

Note that this problem is typically non-convex due to the mapping Φr re-

gardless of the choice of the loss and regularization functions, L and Θ,

respectively. Therefore, to analyze this non-convex problem, we define a gen-

eralization of the variational form of the nuclear norm in (1.34) for neural

networks which consist of the sum of parallel subnetworks as:

Ωφ,θ(Z) = min
r∈N+

min
W[1],...,W[L]:Φr(X,W[1],...,W[L])=Z

Θr(W
[1], . . . ,W[L]), (1.47)

with the additional condition that Ωφ,θ(Z) =∞ if Φr(X,W
[1], . . . ,W[L]) 6=

Z for all (W[1], . . . ,W[L], r). The intuition behind the above problem is that,

given an output Z generated by the network for some input X, we wish to

find the number of subnetworks (or the number of hidden-units in the single-

hidden-layer case) and weights (W[1], . . . ,W[L]) that produce the output Z.

13 Note that θ could additionally depend on X, but we omit that here for notational simplicity.
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Then, among all possible choices of sizes and weights, we prefer those that

minimize Θr(W
[1], . . . ,W[L]).

Note that the function Ωφ,θ is completely specified once one chooses a φ

and θ function in (1.45), so for Ωφ,θ to be well-posed it is required that φ

and θ satisfy the following conditions:14

Definition 1.7 We will say that (φ, θ) are a nondegenerate pair if for

any set of weights for one subnetwork (W̄[1], . . . ,W̄[L]) the functions satisfy

the following three conditions:

(i) Both φ and θ are positively homogeneous functions of the weights with the

same degree p > 0: φ(X, αW̄[1], . . . , αW̄[L]) = αpφ(X,W̄[1], . . . ,W̄[L])

and θ(αW̄[1], . . . , αW̄[L]) = αpθ(W̄[1], . . . ,W̄[L]) for all α ≥ 0.

(ii) θ is positive semi-definite: θ(W̄[1], . . . ,W̄[L]) ≥ 0.

(iii) The set {φ(X,W̄[1], . . . ,W̄[L]) : θ(W̄[1], . . . ,W̄[L]) ≤ 1} is compact.

As a concrete example, choosing φ(X,w[1],w[2]) = w[2]ReLU((w[1])>X)

as above and θ(w[1],w[2]) = 1
2(‖w[1]‖22 +‖w[2]‖22) satisfies the above require-

ments and corresponds to a single-hidden-layer fully-connected network (as

Φn1(X,W[1],W[2]) = W[2]ReLU((W[1])>X)) with `2 weight decay on the

parameters. From these preliminaries, one can show that Ωφ,θ satisfies the

following properties:

Proposition 1.8 (Haeffele and Vidal (2015, 2017)) Given a nondegenerate

pair of functions (φ, θ) then Ωφ,θ(Z) has the following properties:

(i) Positive definite: Ωφ,θ(Z) > 0,∀Z 6= 0 and Ωφ,θ(0) = 0.

(ii) Positively homogeneous with degree 1: Ωφ,θ(αZ) = αΩφ,θ(Z), ∀α ≥ 0,∀Z.

(iii) Triangle inequality: Ωφ,θ(Q + Z) ≤ Ωφ,θ(Q) + Ωφ,θ(Z), ∀Q,Z.
(iv) Convex with respect to Z.

(v) The infimum in (1.47) can be achieved with r ≤ card(Z), ∀Z.

Further, if for any choice of weights for one subnetwork, W̄[1], . . . ,W̄[L],

there exists a vector s = {−1, 1}L such that φ(X, s1W̄
[1], . . . , sLW̄[L]) =

−φ(X,W̄[1], . . . ,W̄[L]) and θ(s1W̄
[1], . . . , sLW̄[L]) = θ(W̄[1], . . . ,W̄[L]), then

Ωφ,θ(Z) is also a norm on Z.

Note that regardless of whether Ωφ,θ is a norm or not, we always have

that Ωφ,θ(Z) is convex on Z. Therefore, if the loss L is convex on Z, so is

the problem

min
Z
L(Y,Z) + λΩφ,θ(Z). (1.48)

14 The first two conditions are typically easy to verify, while the third condition is needed to avoid
trivial situations such as Ωφ,θ(Z) = 0, ∀Z.
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Further, just as in the previous matrix factorization example we have that for

any (Z,W[1], . . . ,W[L]) such that Z = Φr(X,W
[1], . . . ,W[L]) the following

global lower-bound exists:

L(Y,Z) + λΩφ,θ(Z) ≤ L(Y,Φr(X,W
[1], . . . ,W[L])) + λΘr(W

[1], . . . ,W[L]),

(1.49)

and the lower-bound is tight in the sense that for any Z such that Ωφ,θ(Z) 6=
∞ there exists (W[1], . . . ,W[L], r) such that Z = Φr(X,W

[1], . . . ,W[L]) and

the above inequality becomes an equality. As a result, using a very similar

analysis as was used to prove Theorem 1.5 one can show the following result:

Theorem 1.9 (Haeffele and Vidal (2015, 2017)) Given a nondegener-

ate pair of functions (φ, θ), if (W[1], . . . ,W[L], r) is a local minimum of

(1.46) such that for some i ∈ [r] we have W
[1]
i = 0, . . ., W

[L]
i = 0, then

(i) Z = Φr(X,W
[1], . . . ,W[L]) is a global minimum of (1.48) and (ii)

(W[1], . . . ,W[L], r) is a global minimum of (1.46) and (1.47).

We refer to Haeffele and Vidal (2015, 2017) for the full proof, but it

closely follows the sequences of arguments from the proof of Theorem 1.5.

In particular, we note that the key property which is needed to generalize the

proof of Theorem 1.5 is that φ and θ are positively-homogeneous functions

of the same degree.

Additionally, building on the discussion of the meta-algorithm from sec-

tion 1.4.1, it can also be shown (in combination with Theorem 1.9) that

if the network is sufficiently large (as measured by the number of subnet-

works, r) then there always exists a path from any initialization to a global

minimizer which does not require one to increase the value of the objective.

Theorem 1.10 (Haeffele and Vidal (2015, 2017)) Given a nondegenerate

pair of functions (φ, θ), let |φ| denote the number of elements in the output

of the function φ. Then if r > |φ| for the following optimization problem:

min
W[1],...,W[L]

L(Y,Φr(X,W
[1], . . . ,W[L])) + λΘr(W

[1], . . . ,W[L]) (1.50)

a non-increasing path to a global minimizer will always exist from any ini-

tialization.

Again we refer to Haeffele and Vidal (2015, 2017) for the complete proof,

but the key idea is that once one arrives at a local minimum either the

condition of Theorem 1.9 is satisfied or if not the outputs of the subnetworks

will be linearly dependent. As a result, by positive homogeneity one can

traverse a flat surface of the objective landscape until arriving at a point

which does satisfy the condition of Theorem 1.9. From there the point is
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either a local minimum (and hence a global minimum from the Theorem)

or a descent direction must exist.

1.5 Conclusions

We have studied the optimization landscape of neural network training for

two classes of networks: linear networks trained with the squared loss and

without regularization, and positively homogeneous networks with parallel

structure trained with a convex loss and positively homogeneous regulariza-

tion. In the first case, we derived conditions on the input-output covariance

matrices under which all critical points are either global minimizers or sad-

dle points. In the second case, we showed that when the networks is suffi-

ciently wide, the non-convex objective on the weights can be lower-bounded

by a convex objective on the network mapping, and derived conditions un-

der which local minima of the non-convex objective yield global minima of

both objectives. Future avenues for research include extending the results

presented here to other classes of deep architectures. In particular, current

results are limited to parallel architectures whose size is measured by the

number of parallel subnetworks of fixed depth and width. This motivates

extending the framework to cases in which both the depth and width of the

network are varied. Moreover, the landscape of the objective is only one of

the ingredients for explaining the role of optimization in deep learning. As

discussed in the introduction, other ingredients are to develop efficient algo-

rithms for finding a global minimum and to study the implicit regularization

and generalization performance of such algorithms. We refer the reader to

other chapters in this book for recent results on these fascinating subjects.
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