
Sparse Subspace Clustering:
Algorithm, Theory, and Applications

Ehsan Elhamifar, Student Member, IEEE, and René Vidal, Senior Member, IEEE

Abstract—Many real-world problems deal with collections of high-dimensional data, such as images, videos, text, and web

documents, DNA microarray data, and more. Often, such high-dimensional data lie close to low-dimensional structures corresponding

to several classes or categories to which the data belong. In this paper, we propose and study an algorithm, called sparse subspace
clustering, to cluster data points that lie in a union of low-dimensional subspaces. The key idea is that, among the infinitely many

possible representations of a data point in terms of other points, a sparse representation corresponds to selecting a few points from the
same subspace. This motivates solving a sparse optimization program whose solution is used in a spectral clustering framework to

infer the clustering of the data into subspaces. Since solving the sparse optimization program is in general NP-hard, we consider a
convex relaxation and show that, under appropriate conditions on the arrangement of the subspaces and the distribution of the data,

the proposed minimization program succeeds in recovering the desired sparse representations. The proposed algorithm is efficient
and can handle data points near the intersections of subspaces. Another key advantage of the proposed algorithm with respect to the

state of the art is that it can deal directly with data nuisances, such as noise, sparse outlying entries, and missing entries, by
incorporating the model of the data into the sparse optimization program. We demonstrate the effectiveness of the proposed algorithm

through experiments on synthetic data as well as the two real-world problems of motion segmentation and face clustering.

Index Terms—High-dimensional data, intrinsic low-dimensionality, subspaces, clustering, sparse representation, ‘1-minimization,

convex programming, spectral clustering, principal angles, motion segmentation, face clustering

Ç

1 INTRODUCTION

HIGH-DIMENSIONAL data are ubiquitous in many areas of
machine learning, signal and image processing,

computer vision, pattern recognition, bioinformatics, etc.
For instance, images consist of billions of pixels, videos
can have millions of frames, text and web documents are
associated with hundreds of thousands of features, etc.
The high-dimensionality of the data not only increases the
computational time and memory requirements of algo-
rithms, but also adversely affects their performance due to
the noise effect and insufficient number of samples with
respect to the ambient space dimension, commonly
referred to as the “curse of dimensionality” [1]. However,
high-dimensional data often lie in low-dimensional struc-
tures instead of being uniformly distributed across the
ambient space. Recovering low-dimensional structures in
the data helps to not only reduce the computational
cost and memory requirements of algorithms, but also
reduce the effect of high-dimensional noise in the data
and improve the performance of inference, learning, and
recognition tasks.

In fact, in many problems, data in a class or category can
be well represented by a low-dimensional subspace of the
high-dimensional ambient space. For example, feature
trajectories of a rigidly moving object in a video [2],
face images of a subject under varying illumination [3],
and multiple instances of a hand-written digit with
different rotations, translations, and thicknesses [4] lie in a
low-dimensional subspace of the ambient space. As a result,
the collection of data from multiple classes or categories lies
in a union of low-dimensional subspaces. Subspace cluster-
ing (see [5] and references therein) refers to the problem of
separating data according to their underlying subspaces
and finds numerous applications in image processing
(e.g., image representation and compression [6]) and
computer vision (e.g., image segmentation [7], motion
segmentation [8], [9], and temporal video segmentation
[10]), as illustrated in Figs. 1 and 2. Since data in a subspace
are often distributed arbitrarily and not around a centroid,
standard clustering methods [11] that take advantage of the
spatial proximity of the data in each cluster are not in
general applicable to subspace clustering. Therefore, there
is a need for having clustering algorithms that take into
account the multisubspace structure of the data.

1.1 Prior Work on Subspace Clustering
Existing algorithms can be divided into four main categories:
iterative, algebraic, statistical, and spectral clustering-based
methods.

Iterative methods. Iterative approaches, such as K-
subspaces [12], [13] and median K-flats [14], alternate
between assigning points to subspaces and fitting a subspace
to each cluster. The main drawbacks of such approaches
are that they generally require knowing the number and
dimensions of the subspaces and that they are sensitive to
initialization.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013 2765

. E. Elhamifar is with the Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA 94804.
E-mail: ehsan@eecs.berkeley.edu.

. R. Vidal is with the Center for Imaging Science and the Department of
Biomedical Engineering, The Johns Hopkins University, 322 Clark Hall,
3400 North Charles Street, Baltimore, MD 21218.
E-mail: rvidal@cis.jhu.edu.

Manuscript received 23 Feb. 2012; revised 13 Aug. 2012; accepted 30 Jan.
2013; published online 14 Mar. 2013.
Recommended for acceptance by F. de la Torre.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2012-02-0131.
Digital Object Identifier no. 10.1109/TPAMI.2013.57.

0162-8828/13/$31.00 ! 2013 IEEE Published by the IEEE Computer Society

Algebraic approaches. Factorization-based algebraic
approaches such as [8], [9], [15] find an initial segmentation
by thresholding the entries of a similarity matrix built from
the factorization of the data matrix. These methods are
provably correct when the subspaces are independent, but
fail when this assumption is violated. In addition, they are
sensitive to noise and outliers in the data. Algebraic-
geometric approaches such as generalized principal com-
ponent analysis [10], [16] fit the data with a polynomial
whose gradient at a point gives the normal vector to the
subspace containing that point. While GPCA can deal with
subspaces of different dimensions, it is sensitive to noise
and outliers, and its complexity increases exponentially in
terms of the number and dimensions of subspaces.

Statistical methods. Iterative statistical approaches, such
as mixtures of probabilistic PCA [17], multistage learning
[18], or [19], assume that the distribution of the data inside
each subspace is Gaussian and alternate between data
clustering and subspace estimation by applying expectation
maximization. The main drawbacks of these methods are
that they generally need to know the number and
dimensions of the subspaces, and that they are sensitive
to initialization. Robust statistical approaches, such as
random sample consensus (RANSAC) [20], fit a subspace
of dimension d to randomly chosen subsets of d points until
the number of inliers is large enough. The inliers are then
removed, and the process is repeated to find a second
subspace, and so on. RANSAC can deal with noise and
outliers and does not need to know the number of
subspaces. However, the dimensions of the subspaces must
be known and equal. In addition, the complexity of the
algorithm increases exponentially in the dimension of the
subspaces. Information-theoretic statistical approaches,
such as agglomerative lossy compression (ALC) [21], look
for the segmentation of the data that minimizes the coding
length needed to fit the points with a mixture of degenerate
Gaussians up to a given distortion. As this minimization
problem is NP-hard, a suboptimal solution is found by first
assuming that each point forms its own group, and then
iteratively merging pairs of groups to reduce the coding

length. ALC can handle noise and outliers in the data.
While, in principle, it does not need to know the number
and dimensions of the subspaces, the number of subspaces
found by the algorithms is dependent on the choice of a
distortion parameter. In addition, there is no theoretical
proof for the optimality of the agglomerative algorithm.

Spectral clustering-based methods. Local spectral clus-
tering-based approaches such as local subspace affinity
(LSA) [22], locally linear manifold clustering [23], spectral
local best-fit flats [24] and [25], use local information
around each point to build a similarity between pairs of
points. The segmentation of the data is then obtained by
applying spectral clustering [26], [27] to the similarity
matrix. These methods have difficulties in dealing with
points near the intersection of two subspaces because the
neighborhood of a point can contain points from different
subspaces. In addition, they are sensitive to the right choice
of the neighborhood size to compute the local information
at each point.

Global spectral clustering-based approaches try to
resolve these issues by building better similarities between
data points using global information. Spectral curvature
clustering (SCC) [28] uses multiway similarities that
capture the curvature of a collection of points within an
affine subspace. SCC can deal with noisy data but requires
knowing the number and dimensions of subspaces and
assumes that subspaces have the same dimension. In
addition, the complexity of building the multiway simi-
larity grows exponentially with the dimensions of the
subspaces; hence, in practice, a sampling strategy is
employed to reduce the computational cost. Using
advances in sparse [29], [30], [31] and low-rank [32],
[33], [34] recovery algorithms, the Sparse Subspace
Clustering (SSC) [35], [36], [37], Low-Rank Recovery
(LRR) [38], [39], [40], and Low-Rank Subspace Clustering
(LRSC) [41] algorithms pose the clustering problem as one
of finding a sparse or low-rank representation of the data
in the dictionary of the data itself. The solution of the
corresponding global optimization algorithm is then used
to build a similarity graph from which the segmentation of

2766 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013

Fig. 2. Face clustering: Given face images of multiple subjects (top), the goal is to find images that belong to the same subject (bottom).

Fig. 1. Motion segmentation: Given feature points on multiple rigidly moving objects tracked in multiple frames of a video (top), the goal is to separate
the feature trajectories according to the moving objects (bottom).

the data is obtained. The advantages of these methods
with respect to most state-of-the-art algorithms are that
they can handle noise and outliers in data, and that they
do not need to know the dimensions and, in principle, the
number of subspaces a priori.

1.2 Paper Contributions

In this paper, we propose and study an algorithm based on
sparse representation techniques, called SSC, to cluster a
collection of data points lying in a union of low-dimensional
subspaces. The underlying idea behind the algorithm is
what we call the self-expressiveness property of the data,
which states that each data point in a union of subspaces
can be efficiently represented as a linear or affine combina-
tion of other points. Such a representation is not unique in
general because there are infinitely many ways in which a
data point can be expressed as a combination of other
points. The key observation is that a sparse representation of a
data point ideally corresponds to a combination of a few
points from its own subspace. This motivates solving a
global sparse optimization program whose solution is used
in a spectral clustering framework to infer the clustering of
data. As a result, we can overcome the problems of local
spectral clustering-based algorithms, such as choosing the
right neighborhood size and dealing with points near
the intersection of subspaces, since, for a given data point,
the sparse optimization program automatically picks a few
other points that are not necessarily close to it but that
belong to the same subspace.

Since solving the sparse optimization program is in
general NP-hard, we consider its ‘1 relaxation. We show
that, under mild conditions on the arrangement of sub-
spaces and data distribution, the proposed ‘1-minimization
program recovers the desired solution, guaranteeing the
success of the algorithm. Our theoretical analysis extends
the sparse representation theory to the multisubspace
setting where the number of points in a subspace is
arbitrary, possibly much larger than its dimension. Unlike
block-sparse recovery problems [42], [43], [44], [45], [46],
[47] where the bases for the subspaces are known and
given, we do not have the bases for subspaces nor do we
know which data points belong to which subspace, making
our case more challenging. We only have the sparsifying
dictionary for the union of subspaces given by the matrix of
data points.

The proposed ‘1-minimization program can be solved
efficiently using convex programming tools [48], [49], [50]
and does not require initialization. Our algorithm can
directly deal with noise, sparse outlying entries, and
missing entries in the data as well as the more general class
of affine subspaces by incorporating the data corruption or
subspace model into the sparse optimization program.
Finally, through experimental results, we show that our
algorithm outperforms state-of-the-art subspace clustering
methods on the two real-world problems of motion
segmentation (see Fig. 1) and face clustering (see Fig. 2).

Paper organization. In Section 2, we motivate and
introduce the SSC algorithm for clustering data points in a
union of linear subspaces. In Section 3, we generalize the
algorithm to deal with noise, sparse outlying entries, and
missing entries in the data as well as the more general class

of affine subspaces. In Section 4, we investigate theoretical
conditions under which the ‘1-minimization program re-
covers the desired sparse representations of data points. In
Section 5, we discuss the connectivity of the similarity
graph and propose a regularization term to increase the
connectivity of points in each subspace. In Section 6, we
verify our theoretical analysis through experiments on
synthetic data. In Section 7, we compare the performance
of SSC with the state of the art on the two real-world
problems of motion segmentation and face clustering.
Finally, Section 8 concludes the paper.

2 SPARSE SUBSPACE CLUSTERING

In this section, we introduce the SSC algorithm for
clustering a collection of multisubspace data using sparse
representation techniques. We motivate and formulate the
algorithm for data points that perfectly lie in a union of
linear subspaces. In the next section, we will generalize the
algorithm to deal with data nuisances such as noise, sparse
outlying entries, and missing entries, as well as the more
general class of affine subspaces.

Let fS‘gn‘¼1 be an arrangement of n linear subspaces
of IRD of dimensions fd‘gn‘¼1. Consider a given collection
of N noise-free data points fyyyyig

N
i¼1 that lie in the union of

the n subspaces. Denote the matrix containing all the data
points as

YYYY ¼4 ½ yyyy1 . . . yyyyN # ¼ ½YYYY 1 . . . YYYY n #!; ð1Þ

where YYYY ‘ 2 IRD&N‘ is a rank-d‘ matrix of the N‘ > d‘ points
that lie in S‘ and ! 2 IRN&N is an unknown permutation
matrix. We assume that we do not know a priori the bases
of the subspaces nor do we know which data points belong
to which subspace. The subspace clustering problem refers to
the problem of finding the number of subspaces, their
dimensions, a basis for each subspace, and the segmenta-
tion of the data from YYYY .

To address the subspace clustering problem, we propose
an algorithm that consists of two steps. In the first step, for
each data point, we find a few other points that belong to
the same subspace. To do so, we propose a global sparse
optimization program whose solution encodes information
about the memberships of data points to the underlying
subspace of each point. In the second step, we use these
information in a spectral clustering framework to infer the
clustering of the data.

2.1 Sparse Optimization Program

Our proposed algorithm takes advantage of what we refer
to as the self-expressiveness property of the data, i.e.,

each data point in a union of subspaces can be efficiently
reconstructed by a combination of other points in the dataset.

More precisely, each data point yyyyi 2 [n‘¼1S‘ can be written as

yyyyi ¼ YYYY cccci; cii ¼ 0; ð2Þ

where cccci ¼
4 ½ ci1 ci2 . . . ciN #> and the constraint cii ¼ 0

eliminates the trivial solution of writing a point as a linear
combination of itself. In other words, the matrix of data
points YYYY is a self-expressive dictionary in which each point
can be written as a linear combination of other points.

ELHAMIFAR AND VIDAL: SPARSE SUBSPACE CLUSTERING: ALGORITHM, THEORY, AND APPLICATIONS 2767

However, the representation of yyyyi in the dictionary YYYY is not
unique in general. This comes from the fact that the number
of data points in a subspace is often greater than its
dimension, i.e., N‘ > d‘. As a result, each YYYY ‘, and conse-
quently YYYY , has a nontrivial nullspace, giving rise to
infinitely many representations of each data point.

The key observation in our proposed algorithm is that
among all solutions of (2),

there exists a sparse solution, cccci, whose nonzero entries correspond
to data points from the same subspace as yyyyi. We refer to such a
solution as a subspace-sparse representation.

More specifically, a data point yyyyi that lies in the
d‘-dimensional subspace S‘ can be written as a linear
combination of d‘ other points in general directions from S‘.
As a result, ideally, a sparse representation of a data point
finds points from the same subspace where the number of
the nonzero elements corresponds to the dimension of the
underlying subspace.

For a system of equations such as (2) with infinitely
many solutions, one can restrict the set of solutions by
minimizing an objective function such as the ‘q-norm of the
solution1 as

minkccccikq s:t: yyyyi ¼ YYYY cccci; cii ¼ 0: ð3Þ

Different choices of q have different effects in the obtained
solution. Typically, by decreasing the value of q from
infinity toward zero, the sparsity of the solution increases,
as shown in Fig. 3. The extreme case of q ¼ 0 corresponds to
the general NP-hard problem [51] of finding the sparsest
representation of the given point, as the ‘0-norm counts the
number of nonzero elements of the solution. Since we are
interested in efficiently finding a nontrivial sparse repre-
sentation of yyyyi in the dictionary YYYY , we consider minimizing
the tightest convex relaxation of the ‘0-norm, i.e.,

minkccccik1 s:t: yyyyi ¼ YYYY cccci; cii ¼ 0; ð4Þ

which can be solved efficiently using convex programming
tools [48], [49], [50] and is known to prefer sparse solutions
[29], [30], [31].

We can also rewrite the sparse optimization program (4)
for all data points i ¼ 1; . . . ; N in matrix form as

minkCCCCk1 s:t: YYYY ¼ YYYY CCCC; diagðCCCCÞ ¼ 00; ð5Þ

where CCCC ¼4 ½cccc1 cccc2 . . . ccccN # 2 IRN&N is the matrix whose
ith column corresponds to the sparse representation of

yyyyi, cccci, and diagðCCCCÞ 2 IRN is the vector of the diagonal
elements of CCCC.

Ideally, the solution of (5) corresponds to subspace-
sparse representations of the data points, which we use next
to infer the clustering of the data. In Section 4, we study
conditions under which the convex optimization program
in (5) is guaranteed to recover a subspace-sparse represen-
tation of each data point.

2.2 Clustering Using Sparse Coefficients

After solving the proposed optimization program in (5),
we obtain a sparse representation for each data point whose
nonzero elements ideally correspond to points from the
same subspace. The next step of the algorithm is to infer
the segmentation of the data into different subspaces using
the sparse coefficients.

To address this problem, we build a weighted graph
G ¼ ðV; E;WWWWÞ, where V denotes the set of N nodes of the
graph corresponding to N data points and E ' V & V
denotes the set of edges between nodes. WWWW 2 IRN&N is a
symmetric nonnegative similarity matrix representing the
weights of the edges, i.e., node i is connected to node j by
an edge whose weight is equal to wij. An ideal similarity
matrix WWWW , hence an ideal similarity graph G, is one in which
nodes that correspond to points from the same subspace are
connected to each other and there are no edges between
nodes that correspond to points in different subspaces.

Note that the sparse optimization program ideally
recovers to a subspace-sparse representation of each point,
i.e., a representation whose nonzero elements correspond to
points from the same subspace of the given data point. This
provides an immediate choice of the similarity matrix as
WWWW ¼ jCCCCjþ jCCCCj>. In other words, each node i connects itself
to a node j by an edge whose weight is equal to jcijjþ jcjij.
The reason for the symmetrization is that, in general, a data
point yyyyi 2 S‘ can write itself as a linear combination of some
points including yyyyj 2 S‘. However, yyyyj may not necessarily
choose yyyyi in its sparse representation. By this particular
choice of the weight, we make sure that nodes i and j get
connected to each other if either yyyyi or yyyyj is in the sparse
representation of the other.2

2768 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013

Fig. 3. Three subspaces in IR3 with 10 data points in each subspace, ordered such that the fist and the last 10 points belong to S1 and S3,
respectively. The solution of the ‘q-minimization program in (3) for yyyyi lying in S1 for q ¼ 1; 2;1 is shown. Note that as the value of q decreases, the
sparsity of the solution increases. For q ¼ 1, the solution corresponds to choosing two other points lying in S1.

1. The ‘q-norm of cccci 2 IRN is defined as kccccikq ¼
4 ð
PN

j¼1 jcijj
qÞ

1
q .

2. To obtain a symmetric similarity matrix, one can directly impose the
constraint of CCCC ¼ CCCC> in the optimization program. However, this results in
increasing the complexity of the optimization program and, in practice,
does not perform better than the postsymmetrization of CCCC, as described
above. See also [52] for other processing approaches of the similarity matrix.

Algorithm 1 : Sparse Subspace Clustering (SSC)
Input: A set of points fyyyyig

N
i¼1 lying in a union of n linear

subspaces fSigni¼1.
1: Solve the sparse optimization program (5) in the case of

uncorrupted data or (13) in the case of corrupted data.
2: Normalize the columns of CCCC as cccci cccci

kccccik1
.

3: Form a similarity graph with N nodes representing the
data points. Set the weights on the edges between the
nodes by WWWW ¼ jCCCCjþ jCCCCj>.

4: Apply spectral clustering [26] to the similarity graph.
Output: Segmentation of the data: YYYY 1; YYYY 2; . . . ; YYYY n.

The similarity graph built this way has ideallyn connected
components corresponding to the n subspaces, i.e.,

WWWW ¼
WWWW 1))) 00

..

. . .
. ..

.

00))) WWWWn

2

64

3

75!; ð6Þ

where WWWW‘ is the similarity matrix of data points in S‘.
Clustering of data into subspaces follows then by applying
spectral clustering [26] to the graph G. More specifically, we
obtain the clustering of data by applying the K-means
algorithm [11] to the normalized rows of a matrix whose
columns are the n bottom eigenvectors of the symmetric
normalized Laplacian matrix of the graph.

Remark 1. An optional step prior to building the similarity
graph is to normalize the sparse coefficients as
cccci cccci=kccccik1. This helps to better deal with different
norms of data points. More specifically, if a data point
with a large euclidean norm selects a few points with
small euclidean norms, then the values of the nonzero
coefficients will generally be large. On the other hand, if
a data point with a small euclidean norm selects a few
points with large euclidean norms, then the values of
the nonzero coefficients will generally be small. Since
spectral clustering puts more emphasis on keeping the
stronger connections in the graph, by the normalization
step we make sure that the largest edge weights for all
the nodes are of the same scale.

Algorithm 1 summarizes the SSC algorithm. Note that an
advantage of spectral clustering which will be shown in the
experimental results is that it provides robustness with
respect to a few errors in the sparse representations of the
data points. In other words, as long as edges between points
in different subspaces are weak, spectral clustering can find
the correct segmentation.

Remark 2. In principle, SSC does not need to know
the number of subspaces. More specifically, under the
conditions of the theoretical results in Section 4, in the
similarity graph there will be no connections between
points in different subspaces. Thus, one can determine
the number of subspaces by finding the number of graph
components which can be obtained by analyzing the
eigenspectrum of the Laplacian matrix of G [27].
However, when there are connections between points
in different subspaces, other model selection techniques
should be employed [53].

3 PRACTICAL EXTENSIONS

In real-world problems, data are often corrupted by noise
and sparse outlying entries due to measurement/process
noise and ad-hoc data collection techniques. In such cases,
the data do not lie perfectly in a union of subspaces. For
instance, in the motion segmentation problem, because of
the malfunctioning of the tracker, feature trajectories can be
corrupted by noise or can have entries with large errors
[21]. Similarly, in clustering of human faces, images can be
corrupted by errors due to specularities, cast shadows, and
occlusions [54]. On the other hand, data points may have
missing entries, for example, when the tracker loses track of
some feature points in a video due to occlusions [55].
Finally, data may lie in a union of affine subspaces, a more
general model which includes linear subspaces as a
particular case.

In this section, we generalize the SSC algorithm for
clustering data lying perfectly in a union of linear subspaces
to deal with the aforementioned challenges. Unlike state-of-
the-art methods, which require running a separate algo-
rithm first to correct the errors in the data [21], [55], we deal
with these problems in a unified framework by incorporat-
ing a model for the corruption into the sparse optimization
program. Thus, the sparse coefficients again encode in-
formation about memberships of data to subspaces, which
are used in a spectral clustering framework, as before.

3.1 Noise and Sparse Outlying Entries

In this section, we consider clustering of data points that are
contaminated with sparse outlying entries and noise. Let

yyyyi ¼ yyyy0
i þ eeee

0
i þ zzzz

0
i ; ð7Þ

be the ith data point that is obtained by corrupting an
error-free point yyyy0

i , which perfectly lies in a subspace,
with a vector of sparse outlying entries eeee0

i 2 IRD that has
only a few large nonzero elements, i.e., keeee0

i k0 * k for
some integer k, and with a noise zzzz0

i 2 IRD whose norm is
bounded as kzzzz0

i k2 * ! for some ! > 0. Since error-free data
points perfectly lie in a union of subspaces, using the self-
expressiveness property, we can reconstruct yyyy0

i 2 S‘ in
terms of other error-free points as

yyyy0
i ¼

X

j 6¼i
cijyyyy

0
j : ð8Þ

Note that the above equation has a sparse solution since yyyy0
i

can be expressed as a linear combination of at most d‘ other
points from S‘. Rewriting yyyy0

i using (7) in terms of the
corrupted point yyyyi, the sparse outlying entries vector eeee0

i , and
the noise vector zzzz0

i , and substituting it into (8), we obtain

yyyyi ¼
X

j6¼i
cijyyyyj þ eeeei þ zzzzi; ð9Þ

where the vectors eeeei 2 IRD and zzzzi 2 IRD are defined as

eeeei ¼
4
eeee0
i +

X

j6¼i
cijeeee

0
j ; ð10Þ

ELHAMIFAR AND VIDAL: SPARSE SUBSPACE CLUSTERING: ALGORITHM, THEORY, AND APPLICATIONS 2769

zzzzi ¼
4
zzzz0
i +

X

j 6¼i
cijzzzz

0
j : ð11Þ

Since (8) has a sparse solution, cccci, eeeei, and zzzzi also correspond
to vectors of sparse outlying entries and noise, respectively.
More precisely, when a few cij are nonzero, eeeei is a vector of
sparse outlying entries since it is a linear combination of a
few vectors of outlying entries in (10). Similarly, when a few
cij are nonzero and do not have significantly large
magnitudes,3 zzzzi is a vector of noise since it is a linear
combination of a few noise vectors in (11).

Collecting eeeei and zzzzi as columns of the matrices EEEE and ZZZZ,
respectively, we can rewrite (9) in matrix form as

YYYY ¼ YYYY CCCC þEEEE þ ZZZZ; diagðCCCCÞ ¼ 0: ð12Þ

Our objective is then to find a solution ðCCCC;EEEE;ZZZZÞ for (12),
where CCCC corresponds to a sparse coefficient matrix, EEEE
corresponds to a matrix of sparse outlying entries, and ZZZZ is
a noise matrix. To do so, we propose solving the following
optimization program:

min kCCCCk1 þ "ekEEEEk1 þ
"z
2
kZZZZk2

F

s:t: YYYY ¼ YYYY CCCC þEEEE þ ZZZZ; diagðCCCCÞ ¼ 0;
ð13Þ

where the ‘1-norm promotes sparsity of the columns of CCCC
and EEEE, while the Frobenius norm promotes having small
entries in the columns of ZZZZ. The two parameters "e > 0 and
"z > 0 balance the three terms in the objective function.
Note that the optimization program in (13) is convex with
respect to the optimization variables ðCCCC;EEEE;ZZZZÞ, and hence
can be solved efficiently using convex programming tools.

When data are corrupted only by noise, we can eliminate
EEEE from the optimization program in (13). On the other
hand, when the data are corrupted only by sparse outlying
entries, we can eliminate ZZZZ in (13). In practice, however, EEEE
can also deal with small errors due to noise. The following
proposition suggests setting "z ¼ #z=$z and "e ¼ #e=$e,
where #z;#e > 1 and

$z ¼
4

min
i

max
j6¼i
jyyyy>i yyyyjj; $e ¼

4
min
i

max
j6¼i
kyyyyjk1: ð14Þ

The proofs of all theoretical results in the paper are
provided in the supplementary material, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2013.57.

Proposition 1. Consider the optimization program (13). Without
the termZZZZ, if "e * 1=$e, then there exists at least one data point
yyyy‘ for which in the optimal solution we have ðcccc‘; eeee‘Þ ¼ ð0; yyyy‘Þ.
Also, without the termEEEE, if "z * 1=$z, then there exists at least
one data point yyyy‘ for which ðcccc‘; zzzz‘Þ ¼ ð0; yyyy‘Þ.

After solving the proposed optimization programs, we
use CCCC to build a similarity graph and infer the clustering of
data using spectral clustering. Thus, by incorporating the
corruption model of data into the sparse optimization
program, we can deal with clustering of corrupted data as

before, without explicitly running a separate algorithm to
correct the errors in the data [21], [55].

3.2 Missing Entries

We consider now the clustering of incomplete data, where
some of the entries of a subset of the data points are
missing. Note that when only a small fraction of the entries
of each data point is missing, clustering of incomplete data
can be cast as clustering of data with sparse outlying
entries. More precisely, one can fill in the missing entries of
each data point with random values and hence obtain data
points with sparse outlying entries. Then clustering of the
data follows by solving (13) and applying spectral cluster-
ing to the graph built using the obtained sparse coefficients.
However, the drawback of this approach is that it
disregards the fact that we know the locations of the
missing entries in the data matrix.

It is possible, in some cases, to cast the clustering of data
with missing entries as clustering of complete data. To see
this, consider a collection of data points fyyyyig

N
i¼1 in IRD. Let

Ji , f1; . . . ; Dg denote indices of the known entries of yyyyi and
define J ¼4

TN
i¼1 Ji. Thus, for every index in J , all data points

have known entries. When the size of J , denoted by jJj, is not
small relative to the ambient space dimension, D, we can
project the data and, hence, the original subspaces, into a
subspace spanned by the columns of the identity matrix
indexed by J and apply the SSC algorithm to the obtained
complete data. In other words, we can only keep the rows of
YYYY indexed by J , obtain a new data matrix of complete data
!YYYY 2 IRjJ j&N , and solve the sparse optimization program (13).
We can then infer the clustering of the data by applying
spectral clustering to the graph built using the sparse
coefficient matrix. Note that the approach described above
is based on the assumption that J is nonempty. Addressing
the problem of subspace clustering with missing entries
when J is empty or has a small size is the subject of future
research.

3.3 Affine Subspaces

In some real-world problems, the data lie in a union of affine
rather than linear subspaces. For instance, the motion
segmentation problem involves clustering of data that lie
in a union of 3D affine subspaces [2], [55]. A naive way to
deal with this case is to ignore the affine structure of the data
and perform clustering as in the case of linear subspaces.
This comes from the fact that a d‘-dimensional affine
subspace S‘ can be considered as a subset of a ðd‘ þ 1Þ-
dimensional linear subspace that includes S‘ and the origin.
However, this has the drawback of possibly increasing the
dimension of the intersection of two subspaces, which in
some cases can result in indistinguishability of subspaces
from each other. For example, two different lines x ¼ +1 and
x ¼ þ1 in the x-y plane form the same 2D linear subspace
after including the origin hence become indistinguishable.

To directly deal with affine subspaces, we use the fact that
any data point yyyyi in an affine subspace S‘ of dimension d‘
can be written as an affine combination of d‘ þ 1 other
points from S‘. In other words, a sparse solution of

yyyyi ¼ YYYY cccci; 11>cccci ¼ 1; cii ¼ 0; ð15Þ

2770 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013

3. One can show that, under broad conditions, sum of jcijj is bounded
above by the square root of the dimension of the underlying subspace of yyyyi.
Theoretical guarantees of the proposed optimization program in the case of
corrupted data is the subject of the current research.

corresponds to d‘ þ 1 other points that belong to S‘
containing yyyyi. Thus, to cluster data points lying close to a
union of affine subspaces, we propose to solve the sparse
optimization program

min kCCCCk1 þ "ekEEEEk1 þ
"z
2
kZZZZk2

F

s:t: YYYY ¼ YYYY CCCC þEEEE þ ZZZZ; 1>CCCC ¼ 1>; diagðCCCCÞ ¼ 0;
ð16Þ

which, in comparison to (13) for the case of linear
subspaces, includes additional linear equality constraints.
Note that (16) can deal with linear subspaces as well since a
linear subspace is also an affine subspace.

4 SUBSPACE-SPARSE RECOVERY THEORY

The underlying assumption for the success of the SSC
algorithm is that the proposed optimization program re-
covers a subspace-sparse representation of each data point,
i.e., a representation whose nonzero elements correspond
to the subspace of the given point. In this section, we
investigate conditions under which, for data points that lie in
a union of linear subspaces, the sparse optimization program
in (4) recovers subspace-sparse representations of data
points. We investigate recovery conditions for two classes
of subspace arrangements: independent and disjoint subspace
models [36].

Definition 1. A collection of subspaces fSigni¼1 is said to be
independent if dimð-ni¼1SiÞ ¼

Pn
i¼1 dimðSiÞ, where - de-

notes the direct sum operator.

As an example, the three 1D subspaces shown in
Fig. 4 (left) are independent since they span a 3D space
and the sum of their dimensions is also 3. On the other
hand, the subspaces shown in Fig. 4 (right) are not
independent since they span a 2D space while the sum of
their dimensions is 3.

Definition 2. A collection of subspaces fSigni¼1 is said to be
disjoint if every pair of subspaces intersect only at the origin.
In other words, for every pair of subspaces we have
dimðSi - SjÞ ¼ dimðSiÞ þ dimðSjÞ.

As an example, both subspace arrangements shown in
Fig. 4 are disjoint since each pair of subspaces intersect at
the origin. Note that, based on the above definitions, the
notion of disjointness is weaker than independence as an
independent subspace model is always disjoint, while the
converse is not necessarily true. An important notion that

can be used to characterize two disjoint subspaces is the
smallest principal angle, defined as follows:

Definition 3. The smallest principal angle between two
subspaces Si and Sj, denoted by %ij, is defined as

cosð%ijÞ ¼
4

max
vvvvi2Si;vvvvj2Sj

vvvv>i vvvvj
kvvvvik2kvvvvjk2

: ð17Þ

Note that two disjoint subspaces intersect at the origin;
hence their smallest principal angle is greater than zero and
cosð%ijÞ 2 ½0; 1Þ.

4.1 Independent Subspace Model

In this section, we consider data points that lie in a union of
independent subspaces, which is the underlying model of
many subspace clustering algorithms. We show that the
‘1-minimization program in (4) and, more generally, the
‘q-minimization in (3) for q <1 always recover subspace-
sparse representations of the data points. More specifically,
we show the following result.

Theorem 1. Consider a collection of data points drawn from n
independent subspaces fSigni¼1 of dimensions fdigni¼1. Let YYYY i

denote Ni data points in Si, where rankðYYYY iÞ ¼ di, and let YYYY +i
denote data points in all subspaces except Si. Then, for every
Si and every nonzero yyyy in Si, the ‘q-minimization program

cccc.

cccc.+

! "
¼ argmin

cccc
cccc+

! "####

####
q

s:t: yyyy ¼ ½YYYY i YYYY +i#
cccc
cccc+

! "
; ð18Þ

for q <1, recovers a subspace-sparse representation, i.e.,
cccc. 6¼ 00 and cccc.+ ¼ 00.

Note that the subspace-sparse recovery holds without
any assumption on the distribution of the data points in
each subspace other than rankðYYYY iÞ ¼ di. This comes at
the price of having a more restrictive model for the
subspace arrangements. Next, we will show that for the
more general class of disjoint subspaces, under appro-
priate conditions on the relative configuration of the
subspaces as well as the distribution of the data in each
subspace, the ‘1-minimization in (4) recovers subspace-
sparse representations of the data points.

4.2 Disjoint Subspace Model

We consider now the more general class of disjoint
subspaces and investigate conditions under which the
optimization program in (4) recovers a subspace-sparse
representation of each data point. To that end, we consider
a vector xxxx in the intersection of Si with -j 6¼iSj and let the
optimal solution of the ‘1-minimization when we restrict
the dictionary to data points from Si be

aaaai ¼ argminkaaaak1 s:t: xxxx ¼ YYYY i aaaa: ð19Þ

We also let the optimal solution of the ‘1-minimization
when we restrict the dictionary to points from all subspaces
except Si be

aaaa+i ¼ argminkaaaak1 s:t: xxxx ¼ YYYY +i aaaa:4 ð20Þ

ELHAMIFAR AND VIDAL: SPARSE SUBSPACE CLUSTERING: ALGORITHM, THEORY, AND APPLICATIONS 2771

Fig. 4. Left: The three 1D subspaces are independent as they span the
3D space and the sum of their dimensions is also 3. Right: The three 1D
subspaces are disjoint as any two subspaces intersect at the origin.

4. In fact, aaaai and aaaa++i++i depend on xxxx, YYYY i, and YYYY ++i++i. Since this dependence is
clear from the context, we drop the arguments in aaaaiiiiðxxxx; YYYY iiiiÞ and aaaa++i++iðxxxx; YYYY ++i++iÞ.

We show in the online supplementary material that the SSC
algorithm succeeds in recovering subspace-sparse repre-
sentations of data points in each Si if for every nonzero xxxx in
the intersection of Si with -j6¼iSj, the ‘1-norm of the
solution of (19) is strictly smaller than the ‘1-norm of the
solution of (20), i.e.,

8 xxxx 2 Si \ ð-j6¼iSjÞ; xxxx 6¼ 0 ¼) kaaaaik1 < kaaaa+ik1: ð21Þ

More precisely, we show the following result.

Theorem 2. Consider a collection of data points drawn from
n disjoint subspaces fSigni¼1 of dimensions fdigni¼1. Let YYYY i

denote Ni data points in Si, where rankðYYYY iÞ ¼ di, and let YYYY +i
denote data points in all subspaces except Si. The
‘1-minimization,

cccc.

cccc.+

! "
¼ argmin

cccc
cccc+

! "####

####
1

s:t: yyyy ¼ ½YYYY i YYYY +i#
cccc
cccc+

! "
; ð22Þ

recovers a subspace-sparse representation of every nonzero yyyy in
Si, i.e., cccc. 6¼ 00 and cccc.+ ¼ 00, if and only if (21) holds.

While the necessary and sufficient condition in (21)
guarantees a successful subspace-sparse recovery via the
‘1-minimization program, it does not explicitly show
the relationship between the subspace arrangements and
the data distribution for the success of the ‘1-minimization
program. To establish such a relationship, we show that
kaaaaik1 * &i, where &i depends on the singular values of data
points in Si, and &+i * kaaaa+ik1, where &+i depends on the
subspace angles between Si and other subspaces. Then,
the sufficient condition &i < &+i establishes the relationship
between the subspace angles and the data distribution
under which the ‘1-minimization is successful in subspace-
sparse recovery since it implies that

kaaaaik1 * &i < &+i * kaaaa+ik1; ð23Þ

i.e., the condition of Theorem 2 holds.

Theorem 3. Consider a collection of data points drawn from n
disjoint subspaces fSigni¼1 of dimensions fdigni¼1. Let WWi be
the set of all full-rank submatrices ~YYYY i 2 IRD&di of YYYY i, where
rankðYYYY iÞ ¼ di. If the condition

max
~YYYY i2WWi

'dið ~YYYY iÞ >
ffiffiffiffi
di

p
kYYYY +ik1;2 max

j6¼i
cosð%ijÞ ð24Þ

holds, then for every nonzero yyyy in Si, the ‘1-minimization in
(22) recovers a subspace-sparse solution, i.e., cccc. 6¼ 0 and
cccc.+ ¼ 0.5

Loosely speaking, the sufficient condition in Theorem 3
states that if the smallest principal angle between each Si
and any other subspace is larger than a certain value that
depends on the data distribution in Si, then the subspace-
sparse recovery holds. This bound can be rather high when
the norms of the data points are oddly distributed, for
example, when the maximum norm of data points in Si is
much smaller than the maximum norm of data points in all
other subspaces. Since the segmentation of the data does not

change when data points are scaled, we can apply SSC to
linear subspaces after normalizing the data points to have
unit euclidean norms. In this case, the sufficient condition in
(24) reduces to

max
~YYYY i2WWi

'dið ~YYYY iÞ >
ffiffiffiffi
di

p
max
j6¼i

cosð%ijÞ: ð25Þ

Remark 3. For independent subspaces, the intersection of a
subspace with the direct sum of other subspaces is the
origin, hence, the condition in (21) always holds. As a
result, from Theorem 2, the ‘1-minimization always
recovers subspace-sparse representations of data points
in independent subspaces.

Remark 4. The condition in (21) is closely related to the
nullspace property in the sparse recovery literature [56],
[57], [45], [58]. The key difference, however, is that we
only require the inequality in (21) to hold for the optimal
solutions of (19) and (20) instead of any feasible solution.
Thus, while the inequality can be violated for many
feasible solutions, it can still hold for the optimal
solutions, guaranteeing successful subspace-sparse re-
covery from Theorem 2. Thus, our result can be thought
of as a generalization of the nullspace property to the
multisubspace setting where the number of points in
each subspace is arbitrary.

4.3 Geometric Interpretation

In this section, we provide a geometric interpretation of the
subspace-sparse recovery conditions in (21) and (24). To do
so, it is necessary to recall the relationship between the
‘1-norm of the optimal solution of

minkaaaak1 s:t: xxxx ¼ BBBBaaaa; ð26Þ

and the symmetrized convex polytope of the columns of BBBB
[59]. More precisely, if we denote the columns ofBBBB by bbbbi and
define the symmetrized convex hull of the columns of BBBB by

P ¼4 convð/bbbb1;/bbbb2; . . .Þ; ð27Þ

then the ‘1-norm of the optimal solution of (26) corresponds
to the smallest# > 0 such that the scaled polytope#P reaches
xxxx [59]. Let us denote the symmetrized convex polytopes of YYYY i

and YYYY +i by Pi and P+i, respectively. Then the condition in
(21) has the following geometric interpretation:

the subspace-sparse recovery in Si holds if and only if for any
nonzero xxxx in the intersection of Si and -j 6¼iSj, #Pi reaches xxxx
before #P+i, i.e., for a smaller #.

As shown in the left plot of Fig. 5, for xxxx in the intersection
of S1 and S2 - S3, the polytope #P1 reaches xxxx before #P+1;
hence the subspace-sparse recovery condition holds. On the
other hand, when the principal angles between S1 and other
subspaces decrease, as shown in the middle plot of Fig. 5,
the subspace-sparse recovery condition does not hold
since the polytope #P+1 reaches xxxx before #P1. Also, as
shown in the right plot of Fig. 5, when the distribution of
the data in S1 becomes nearly degenerate, in this case
close to a 1D subspace orthogonal to the direction of xxxx, then
the subspace-sparse recovery condition does not hold since
#P+1 reaches xxxx before #P1. Note that the sufficient
condition in (24) translates the relationship between the

2772 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013

5. The induced norm kYYYY +ik1;2 denotes the maximum ‘2-norm of the
columns of YYYY +i.

polytopes mentioned above explicitly in terms of a relation-
ship between the subspace angles and the singular values of
the data.

5 GRAPH CONNECTIVITY

In the previous section, we studied conditions under which
the proposed ‘1-minimization program recovers subspace-
sparse representations of data points. As a result, in the
similarity graph, the points that lie in different subspaces do
not get connected to each other. On the other hand, our
extensive experimental results on synthetic and real data
show that data points in the same subspace always form a
connected component of the graph; hence for n subspaces
the similarity graph has n connected components. Nasihat-
kon and Hartley [60] have theoretically verified the
connectivity of points in the same subspace for 2D and 3D
subspaces. However, it has been shown that, for subspaces
of dimensions greater than or equal to 4, under odd
distribution of the data, it is possible that points in the same
subspace form multiple components of the graph.

In this section, we consider a regularization term in the
sparse optimization program that promotes connectivity of
the points within each subspace.6 We use the idea that if
data points in each subspace choose a few common points
from the same subspace in their sparse representations,
then they form a single component of the similarity graph.
Thus, we add to the sparse optimization program the
regularization term

kCCCCkr;0 ¼
4XN

i¼1

I
%
kccccik2 > 0

&
; ð28Þ

where Ið)Þ denotes the indicator function and cccci denotes
the ith row of CCCC. Hence, minimizing (28) corresponds to
minimizing the number of nonzero rows of CCCC [61], [62], [63],
i.e., choosing a few common data points in the sparse
representation of each point. Since a minimization problem
that involves (28) is in general NP-hard, we consider its
convex relaxation as

kCCCCkr;1 ¼
4XN

i¼1

kccccik2: ð29Þ

Thus, to increase the connectivity of data points from the
same subspace in the similarity graph, we propose to solve

minkCCCCk1 þ "rkCCCCkr;1 s:t: YYYY ¼ YYYY CCCC; diagðCCCCÞ ¼ 0; ð30Þ

where "r > 0 sets the tradeoff between the sparsity of
the solution and the connectivity of the graph. Fig. 6 shows
how adding this regularization term promotes selecting
common points in sparse representations. The following
example demonstrates the reason for using the row-sparsity
term as a regularizer but not as an objective function instead
of the ‘1-norm.

Example 1. Consider the three 1D subspaces in IR2, shown in
Fig. 7, where the data points have unit euclidean norms
and the angle between S1 and S2 as well as between S1

and S3 is equal to %. Note that in this example, the
sufficient condition in (24) holds for all values of % 2 ð0; (2Þ.
As a result, the solution of (30) with "r ¼ 0 recovers a
subspace-sparse representation for each data point, which
in this example is uniquely given by CCCC1, shown in Fig. 7.
Hence, the similarity graph has exactly three connected
components corresponding to the data points in each
subspace. Another feasible solution of (30) is given by CCCC2,
shown in Fig. 7, where the points in S1 choose points from
S2 and S3 in their representations. Hence, the similarity
graph has only one connected component. Note that for a
large range of subspace angles % 2 ð0; 4(

10Þ we have

kCCCC2kr;1 ¼
ffi
16þ 2= cos2ð%Þ

p
< kCCCC1kr;1 ¼ 6: ð31Þ

As a result, for large values of "r, i.e., when we only
minimize the second term of the objective function in
(30), we cannot recover subspace-sparse representations
of the data points. This suggests using the row-sparsity
regularizer with a small value of "r.

ELHAMIFAR AND VIDAL: SPARSE SUBSPACE CLUSTERING: ALGORITHM, THEORY, AND APPLICATIONS 2773

Fig. 5. Left: For any nonzero xxxx in the intersection of S1 and S2 - S3, the polytope #P1 reaches xxxx for a smaller # than #P+1; hence, subspace-sparse
recovery holds. Middle: When the subspace angle decreases, the polytope #P+1 reaches xxxx for a smaller # than #P1. Right: When the distribution of
the data in S1 becomes nearly degenerate, in this case close to a line, the polytope #P+1 reaches xxxx for a smaller # than #P1. In both cases, in the
middle and right, the subspace-sparse recovery does not hold for points at the intersecion.

Fig. 6. Coefficient matrix obtained from the solution of (30) for data
points in two subspaces. Left: "r ¼ 0. Right: "r ¼ 10. Increasing "r
results in concentration of the nonzero elements in a few rows of the
coefficient matrix, hence choosing a few common data points.

6. Another approach to deal with the connectivity issue is to analyze the
subspaces corresponding to the components of the graph and merge the
components whose associated subspaces have a small distance from each
other, i.e., have a small principal angle. However, the result can be sensitive
to the choice of the dimension of the subspaces to fit to each component as
well as the threshold value on the principal angles to merge the subspaces.

6 EXPERIMENTS WITH SYNTHETIC DATA

In Section 4, we showed that the success of the
‘1-minimization for subspace-sparse recovery depends on
the principal angles between subspaces and the distribution
of the data in each subspace. In this section, we verify this
relationship through experiments on synthetic data.

We consider three disjoint subspaces fSig3
i¼1 of the same

dimension d embedded in the D-dimensional ambient
space. To make the problem hard enough so that every
data point in a subspace can also be reconstructed as a
linear combination of points in other subspaces, we
generate subspace bases fUUUUi 2 IRD&dg3

i¼1 such that each
subspace lies in the direct sum of the other two subspaces,
i.e., rankð½UUUU1 UUUU2 UUUU3# Þ ¼ 2d. In addition, we generate the
subspaces such that the smallest principal angles %12 and
%23 are equal to %. Thus, we can verify the effect of the
smallest principal angle in the subspace-sparse recovery
by changing the value of %. To investigate the effect of the
data distribution in the subspace-sparse recovery, we
generate the same number of data points, Ng, in each
subspace at random and change the value of Ng. Typically,
as the number of data points in a subspace increases, the
probability of the data being close to a degenerate
subspace decreases.7

After generating three d-dimensional subspaces asso-
ciated to ð%; NgÞ, we solve the ‘1-minimization program in
(4) for each data point and measure two different errors.
First, denoting the sparse representation of yyyyi 2 Ski by
cccc>i ¼

4 ½ cccc>i1 cccc>i2 cccc>i3# , with ccccij corresponding to points in Sj, we
measure the subspace-sparse recovery error by

ssr error ¼ 1

3Ng

X3Ng

i¼1

1+ kccccikik1

kccccik1

' (
2 ½0; 1#; ð32Þ

where each term inside the summation indicates the
fraction of the ‘1-norm of cccci that comes from points in
other subspaces. The error being zero corresponds to yyyyi
choosing points only in its own subspace, while the error
being equal to one corresponds to yyyyi choosing points from
other subspaces. Second, after building the similarity graph
using the sparse coefficients and applying spectral cluster-
ing, we measure the subspace clustering error by

subspace clustering error ¼ # of misclassified points

total # of points
: ð33Þ

In our experiments, we set the dimension of the ambient
space to D ¼ 50. We change the smallest principal angle

between subspaces as % 2 ½6; 60# degrees and change the
number of points in each subspace as Ng 2 ½dþ 1; 32d#. For
each pair ð%; NgÞ we compute the average of the errors in
(32) and (33) over 100 trials (randomly generated subspaces
and data points). The results for d ¼ 4 are shown in Fig. 8.
Note that when either % or Ng is small, both the subspace-
sparse recovery error and the clustering error are large, as
predicted by our theoretical analysis. On the other hand,
when % or Ng increases, the errors decrease, and for ð%; NgÞ
sufficiently large we obtain zero errors. The results also
verify that the success of the clustering relies on the success
of the ‘1-minimization in recovering subspace-sparse
representations of data points. Note that for small %, as we
increase Ng the subspace-sparse recovery error is large and
slightly decreases, while the clustering error increases. This
is due to the fact that increasing the number of points, the
number of undesirable edges between different subspaces
in the similarity graph increases, making the spectral
clustering more difficult. Note also that, for the values of
ð%; NgÞ where the subspace-sparse recovery error is zero,
i.e., points in different subspaces are not connected to each
other in the similarity graph, the clustering error is also
zero. This implies that, in such cases, the similarity graph
has exactly three connected components, i.e., data points in
the same subspace form a single component of the graph.

7 EXPERIMENTS WITH REAL DATA

In this section, we evaluate the performance of the SSC
algorithm in dealing with two real-world problems:
segmenting multiple motions in videos (see Fig. 1) and
clustering images of human faces (see Fig. 2). We compare
the performance of SSC with the best state-of-the-art
subspace clustering algorithms: LSA [22], SCC [28], LRR
[38], and LRSC [41].

Implementation details. We implement the SSC optimi-
zation algorithm in (13) using an alternating direction
method of multipliers (ADMM) framework [50], [64] whose
derivation is provided in the online supplementary materi-

2774 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013

Fig. 7. Left: Three 1D subspaces in IR2 with normalized data points. Middle: CCCC1 corresponds to the solution of (30) for "r ¼ 0. The similarity graph of
CCCC1 has three components corresponding to the three subspaces. Right: CCCC2 corresponds to the solution of (30) for "r ! þ1 and % 2 ð0; 4(

10Þ. The
similarity graph of CCCC2 has only one connected component.

Fig. 8. Subspace-sparse recovery error (left) and subspace clustering
error (right) for three disjoint subspaces. Increasing the number of points
or smallest principal angle decreases the errors.

7. To remove the effect of different scalings of data points, i.e., to
consider only the effect of the principal angle and number of points, we
normalize the data points.

al. For the motion segmentation experiments, we use the
noisy variation of the optimization program (13), i.e.,
without the term EEEE, with the affine constraint, and choose
"z ¼ 800=$z in all the experiments ($z is defined in (14)). For
the face clustering experiments, we use the sparse outlying
entries variation of the optimization program (13), i.e.,
without the term ZZZZ, and choose "e ¼ 20=$e in all the
experiments ($e is defined in (14)). It is also worth
mentioning that SSC performs better with the ADMM
approach than with general interior point solvers [49],
which typically return many small nonzero coefficients,
degrading the spectral clustering result.

For the state-of-the-art algorithms, we use the codes
provided by their authors. For LSA, we use K ¼ 8 nearest
neighbors and dimension d ¼ 4, to fit local subspaces, for
motion segmentation and use K ¼ 7 nearest neighbors and
dimension d ¼ 5 for face clustering. For SCC, we use
dimension d ¼ 3, for the subspaces for motion segmenta-
tion, and d ¼ 9 for face clustering. For LRR, we use " ¼ 4 for
motion segmentation and " ¼ 0:18 for face clustering. Note
that the LRR algorithm according to [38], similarly to SSC,
applies spectral clustering to a similarity graph built
directly from the solution of its proposed optimization
program. However, the code of the algorithm applies a
heuristic postprocessing step, similar to [65], to the low-
rank solution prior to building the similarity graph [40].
Thus, to compare the effectiveness of sparse versus low-
rank objective function and to investigate the effect of the
postprocessing step of LRR, we report the results for both
cases of without (LRR) and with (LRR-H) the heuristic
postprocessing step.8 For LRSC, we use the method in [41,
Lemma 1] with parameter) ¼ 420 for motion segmentation,
and an ALM variant of the method in [41, Section 4.2] with
parameters # ¼ 3) ¼ 0:5 . ð1:25='1ðYYYY ÞÞ2, * ¼ 0:008 and
+ ¼ 1:5, for face clustering. Finally, as LSA and SCC need
to know the number of subspaces a priori and the
estimation of the number of subspaces from the eigenspec-
trum of the graph Laplacian in the noisy setting is often
unreliable, to have a fair comparison we provide the
number of subspaces as an input to all the algorithms.

Datasets and some statistics. For the motion segmenta-
tion problem, we consider the Hopkins 155 dataset [66],
which consists of 155 video sequences of 2 or 3 motions
corresponding to 2 or 3 low-dimensional subspaces in each
video [2], [67]. For the face clustering problem, we consider
the Extended Yale B dataset [68], which consists of face
images of 38 human subjects, where images of each subject
lie in a low-dimensional subspace [3].

Before describing each problem in detail and presenting
the experimental results, we present some statistics on the
two datasets that help to better understand the challenges of
subspace clustering and the performance of different
algorithms. First, we compute the smallest principal angle
for each pair of subspaces, which in the motion segmenta-
tion problem corresponds to a pair of motions in a video
and in the face clustering problem corresponds to a pair of

subjects. Then, we compute the percentage of the subspace
pairs whose smallest principal angle is below a certain
value, which ranges from 0 to 90 degrees. Fig. 9 (left) shows
the corresponding graphs for the two datasets. As shown,
subspaces in both datasets have relatively small principal
angles. In the Hopkins-155 dataset, principal angles
between subspaces are always smaller than 10 degrees,
while in the Extended Yale B dataset, principal angles
between subspaces are between 10 and 20 degrees. Second,
for each pair of subspaces, we compute the percentage of
data points that have one or more of their K-nearest
neighbors in the other subspace. Fig. 9 (right) shows the
average percentages over all possible pairs of subspaces in
each dataset. As shown, in the Hopkins-155 dataset, for
almost all data points their few nearest neighbors belong to
the same subspace. On the other hand, for the Extended
Yale B dataset, there are a relatively large number of data
points whose nearest neighbors come from the other
subspace. This percentage rapidly increases as the number
of nearest neighbors increases. As a result, from the two
plots in Fig. 9, we can conclude that in the Hopkins 155
dataset the challenge is that subspaces have small principal
angles, while in the Extended Yale B dataset, besides
the principal angles between subspaces being small, the
challenge is that data points in a subspace are very close to
other subspaces.

7.1 Motion Segmentation
Motion segmentation refers to the problem of segmenting a
video sequence of multiple rigidly moving objects into
multiple spatiotemporal regions that correspond to differ-
ent motions in the scene (see Fig. 1). This problem is often
solved by extracting and tracking a set of N feature points
fxxxxfi 2 IR2gNi¼1 through the frames f ¼ 1; . . . ; F of the video.
Each data point yyyyi, which is also called a feature trajectory,
corresponds to a 2F -dimensional vector obtained by
stacking the feature points xxxxfi in the video as

yyyyi ¼
4)

xxxx>1i xxxx>2i))) xxxx>Fi
*> 2 IR2F : ð34Þ

Motion segmentation refers to the problem of separating
these feature trajectories according to their underlying
motions. Under the affine projection model, all feature
trajectories associated with a single rigid motion lie in an
affine subspace of IR2F of dimension at most 3 or,
equivalently, lie in a linear subspace of IR2F of dimension
at most 4 [2], [67]. Therefore, feature trajectories of n rigid
motions lie in a union of n low-dimensional subspaces of
IR2F . Hence, motion segmentation reduces to clustering of
data points in a union of subspaces.

ELHAMIFAR AND VIDAL: SPARSE SUBSPACE CLUSTERING: ALGORITHM, THEORY, AND APPLICATIONS 2775

Fig. 9. Left: Percentage of pairs of subspaces whose smallest principal
angle is smaller than a given value. Right: Average percentage of data
points in pairs of subspaces that have one or more of their K-nearest
neighbors in the other subspace.

8. The original published code of LRR contains the function “com-
pacc.m” for computing the misclassification rate, which is erroneous. We
have used the correct code for computing the misclassification rate and, as a
result, the reported performance for LRR-H is different from the published
results in [38] and [40].

In this section, we evaluate the performance of the SSC
algorithm as well as that of state-of-the-art subspace
clustering methods for the problem of motion segmenta-
tion. To do so, we consider the Hopkins 155 dataset [66] that
consists of 155 video sequences, where 120 of the videos
have two motions and 35 of the videos have three motions.
On average, in the dataset each sequence of two motions
has N ¼ 266 feature trajectories and F ¼ 30 frames, while
each sequence of three motions has N ¼ 398 feature
trajectories and F ¼ 29 frames. The left plot of Fig. 10
shows the singular values of several motions in the dataset.
Note that the first four singular values are nonzero and the
rest of the singular values are very close to zero, corrobor-
ating the four-dimensionality of the underlying linear
subspace of each motion.9 In addition, it shows that the
feature trajectories of each video can be well modeled as
data points that almost perfectly lie in a union of linear
subspaces of dimension at most 4.

The results of applying subspace clustering algorithms to
the data set when we use the original 2F -dimensional
feature trajectories and when we project the data into a 4n-
dimensional subspace (n is the number of subspaces) using
PCA are shown in Tables 1 and 2, respectively. From the
results, we make the following conclusions:

. In both cases, SSC obtains a small clustering error,
outperforming the other algorithms. This suggests
that the separation of different motion subspaces in
terms of their principal angles and the distribution of
the feature trajectories in each motion subspace are
sufficient for the success of the sparse optimization
program, hence clustering. The numbers inside
parentheses show the clustering errors of SSC with-
out normalizing the similarity matrix, i.e., without
step 2 in Algorithm 1. Notice that, as explained in
Remark 1, the normalization step helps to improve
the clustering results. However, this improvement is
small (about 0.5 percent), i.e., SSC performs well with
or without the postprocessing of CCCC.

. Without postprocessing of its coefficient matrix, LRR
has higher errors than other algorithms. On the other
hand, postprocessing of the low-rank coefficient
matrix significantly improves the clustering perfor-
mance (LRR-H).

. LRSC tries to find a noise-free dictionary for data
while finding their low-rank representation. This
helps to improve over LRR. Also, note that the errors
of LRSC are higher than the reported ones in [41].
This comes from the fact that [41] has used the
erroneous compacc.m function from [32] to compute
the errors.

. The clustering performances of different algorithms
when using the 2F -dimensional feature trajectories
or the 4n-dimensional PCA projections are close.
This comes from the fact that the feature trajectories
of n motions in a video almost perfectly lie in a 4n-
dimensional linear subspace of the 2F -dimensional
ambient space. Thus, projection using PCA onto a
4n-dimensional subspace preserves the structure of
the subspaces and the data; hence, for each
algorithm, the clustering error in Table 1 is close to
the error in Table 2.

In Fig. 11, we show the effect of the regularization
parameter "z ¼ #z=$z in the clustering performance of SSC
over the entire Hopkins 155 dataset. Note that the
clustering errors of SSC as a function of #z follow a similar
pattern using both the 2F -dimensional data and the 4n-
dimensional data. Moreover, in both cases the clustering
error is less than 2.5 percent in both cases for a large range
of values of #z.

Finally, notice that the results of SSC in Tables 1 and 2 do
not coincide with those reported in [35]. This is mainly due
to the fact that in [35] we used random projections for
dimensionality reduction, while here we use PCA or the
original 2F -dimensional data. In addition, in [35] we used a

2776 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013

Fig. 10. Left: Singular values of several motions in the Hopkins 155
dataset. Each motion corresponds to a subspace of dimension at most 4.
Right: Singular values of several faces in the Extended Yale B dataset.
Each subject corresponds to a subspace of dimension around 9.

TABLE 1
Clustering Error (%) of Different Algorithms on the

Hopkins 155 Dataset with the 2F -Dimensional Data Points

TABLE 2
Clustering Error (%) of Different Algorithms on the

Hopkins 155 Dataset with the 4n-Dimensional Data Points
Obtained by Applying PCA

9. If we subtract the mean of the data points in each motion from them,
the singular values drop at 3, showing the three-dimensionality of the affine
subspaces.

CVX solver to compute a subspace-sparse representation,
while here we use an ADMM solver. Also, notice that we
have improved the overall clustering error of LSA for the
case of 4n-dimensional data from 4.94 percent, reported in
[66] and [35], to 4.52 percent. This is due to using K ¼ 8
nearest neighbors here instead of K ¼ 5 in [66].

7.2 Face Clustering
Given face images of multiple subjects acquired with a fixed
pose and varying illumination, we consider the problem of
clustering images according to their subjects (see Fig. 2). It
has been shown that, under the Lambertian assumption,
images of a subject with a fixed pose and varying
illumination lie close to a linear subspace of dimension 9
[3]. Thus, the collection of face images of multiple subjects
lies close to a union of 9D subspaces.

In this section, we evaluate the clustering performance of
SSC as well as the state-of-the-art methods on the Extended
Yale B dataset [68]. The dataset consists of 192& 168 pixel
cropped face images of n ¼ 38 individuals, where there are
Ni ¼ 64 frontal face images for each subject acquired under
various lighting conditions. To reduce the computational
cost and the memory requirements of all algorithms, we
downsample the images to 48& 42 pixels and treat each
2,016D vectorized image as a data point; hence D ¼ 2,016.
The right plot in Fig. 10 shows the singular values of data
points of several subjects in the dataset. Note that the
singular value curve has a knee around 9, corroborating the
approximate 9-dimensionality of the face data in each
subject. In addition, the singular values gradually decay to
zero, showing that the data are corrupted by errors. Thus,
the face images of n subjects can be modeled as corrupted
data points lying close to a union of 9D subspaces.

To study the effect of the number of subjects in the
clustering performance of different algorithms, we devise
the following experimental setting: We divide the 38 subjects
into four groups, where the first three groups correspond to
subjects 1 to 10, 11 to 20, 21 to 30, and the fourth group
corresponds to subjects 31 to 38. For each of the first three
groups we consider all choices of n 2 f2; 3; 5; 8; 10g subjects
and for the last group we consider all choices of
n 2 f2; 3; 5; 8g.10 Finally, we apply clustering algorithms for
each trial, i.e., each set of n subjects.

7.2.1 Applying RPCA Separately on Each Subject

As shown by the SVD plot of the face data in Fig. 10 (right),
the face images do not perfectly lie in a linear subspace as
they are corrupted by errors. In fact, the errors correspond
to the cast shadows and specularities in the face images and
can be modeled as sparse outlying entries. As a result, it is
important for a subspace clustering algorithm to effectively
deal with data with sparse corruptions.

To validate the fact that corruption of faces is due to
sparse outlying errors and show the importance of dealing
with corruptions while clustering, we start with the
following experiment. We apply the robust principal
component analysis (RPCA) algorithm [32] to remove the
sparse outlying entries of the face data in each subject. Note
that in practice we do not know the clustering of the data
beforehand and hence cannot apply the RPCA to the faces
of each subject. However, as we will show, this experiment
illustrates some of the challenges of the face clustering and
validates several conclusions about the performances of
different algorithms.

Table 3 shows the clustering error of different algorithms
after applying RPCA to the data points in each subject and
removing the sparse outlying entries, i.e., after bringing the
data points back to their low-dimensional subspaces. From
the results, we make the following conclusions:

. The clustering error of SSC is very close to zero for
different numbers of subjects, suggesting that SSC
can deal well with face clustering if the face images
are corruption free. In other words, while the data in
different subspaces are very close to each other, as
shown in Fig. 9 (right), the performance of the SSC is
more dependent on the principal angles between
subspaces which, while small, are large enough for
the success of SSC.

. The LRR and LRSC algorithms also have low
clustering errors (LRSC obtains zero errors) showing
the effectiveness of removing sparse outliers in the
clustering performance. On the other hand, while
LRR-H has a low clustering error for two, three, and
five subjects, it has a relatively large error for 8 and

ELHAMIFAR AND VIDAL: SPARSE SUBSPACE CLUSTERING: ALGORITHM, THEORY, AND APPLICATIONS 2777

10. Note that choosing n out of 38 leads to an extremely large number of
trials. Thus, we have devised the above setting to have a repeatable
experiment with a reasonably large number of trials for each n.

TABLE 3
Clustering Error (%) of Different Algorithms on the

Extended Yale B Dataset After Applying RPCA Separately
to the Data Points in Each Subject

Fig. 11. Clustering error (%) of SSC as a function of #z in the
regularization parameter "z ¼ #z=$z for the two cases of clustering of
2F -dimensional data and 4n-dimensional data obtained by PCA.

10 subjects, showing that the post processing step on
the obtained low-rank coefficient matrix does not
always improve the result of LRR.

. For LSA and SCC, the clustering error is relatively
large and the error increases as the number of
subjects increases. This comes from the fact that, as
shown in Fig. 9 (right), for face images, the
neighborhood of each data point contains points
that belong to other subjects and, in addition, the
number of neighbors from other subjects increases as
we increase the number of subjects.

7.2.2 Applying RPCA Simultaneously on All Subjects

In practice, we cannot apply RPCA separately to the data in
each subject because the clustering is unknown. In this
section, we deal with sparse outlying entries in the data by
applying the RPCA algorithm to the collection of all data
points for each trial prior to clustering. The results are shown
in Table 4, from which we make the following conclusions:

. The clustering error for SSC is low for all different
numbers of subjects. Specifically, SSC obtains 2.09
and 11.46 percent for clustering of data points in 2
and 10 subjects, respectively.

. Applying RPCA to all data points simultaneously
may not be as effective as applying RPCA to data
points in each subject separately. This comes from
the fact that RPCA tends to bring the data points into
a common low-rank subspace, which can result in
decreasing the principal angles between subspaces
and decreasing the distances between data points in
different subjects. This can explain the increase in
the clustering error of all clustering algorithms with
respect to the results in Table 3.

7.2.3 Using Original Data Points

Finally, we apply the clustering algorithms to the original
data points without preprocessing the data. The results are
shown in Table 5 from which we make the following
conclusions:

. The SSC algorithm obtains a low clustering error for
all numbers of subjects, obtaining 1.86 percent and
10.94 percent clustering error for 2 and 10 subjects,
respectively. In fact, the error is smaller than when
applying RPCA to all data points. This is due to the
fact that SSC directly incorporates the corruption
model of the data by sparse outlying entries into the
sparse optimization program, giving it the ability to
perform clustering on the corrupted data.

. While LRR also has a regularization term to deal
with the corrupted data, the clustering error is
relatively large, especially as the number of subjects
increases. This can be due to the fact that there is not
a clear relationship between corruption of each data
point and the LRR regularization term in general
[38]. On the other hand, the postprocessing step of
LRR-H on the low-rank coefficient matrix helps to
significantly reduce the clustering error, although it
is larger than the SSC error.

. As LRSC tries to recover error-free data points while
finding their low-rank representation, it obtains
smaller errors than LRR.

. LSA and SCC do not have an explicit way to deal
with corrupted data. This, together with the fact that
the face images of each subject have a relatively
large number of neighbors in other subjects, as
shown in Fig. 9 (right), results in low performances
of these algorithms.

7.2.4 Computational Time Comparison

The average computational time of each algorithm as a
function of the number of subjects (or, equivalently, the
number of data points) is shown in Fig. 12. Note that the
computational time of SCC is drastically higher than other
algorithms. This comes from the fact that the complexity of
SCC increases exponentially in the dimension of the
subspaces, which in this case is d ¼ 9. On the other hand,
SSC, LRR, and LRSC use fast and efficient convex
optimization techniques, which keeps their computational
time lower than other algorithms. The exact computational
times are provided in the online supplementary materials.

2778 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013

TABLE 4
Clustering Error (%) of Different Algorithms on the

Extended Yale B Dataset After Applying RPCA
Simultaneously to All the Data in Each Trial

TABLE 5
Clustering Error (%) of Different Algorithms on the

Extended Yale B Dataset without Preprocessing the Data

8 CONCLUSIONS AND FUTURE WORK

We studied the problem of clustering a collection of data
points that lie in or close to a union of low-dimensional
subspaces. We proposed a subspace clustering algorithm
based on sparse representation techniques, called SSC, that
finds a sparse representation of each point in the dictionary
of the other points, builds a similarity graph using the
sparse coefficients, and obtains the segmentation of the data
using spectral clustering. We showed that, under appro-
priate conditions on the arrangement of subspaces and the
distribution of data, the algorithm succeeds in recovering
the desired sparse representations of data points. A key
advantage of the algorithm is its ability to directly deal with
data nuisances, such as noise, sparse outlying entries, and
missing entries, as well as the more general class of affine
subspaces, by incorporating the corresponding models into
the sparse optimization program. Experiments on real data
such as face images and motions in videos showed the
effectiveness of our algorithm and its superiority over the
state of the art.

Interesting avenues of research which we are currently
investigating include theoretical analysis of the subspace-
sparse recovery in the presence of noise, sparse outlying
entries, and missing entries in the data. As our extensive
experiments on synthetic and real data show, the points in
each subspace in general form a single component of the
similarity graph. Theoretical analysis of the connectivity of
the similarity graph for points in the same subspace in a
probabilistic framework would provide a better under-
standing for this observation. Finally, making the two steps
of solving a sparse optimization program and spectral
clustering applicable to very large datasets is an interesting
and a practical subject for the future work.

ACKNOWLEDGMENTS

This work was partially supported by US National Science
Foundation grants NSF-ISS 0447739 and NSF-CSN 0931805.

REFERENCES

[1] R.E. Bellman, Dynamic Programming. Princeton Univ. Press, 1957.
[2] C. Tomasi and T. Kanade, “Shape and Motion from Image Streams

under Orthography,” Int’l J. Computer Vision, vol. 9, no. 2, pp. 137-
154, 1992.

[3] R. Basri and D. Jacobs, “Lambertian Reflection and Linear
Subspaces,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 25, no. 3, pp. 218-233, Feb. 2003.

[4] T. Hastie and P. Simard, “Metrics and Models for Handwritten
Character Recognition,” Statistical Science, vol. 13, no. 1, pp. 54-65,
1998.

[5] R. Vidal, “Subspace Clustering,” Signal Processing Magazine,
vol. 28, no. 2, pp. 52-68, 2011.

[6] W. Hong, J. Wright, K. Huang, and Y. Ma, “Multi-Scale Hybrid
Linear Models for Lossy Image Representation,” IEEE Trans. Image
Processing, vol. 15, no. 12, pp. 3655-3671, Dec. 2006.

[7] A. Yang, J. Wright, Y. Ma, and S. Sastry, “Unsupervised
Segmentation of Natural Images via Lossy Data Compression,”
Computer Vision and Image Understanding, vol. 110, no. 2, pp. 212-
225, 2008.

[8] J. Costeira and T. Kanade, “A Multibody Factorization Method for
Independently Moving Objects,” Int’l J. Computer Vision, vol. 29,
no. 3, pp. 159-179, 1998.

[9] K. Kanatani, “Motion Segmentation by Subspace Separation and
Model Selection,” Proc. IEEE Int’l Conf. Computer Vision, vol. 2,
pp. 586-591, 2001.

[10] R. Vidal, Y. Ma, and S. Sastry, “Generalized Principal Component
Analysis (GPCA),” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 12, pp. 1-15, Dec. 2005.

[11] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley-
Interscience, Oct. 2004.

[12] P. Tseng, “Nearest q-Flat to m Points,” J. Optimization Theory and
Applications, vol. 105, no. 1, pp. 249-252, 2000.

[13] J. Ho, M.H. Yang, J. Lim, K. Lee, and D. Kriegman, “Clustering
Appearances of Objects under Varying Illumination Conditions,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2003.

[14] T. Zhang, A. Szlam, and G. Lerman, “Median k-Flats for Hybrid
Linear Modeling with Many Outliers,” Proc. IEEE Int’l Workshop
Subspace Methods, 2009.

[15] C.W. Gear, “Multibody Grouping from Motion Images,” Int’l J.
Computer Vision, vol. 29, no. 2, pp. 133-150, 1998.

[16] Y. Ma, A. Yang, H. Derksen, and R. Fossum, “Estimation of
Subspace Arrangements with Applications in Modeling and
Segmenting Mixed Data,” SIAM Rev., vol. 50, pp. 413-458, 2008.

[17] M. Tipping and C. Bishop, “Mixtures of Probabilistic Principal
Component Analyzers,” Neural Computation, vol. 11, no. 2,
pp. 443-482, 1999.

[18] Y. Sugaya and K. Kanatani, “Geometric Structure of Degeneracy
for Multi-Body Motion Segmentation,” Proc. Workshop Statistical
Methods in Video Processing, 2004.

[19] A. Gruber and Y. Weiss, “Multibody Factorization with Un-
certainty and Missing Data Using the EM Algorithm,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 707-714,
2004.

[20] M.A. Fischler and R.C. Bolles, “RANSAC Random Sample
Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography,” Comm. ACM,
vol. 26, pp. 381-395, 1981.

[21] S. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion Segmentation in the
Presence of Outlying, Incomplete, or Corrupted Trajectories,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 10,
pp. 1832-1845, Oct. 2010.

[22] J. Yan and M. Pollefeys, “A General Framework for Motion
Segmentation: Independent, Articulated, Rigid, Non-Rigid, De-
generate and Non-Degenerate,” Proc. European Conf. Computer
Vision, pp. 94-106, 2006.

[23] A. Goh and R. Vidal, “Segmenting Motions of Different Types by
Unsupervised Manifold Clustering,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2007.

[24] T. Zhang, A. Szlam, Y. Wang, and G. Lerman, “Hybrid Linear
Modeling via Local Best-Fit Flats,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 1927-1934, 2010.

[25] L. Zelnik-Manor and M. Irani, “Degeneracies, Dependencies and
Their Implications in Multi-Body and Multi-Sequence Factoriza-
tion,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
vol. 2, pp. 287-293, 2003.

[26] A. Ng, Y. Weiss, and M. Jordan, “On Spectral Clustering: Analysis
and an Algorithm,” Proc. Neural Information Processing Systems
Conf., pp. 849-856, 2001.

[27] U. von Luxburg, “A Tutorial on Spectral Clustering,” Statistics and
Computing, vol. 17, pp. 395-416, 2007.

ELHAMIFAR AND VIDAL: SPARSE SUBSPACE CLUSTERING: ALGORITHM, THEORY, AND APPLICATIONS 2779

Fig. 12. Average computational time (sec) of the algorithms on the
Extended Yale B dataset as a function of the number of subjects.

[28] G. Chen and G. Lerman, “Spectral Curvature Clustering (SCC),”
Int’l J. Computer Vision, vol. 81, no. 3, pp. 317-330, 2009.

[29] D.L. Donoho, “For Most Large Underdetermined Systems of
Linear Equations the Minimal ‘1-Norm Solution Is Also the
Sparsest Solution,” Comm. Pure and Applied Math., vol. 59, no. 6,
pp. 797-829, 2006.

[30] E. Candès and T. Tao, “Decoding by Linear Programming,” IEEE
Trans. Information Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.

[31] R. Tibshirani, “Regression Shrinkage and Selection via the
LASSO,” J. Royal Statistical Soc. B, vol. 58, no. 1, pp. 267-288, 1996.

[32] E. Candès, X. Li, Y. Ma, and J. Wright, “Robust Principal
Component Analysis,” J. ACM, vol. 58, 2011.

[33] E. Candès and B. Recht, “Exact Matrix Completion via Convex
Optimization,” Foundations of Computational Math., vol. 9, pp. 717-
772, 2008.

[34] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed Minimum-Rank
Solutions of Linear Matrix Equations via Nuclear Norm Mini-
mization,” SIAM Rev., vol. 52, no. 3, pp. 471-501, 2010.

[35] E. Elhamifar and R. Vidal, “Sparse Subspace Clustering,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2009.

[36] E. Elhamifar and R. Vidal, “Clustering Disjoint Subspaces via
Sparse Representation,” Proc. IEEE Int’l Conf. Acoustics, Speech, and
Signal Processing, 2010.

[37] M. Soltanolkotabi and E.J. Candes, “A Geometric Analysis of
Subspace Clustering with Outliers,” Annals of Statistics, vol. 40,
pp. 2195-2238, 2012.

[38] G. Liu, Z. Lin, and Y. Yu, “Robust Subspace Segmentation by
Low-Rank Representation,” Proc. Int’l Conf. Machine Learning,
2010.

[39] G. Liu and S. Yan, “Latent Low-Rank Representation for Subspace
Segmentation and Feature Extraction,” Proc. Int’l Conf. Computer
Vision, 2011.

[40] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust Recovery
of Subspace Structures by Low-Rank Representation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 171-184,
Jan. 2013.

[41] P. Favaro, R. Vidal, and A. Ravichandran, “A Closed Form
Solution to Robust Subspace Estimation and Clustering,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2011.

[42] E. Elhamifar and R. Vidal, “Robust Classification Using Structured
Sparse Representation,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2011.

[43] E. Elhamifar and R. Vidal, “Block-Sparse Recovery via Convex
Optimization,” IEEE Trans. Signal Processing, 2012.

[44] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, “Recovering
Sparse Signals Using Sparse Measurement Matrices in Com-
pressed DNA Microarrays,” IEEE J. Selected Topics in Signal
Processing, vol. 2, no. 3, pp. 275-285, June 2008.

[45] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the Reconstruction of
Block-Sparse Signals with and Optimal Number of Measure-
ments,” IEEE Trans. Signal Processing, vol. 57, no. 8, pp. 3075-3085,
Aug. 2009.

[46] Y.C. Eldar and M. Mishali, “Robust Recovery of Signals from a
Structured Union of Subspaces,” IEEE Trans. Information Theory,
vol. 55, no. 11, pp. 5302-5316, Nov. 2009.

[47] Y.C. Eldar, P. Kuppinger, and H. Bolcskei, “Compressed Sensing
of Block-Sparse Signals: Uncertainty Relations and Efficient
Recovery,” IEEE Trans. Signal Processing, vol. 58, no. 6, pp. 3042-
3054, June 2010.

[48] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
Univ. Press, 2004.

[49] S.J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An
Interior-Point Method for Large-Scale l1-Regularized Least
Squares,” IEEE J. Selected Topics in Signal Processing, vol. 1, no. 4,
pp. 606-617, Dec. 2007.

[50] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed Optimization and Statistical Learning via the Alter-
nating Direction Method of Multipliers,” Foundations and Trends in
Machine Learning, vol. 3, no. 1, pp. 1-122, 2010.

[51] E. Amaldi and V. Kann, “On the Approximability of Minimizing
Nonzero Variables or Unsatisfied Relations in Linear Systems,”
Theoretical Computer Science, vol. 209, pp. 237-260, 1998.

[52] R. Zass and A. Shashua, “Doubly Stochastic Normalization for
Spectral Clustering,” Neural Information Processing Systems, vol. 19,
pp. 1569-1576, 2006.

[53] T. Brox and J. Malik, “Object Segmentation by Long Term
Analysis of Point Trajectories,” Proc. European Conf. Computer
Vision, 2010.

[54] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust Face
Recognition via Sparse Representation,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210-227, Feb.
2009.

[55] R. Vidal and R. Hartley, “Motion Segmentation with Missing Data
by Power Factorization and Generalized PCA,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, vol. 2, pp. 310-316, 2004.

[56] D.L. Donoho and M. Elad, “Optimally Sparse Representation in
General (Nonorthogonal) Dictionaries via ‘1 Minimization,” Proc.
Nat’l Academy of Sciences USA, vol. 100, no. 5, pp. 2197-2202, 2003.

[57] R. Gribonval and M. Nielsen, “Sparse Representations in Unions
of Bases,” IEEE Trans. Information Theory, vol. 49, no. 12, pp. 3320-
3325, Dec. 2003.

[58] E. van den Berg and M. Friedlander, “Theoretical and Empirical
Results for Recovery from Multiple Measurements,” IEEE Trans.
Information Theory, vol. 56, no. 5, pp. 2516-2527, May 2010.

[59] D.L. Donoho, “Neighborly Polytopes and Sparse Solution of
Underdetermined Linear Equations,” technical report, Stanford
Univ., 2005.

[60] B. Nasihatkon and R. Hartley, “Graph Connectivity in Sparse
Subspace Clustering,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2011.

[61] E. Elhamifar, G. Sapiro, and R. Vidal, “See All by Looking at a
Few: Sparse Modeling for Finding Representative Objects,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2012.

[62] R. Jenatton, J.Y. Audibert, and F. Bach, “Structured Variable
Selection with Sparsity-Inducing Norms,” J. Machine Learning
Research, vol. 12, pp. 2777-2824, 2011.

[63] J.A. Tropp, “Algorithms for Simultaneous Sparse Approximation:
Part II: Convex Relaxation,” Signal Processing, vol. 86, pp. 589-602,
2006.

[64] D. Gabay and B. Mercier, “A Dual Algorithm for the Solution of
Nonlinear Variational Problems via Finite-Element Approxima-
tions,” Computer Math. Applications, vol. 2, pp. 17-40, 1976.

[65] F. Lauer and C. Schnörr, “Spectral Clustering of Linear Subspaces
for Motion Segmentation,” Proc. IEEE Int’l Conf. Computer Vision,
2009.

[66] R. Tron and R. Vidal, “A Benchmark for the Comparison of 3-D
Motion Segmentation Algorithms,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2007.

[67] T. Boult and L. Brown, “Factorization-Based Segmentation of
Motions,” Proc. IEEE Workshop Motion Understanding, pp. 179-186,
1991.

[68] K.-C. Lee, J. Ho, and D. Kriegman, “Acquiring Linear Subspaces
for Face Recognition under Variable Lighting,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 27, no. 5, pp. 684-698, May
2005.

2780 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11, NOVEMBER 2013

Ehsan Elhamifar received the BS degree in
biomedical engineering from Amirkabir Univer-
sity of Technology, Iran, in 2004, when he was
named the best undergraduate student, the MS
degree in electrical engineering from Sharif
University of Technology, Iran, in 2006, the
MSE degree in applied mathematics and statis-
tics from The Johns Hopkins University in 2011,
and the PhD degree from the Electrical and
Computer Engineering Department at The

Johns Hopkins University in 2012. He is currently a postdoctoral fellow
in the Electrical Engineering and Computer Science Department at the
University of California, Berkeley. His research interests include high-
dimensional data analysis, sparse signal representation, as well as
clustering, dimensionality reduction, and classification of multimanifold
data, and he has published more than 10 papers on these subjects. He
is a student member of the IEEE.

René Vidal received the BS degree in electrical
engineering (highest honors) from the Pontificia
Universidad Católica de Chile in 1997 and the
MS and PhD degrees in electrical engineering
and computer sciences from the University of
California, Berkeley, in 2000 and 2003, respec-
tively. He was a research fellow at the National
ICT Australia in the fall of 2003 and has been a
faculty member in the Department of Biomedical
Engineering and the Center for Imaging Science

of The Johns Hopkins University since 2004. He was the coeditor of the
book Dynamical Vision and has coauthored more than 150 articles in
biomedical image analysis, computer vision, machine learning, hybrid
systems, and robotics. He is an associate editor of the IEEE
Transactions on Pattern Analysis and Machine Intelligence, the SIAM
Journal on Imaging Sciences, and the Journal of Mathematical Imaging
and Vision. He was or will be a program chair for ICCV ’15, CVPR ’14,
WMVC ’09, and PSIVT ’07. He was or will be an area chair for ICCV 13,
CVPR ’13, ICCV ’11, ICCV ’07, and CVPR ’05. He is a recipient of the
2012 J.K. Aggarwal Prize “for outstanding contributions to generalized
principal component analysis and subspace clustering in computer
vision and pattern recognition,” the 2012 Best Paper Award at the IEEE
Conference on Decision and Control, the 2012 Best Paper Award in
Medical Robotics and Computer Assisted Interventions, 2011 Best
Paper Award Finalist at the IEEE Conference on Decision and Control,
the 2009 US Office of Naval Research Young Investigator Award, the
2009 Sloan Research Fellowship, the 2005 US National Science
Foundation CAREER Award, and the 2004 Best Paper Award
Honorable Mention from the European Conference on Computer Vision.
He also received the 2004 Sakrison Memorial Prize for “completing an
exceptionally documented piece of research,” the 2003 Eli Jury award
for “outstanding achievement in the area of systems, communications,
control, or signal processing,” the 2002 Student Continuation Award
from NASA Ames, the 1998 Marcos Orrego Puelma Award from the
Institute of Engineers of Chile, and the 1997 Award of the School of
Engineering of the Pontificia Universidad Católica de Chile to the best
graduating student of the school. He is a member of the ACM, SIAM,
and a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ELHAMIFAR AND VIDAL: SPARSE SUBSPACE CLUSTERING: ALGORITHM, THEORY, AND APPLICATIONS 2781

