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Abstract. We consider the problem of segmenting fiber bundles in diffusion
tensor images. We cast this problem as a manifold clustering problem in which
different fiber bundles correspond to different submanifolds of the space of diffu-
sion tensors. We first learn a local representation of the diffusion tensor data using
a generalization of the locally linear embedding (LLE) algorithm from Euclidean
to diffusion tensor data. Such a generalization exploits geometric properties of the
space of symmetric positive semi-definite matrices, particularly its Riemannian
metric. Then, under the assumption that different fiber bundles are physically
distinct, we show that the null space of a matrix built from the local representation
gives the segmentation of the fiber bundles. Our method is computationally simple,
can handle large deformations of the principal direction along the fiber tracts,
and performs automatic segmentation without requiring previous fiber tracking.
Results on synthetic and real diffusion tensor images are also presented.

1 Introduction

Diffusion Tensor Imaging (DTI) is a 3-D imaging technique that measures the restricted
diffusion of water in living tissues. Water diffusion is represented mathematically with
a symmetric positive semi-definite (SPSD) tensor field D : R3 → SPSD(3) ⊂ R3×3

that measures the diffusion in a direction v ∈ R3 as v>Dv. The direction of maximum
diffusion is indicative of the orientation of fibers in highly anisotropic tissues. Therefore,
DTI can be used to analyze the local orientation and anisotropy of tissue structures, and
infer the organization and orientation of tissue components. For example, DTI allows
one to distinguish the different anatomical structures of the brain such as the corpus
callosum, cingulum, or fornix, noninvasively.

In order to make DTI beneficial for both diagnostic as well as clinical applications, it
is necessary to develop image analysis methods for registering DT images, extracting
and tracking fibers, segmenting bundles of fibers with different orientation, etc. However,
as the space of diffusion tensors is not Euclidean, traditional image analysis techniques
need to be revised to handle the new mathematical structure of the data.
Related work. It is well-known [1–5] that the traditional Euclidean distance is not the
most appropriate metric for the Riemannian symmetric space SPSD(r), where r is the
dimension of the matrices. This has motivated several frameworks for tensor computing
that incorporate different Riemannian properties of SPSD matrices [1–3]. Applications
to interpolation and filtering of tensor fields have shown encouraging results.

Although there exists extensive literature studying the problem of classifying gray
matter, white matter and cerebrospinal fluid from MR images, there is relatively lesser
work done on the problem of segmenting different white matter structures from DTI. A
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first family of segmentation methods [6] reduces the tensor data to a scalar anisotropic
measure and then applies standard image segmentation methods to the scalar data. How-
ever, reducing the tensor field to a scalar measure eliminates the directional information,
thereby reducing the discriminative power. For instance, when two fiber bundles are
oriented in different directions, but have the same anisotropy, this method will fail.

A second family of segmentation methods extracts the fiber tracts from the tensor
data and then segments these tracts using a measure of similarity between pairs of
curves, such as the Euclidean distance between two fibers, or the ratio of the length of
corresponding portions of the fibers to the overall length of the pairs [7]. In [8], fibers
are reduced to a feature vector extracted from the statistical moments of the fibers, and
segmentation is done by applying normalized cuts to these feature vectors. Unfortunately,
there are several problems with this approach. Most notably, accurate extraction of fiber
tracts in the presence of noise in DT data remains an obstacle. Most tractography methods
start at a user specified point and follow the direction of the principal eigenvector of
the tensor until a termination criterion is reached. Observe that a slight error in the
estimation of the principal tensor direction at one voxel will likely result in tracking
a different fiber. This error will propagate as tracking continues, so the extracted fiber
could be completely wrong. Also, it is known that the estimation of a tensor is poor in
areas where two different fiber bundles cross at an angle. Thus, the likelihood of fiber
tracking veering off course is high in regions of crossing fibers. Even if the fiber tracts
were correctly estimated, comparing 3-D curves in a mathematical rigorous manner
remains an open question. In order to overcome the shortcomings resulting from the
local decision-making of the tractography methods, stochastic approaches [9, 10] use a
measure of connectivity between brain regions. However, these methods do not give the
explicit segmentation of the fiber bundles.

A third family of segmentation methods attempts to sidestep these issues by seg-
menting the tensor data directly, without first extracting the fiber tracts. These methods
make use of a metric on SPSD(3), such as the Euclidean metric trace(D1D>

2 ) [11,

12], or the normalized tensor scalar product trace(D1D
>
2 )

trace(D1)trace(D2)
[13]. These metrics are

then combined with classical segmentation methods, such as spectral clustering [11,
14] or level set methods [12, 13]. However, as these methods are designed to segment
discrete tensors rather than continuous fiber bundles, they fail to segment fiber bundles
correctly whenever the tensors in a bundle present high variability, e.g., in a long curved
tract. These issues have motivated the usage of more sophisticated metrics such as the
log-Euclidean metric [1], the information theoretic metric [4] or the affine-invariant
metric [15, 2, 3]. For example, in [4], the diffusion tensor is interpreted as the covariance
matrix of a local Gaussian distribution. The distance measure between two matrices is
based on the Kullback-Leibler divergence between the two Gaussian probability den-
sity functions induced by the two matrices. As the Kullback-Leibler divergence is not
symmetric, the J-divergence which is the mean of the two divergences is used. More
recently, locally-constrained region based methods that could handle variability in a fiber
bundle have been proposed [16–18]. In these methods, fiber bundles are segmented by
minimizing an energy function in a probabilistic framework. These energy minimiza-
tion techniques, combined with different metrics, work well in general. However, they
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Fig. 1. Pictorial view of how our algorithm works. Left: Two fiber bundles surrounded by a region
of low diffusion. Right: Low-dimensional representation learned by our algorithm, in which
different fiber bundles form different clusters.

suffer from convergence to a local minimum, and often require a user-specified initial
segmentation.

Paper contributions. In this paper, we present an algorithm for segmenting fiber
bundles in DT images. Our algorithm is algebraic, thus it requires no initialization;
operates directly on tensor data, thus it requires no fiber extraction or tracking; and
is designed to deal with long curved fiber bundles. More specifically, we assume that
tensors at adjacent voxels within a fiber bundle are similar (similar eigenvectors and
eigenvalues), while tensors at distant voxels could be very different, even if they lie in
the same bundle. Under this assumption, we show that one can map each diffusion tensor
to a point in a low-dimensional linear space in such a way that tensors tracing out a
fiber bundle are mapped to nearby points, while different fiber bundles are mapped to
distinct clusters, as shown in Fig. 1. This is achieved by using a new manifold clustering
technique called Locally Linear Diffusion Tensor Clustering (LLDTC), which is a natural
generalization of locally linear embedding (LLE) [19] from Euclidean to diffusion tensor
data. The generalization is based on the Riemannian framework with the affine-invariant
and log-Euclidean metrics [1, 3]. In particular, we will adopt the generic framework first
proposed in [20] and extended to clustering of probability density functions in [21].

The combination of techniques from Riemannian geometry and manifold learning
has already been used to perform statistical analysis and segmentation of diffusion MRI
data [22] by considering the tensors as points lying on a single manifold. However,
as noted in [23], diffusion MRI data belongs to a union of manifolds with different
dimensions and densities. [23] shows that it is possible to characterize neuro-anatomical
areas by considering the data as points clouds, and clustering these points into different
groups by estimating the dimension and density around each data point based on its k
nearest neighbors. Our algorithm, while modeling the data as a union of manifolds, does
not require different fiber bundles to have different dimensions to achieve clustering.

Paper outline. §2 reviews the classical LLE algorithm for a nonlinear manifold using the
Euclidean metric. §3 presents the extension of LLE to the space of diffusion tensors using
the Riemannian framework. §4 shows how to segment DTI fiber bundles that correspond
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to different submanifolds using LLDTC framework. §5 presents experimental results on
synthetic and real data, and §6 gives the conclusions.

2 Review of Locally Linear Embedding in Euclidean Spaces

Let X = {xi ∈ RD}n
i=1 be a set of n data points sampled from a low-dimensional

manifold embedded in RD. The goal of nonlinear dimensionality reduction (NLDR)
is to find a set of n vectors {yi ∈ Rd}n

i=1, where d � D, such that nearby points
remain close and distant points remain far. Existing NLDR techniques can be divided
in two main groups. Global NLDR techniques, such as Isomap [26], try to preserve
global properties of the data. Local NLDR techniques, such as LLE [19], Laplacian
eigenmaps [24] and Hessian LLE [25], try to preserve local properties obtained from
small neighborhoods around the datapoints. In particular, LLE exploits the fact that the
local neighborhood of a point on the manifold can be well approximated by the affine
subspace spanned by the k nearest neighbors of the point. The key idea of LLE is to find
a low-dimensional embedding of the data that preserves the coefficients of such affine
approximations. More specifically, the LLE algorithm can be summarized as follows.

1. Nearest neighbor search: For each data point xi ∈ X , find its k nearest neighbors
(kNN) {xij}k

j=1 according to the Euclidean distance.
2. Least squares fit: Find a matrix of weights W ∈ Rn×n whose entries Wij minimize

the reconstruction error

ε(W ) =
n∑

i=1

‖xi −
n∑

j=1

Wijxj‖2 =
n∑

i=1

‖
n∑

j=1

Wij(xi − xj)‖2 =
n∑

i=1

dist2(xi, x̂i)

(1)

subject to the constraints (i) Wij = 0 if xj is not a k-nearest neighbor of xi and (ii)∑n
j=1 Wij = 1. In (1), x̂i = xi +

∑n
j=1 Wij

−−→xixj is the linear interpolation of xi

and its kNN. The solution to this problem can be computed as[
Wi i1 Wi i2 · · · Wi ik

]
=

1>C−1
i

1>C−1
i 1

∈ R1×k, (2)

where 1 is the vector of all ones, and Ci ∈ Rk×k is the local Gram matrix at xi, i.e.
Ci(j, l) = (xj − xi) · (xl − xi). The matrix of weights W is invariant to rotations,
scalings and translations of each data point and its neighbors.

3. Sparse eigenvalue problem: Find vectors {yi ∈ Rd}n
i=1 that minimize the error

φ(Y ) =
n∑

i=1

‖yi −
n∑

j=1

Wijyj‖2 = trace(Y >MY ), (3)

where Y = [y1, . . . ,yn]> ∈ Rn×d, subject to the constraints (i)
∑n

i=1 yi = 0
(centered at the origin) and (ii) 1

n

∑n
i=1 yiy>i = I (unit covariance). The optimal

solution is the matrix Y whose columns are the d eigenvectors of the matrix M =
(I −W )>(I −W ) associated with its second to (d + 1)-st smallest eigenvalues. The
first eigenvector of M is discarded, because it is the vector of all ones, 1 ∈ Rn, with
0 as its eigenvalue. This is because

∑n
j=1 Wij = 1, hence W1 = 1, and M1 = 0.
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In principle, the LLE algorithm is designed for data lying in a single connected
submanifold of Euclidean space. In the next sections we will show how LLE can be
extended to data lying in multiple submanifolds of SPSD(3).

3 Locally Linear Embedding in the Space of SPSD Matrices

The LLE framework presented in §2 is applicable in the presence of one connected
manifold with unknown structure. Therefore, every operation has to be approximated by
the corresponding Euclidean operation, e.g., finding the kNN using the Euclidean dis-
tance, minimizing the Euclidean reconstruction error and doing Euclidean interpolation
of a point and its neighbors. For diffusion tensors, however, the manifold structure is
known. Moreover, previous work has shown that the Euclidean distance is not the most
appropriate metric for SPSD matrices [1–5]. For example, in [3] it is clearly illustrated
that Euclidean averaging of tensors leads to a tensor swelling effect in which the resulting
determinant of the mean is larger than the original determinants.

In this section, we will show how to extend LLE to diffusion tensors using the affine-
invariant and log-Euclidean metrics [3, 1] instead of the Euclidean metric. Under these
metrics, closed-form formulae for Riemannian operations, such as the geodesic distance,
geodesic interpolation, etc., are available. We will make use of the generic framework
proposed in [20] for such closed-form Riemannian structures. Since the information
about the local geometry of the manifold is essential only in the first two steps of the
LLE algorithm, modifications are made only to these two stages, i.e. how to select the
kNN and how to compute the matrix W representing the local geometry of fiber bundles
using the new metrics. Given W , the calculation of the low-dimensional representation
remains the same as in the Euclidean case.
Selection of Riemannian kNN. The first step of the LLE algorithm is the computation
of the kNN associated with each data point. To that end, consider any two tensors D(x1)
and D(x2) at coordinates x1 and x2. Notice that there are two ways of measuring simi-
larity: the Riemannian metric between the tensors µ(D(x1),D(x2)) and the Euclidean
distance between the coordinates ‖x1 − x2‖. A weighing factor has been used in [11] to
control the trade-off between these two distances. However, since our objective here is
to cluster fiber bundles, we must choose a distance accordingly. Clearly µ alone does not
suffice, because two tensors in a bundle may be very different from each other. Since
nearby tensors within a bundle are similar, we select the kNN of D(x) as follows.

Definition 1. The kNN of a tensor D(x) at x are the k tensors D(x1), . . . ,D(xk) that
minimize µ(D(x),D(xi)), subject to ‖x− xi‖ ≤ R, for a given radius R > 0.

Notice that our definition is essentially a combination of the kNN and ε-neighborhood
used to build a graph from similarity matrices in spectral clustering [27].
Riemannian Calculation of W . The second step of LLE is to compute the matrix of
weights W ∈ Rn×n. For this purpose, we need to define a reconstruction error similar
to (1), and an interpolation method that allows us to express a tensor Di

.= D(xi) as an
“affine combination” of its kNN {Dj

.= D(xj)}. Both the reconstruction error and the
interpolation method depend on the Riemannian metric chosen. We will illustrate our
algorithm using the affine-invariant [3] and log-Euclidean metrics [1].
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Affine-invariant metric. From [3], we know that the affine-invariant metric is given by

µAI(Di,Dj) = ‖ log(D− 1
2

i DjD
− 1

2
i )‖F =

√
trace

(
log(D− 1

2
i DjD

− 1
2

i )2
)
, (4)

where ‖ · ‖F is the Frobenius norm and log(·) is the matrix logarithm. We also know that
the geodesic linear interpolation of Di by tensors {Dj}n

j=1 with weights {Wij}n
j=1 is

D̂AI,i = D
1
2
i exp

( n∑
j=1

Wij log(D− 1
2

i DjD
− 1

2
i )

)
D

1
2
i , (5)

where exp(·) is the matrix exponential. Therefore, instead of minimizing the Euclidean
reconstruction error (1), we minimize the affine-invariant reconstruction error

εAI(W ) =
n∑

i=1

µ2
AI(Di, D̂AI,i) =

n∑
i=1

∥∥ n∑
j=1

Wij log(D− 1
2

i DjD
− 1

2
i )

∥∥2

F
, (6)

subject to Wij = 0 if Dj is not a kNN of Di and
∑

j Wij = 1. Therefore, the optimal
weights are obtained as in (2), with the local Gram matrix Ci ∈ Rk×k defined as

Ci(j, l) = trace(log(D− 1
2

i DjD
− 1

2
i ) log(D− 1

2
i DlD

− 1
2

i )). (7)

Log-Euclidean metric. From [1], we know that the log-Euclidean metric is given by

µLE(Di,Dj) = ‖ log Di − log Dj‖F , (8)

and the geodesic linear interpolation of Di by tensors {Dj}n
j=1 with weights {Wij}n

j=1

is

D̂LE,i = exp(
n∑

j=1

Wij log Dj). (9)

Thus, W is obtained by minimizing the log-Euclidean reconstruction error

εLE(W ) =
∑

i

µ2
LE(Di, D̂LE,i) =

n∑
i=1

∥∥ n∑
j=1

Wij(log Di − log Dj)
∥∥2

F
, (10)

subject to Wij = 0 if Dj is not a kNN of Di and
∑

j Wij = 1. The optimal weights are
obtained as in (2), with the local Gram matrix Ci ∈ Rk×k defined as

Ci(j, l) = trace((log Di − log Dj)(log Di − log Dl)). (11)

Thanks to (7) and (11), we can calculate W exactly and the matrix M is computed
as before, i.e. , M = (I −W )>(I −W ).
Calculation of the Embedding Coordinates. The last step of LLE is to find a Eu-
clidean low-dimensional representation. Given W , this step is independent of the Rie-
mannian structure. Hence, one can find the embedding coordinates as described in §2.
That is, the embedding coordinates are the d eigenvectors of the matrix M associated
with its second to (d + 1)-st smallest eigenvalues.



Segmenting Fiber Bundles in Diffusion Tensor Images 7

4 Locally Linear Diffusion Tensor Clustering (LLDTC)

In this section, we present our algorithm for segmenting fiber bundles in the brain that are
separated, e.g., segmenting the cingulum and the corpus callosum into different groups.
As each fiber bundle defines a different submanifold, the segmentation problem is equiv-
alent to the problem of clustering m submanifolds in the Riemannian space SPSD(3). In
particular, we will make use of the Riemannian manifold clustering algorithm in [20].

The LLE algorithm provides a low-dimensional representation of a set of n points
under the assumption that the n points are k-connected, i.e. for any two points z1, z2 ∈ X
there exists an ordered sequence of points in X having z1 and z2 as endpoints, such
that any two consecutive points in the sequence have at least one k-nearest neighbor in
common. We extend the results of §2 and §3 in order to cluster data lying in a union of
m k-connected submanifolds. The important assumption we make is that no kNN of a
data point in one submanifold lies in a different submanifold. At first, this may seem as a
very strong assumption. However, Def. 1 ensures that this assumption is approximately
true. For instance, consider two spatially close fiber bundles such as the corpus callosum
and the cingulum. We know that the corpus callosum is mostly oriented in a left-right
direction whereas the cingulum is oriented in the anterior-posterior direction. Even
though these two bundles are close to each other spatially, the distance between tensors
on different bundles in terms of the Riemannian SPSD metric µ is significantly large.
Therefore by Def. 1, tensors on different bundles are not connected. Consider now two
tensors D1 and D2 on the same bundle, but spatially separated and having very different
orientations. It follows from Def. 1 that these two tensors are not connected. However, as
the fiber connecting the two tensors is smooth, there is a sequence of tensors connecting
D1 and D2. In short, by making use of the locality property in both the coordinate and
tensor space to separate two fiber bundles, the aforementioned assumption is fulfilled.

Proposition 1 states the main result of [20] adapted to our scenario. This proposition
shows that in the case of a disconnected union of m k-connected submanifolds, the
matrix M has at least m zero eigenvalues, whose eigenvectors give the clustering of the
data. This is a general result that is applicable to both Euclidean and Riemannian LLE.
The interested reader is referred to [20] for the proof of Proposition 1.

Proposition 1 Let {Di}n
i=1 be a set of tensors drawn from a disconnected union of

m k-connected d-dimensional submanifolds of SPSD(3). Then, there exist m vectors
{vj}m

j=1 in the null space of M such that vj corresponds to the jth group of points, i.e.
vij = 1 if the i-th data point is in the jth group, and vij = 0 otherwise.

With real data, we still have distinct clusters, but the between-cluster weights are not
exactly 0. Therefore, the matrix M is a perturbed version of the ideal case. Nevertheless,
it is well-known from perturbation theory [28] that if the perturbation is small or the
eigengap is big, the eigenvector vj is equal to the ideal indicator vectors (0, .,1, .,0)> of
the j-th cluster up to a small error term. Hence, it is reasonable to expect that, instead of
mapping the data points on m submanifolds to m points, Riemannian LLE will generate
a collection of n points distributed around m cluster centers. Therefore, the k-means
algorithm will still be able to separate the groups from each other.

Notice that when computing a basis for ker(M), we do not necessarily obtain the set
of membership vectors, but rather linear combinations of them, including the vector 1. In
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general, linear combinations of segmentation eigenvectors still contain the segmentation
of the data. Hence, we can cluster the data into m groups by applying k-means to the
columns of a matrix whose rows are the m eigenvectors in the null space of M . From §3
and Proposition 1, we have the following linear algebraic tensor clustering algorithm.

Locally Linear Diffusion Tensor Clustering Algorithm (LLDTC)

1. Nearest neighbors search: For each tensor Di ∈ SPSD(3) at coordinate xi ∈ R3,
find the k tensors {Dij} at coordinates xij located within a fixed spatial radius R
from xi, i.e. ‖xi − xij‖ ≤ R, that have the smallest tensor distance µ, where µ is

µ(Di,Dj) =


‖Di −Dj‖F , Euclidean.
‖ log Di − log Dj‖F , Log-Euclidean.

‖ log(D− 1
2

i DjD
− 1

2
i )‖F , Affine-invariant.

2. Least squares fit: Compute the k nonzero entries of the i-th row of the weight matrix

as
[
Wi i1 · · · Wi ik

]
= 1>C−1

i

1>C−1
i 1

∈ R1×k, where Ci is the local Gram matrix for Di

Ci(j, l) =


trace((Di −Dj)(Di −Dl)), Euclidean.
trace((log Di − log Dj)(log Di − log Dl)), Log-Euclidean.

trace(log(D− 1
2

i DjD
− 1

2
i ) log(D− 1

2
i DlD

− 1
2

i )), Affine-invariant.

3. Clustering: Compute the m eigenvectors {vj}m
j=1 of M = (I −W )>(I −W ) asso-

ciated with its m smallest eigenvalues and apply k-means to the rows of [v1 · · ·vm]
to cluster the tensors into m different groups.

5 Experiments

Synthetic data. We first test our algorithm on synthetic data in order to validate the
segmentation performance of the different metrics. For this purpose, we generate a
3D synthetic tensor field containing two distinct fiber bundles (straight and curved)
generated by taking the tensors to be oriented according to the tangential direction
of two curves. The background contains tensors without any orientation (isotropic).
The eigenvalues of the tensors are independently corrupted by Gaussian noise. Fig. 2(a)
shows the dataset with each tensor represented by an ellipsoid whose major axis indicates
the dominant diffusion direction. Figs. 2(b)-2(d) show the clustering results using the
Euclidean, log-Euclidean, and affine-invariant metrics, respectively. Observe that the
Riemannian metrics give the correct segmentation, while the Euclidean metric fails.

In order to extract and cluster all the fibers in each one of the two bundles, we can
manually select a region of interest (ROI), and then track fibers that pass through voxels
in that ROI. Alternatively, the ROI can be defined automatically from the segmentation
given by LLDTC. To evaluate which method is able to find most of the fibers in a bundle,
we first extracted all the fibers in the two bundles using the freely available software
MedINRIA [29]. The fiber tracking algorithm used here is tensor deflection (TD) [30].
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(a) Synthetic dataset (b) Euclidean (c) Log-Euclidean (d) Affine-invariant

(e) Fiber tracts (f) Segmenting fiber
tracts with manual ROI

(g) Segmenting fiber
tracts with LLDTC ROI

Fig. 2. Segmentation of a synthetic dataset. Fig. 2(a) shows the visualization of the data with each
tensor at each voxel represented by an ellipsoid. Figs. 2(b)–2(d) show LLDTC clustering results
using the Euclidean, log-Euclidean and affine-invariant metrics. Fig. 2(e) shows the fiber tracking
results from MedINRIA. Fig. 2(f) shows two ROI masks marked manually at the beginning of
the two bundles, and the fiber tracts extracted by TD. Fig. 2(f) show two ROI masks extracted
automatically from the segmentation given by LLDTC, and the fiber tracts extracted by TD.

Fig. 2(e) shows the extracted fibers. Notice that TD gives good results when the bundles
are straight, but fails in regions of high curvature. We then manually marked two ROI
masks located at the beginning of each fiber bundle. These masks are shown in red
and pink in Fig. 2(f). We also used the segmentation generated by LLDTC with the
affine-invariant metric to define two other ROI masks, shown in red and pink in Fig.
2(g). Since we have ground truth for the two synthetic fiber bundles, we can compare the
extracted volume with the true volume of the fiber bundle. For the straight fiber bundle,
the manual method gave 97.8% of the bundle, whereas LLDTC achieved 98.6%. For
the curved fiber bundle, the manual method gave 90.8% of the bundle, while LLDTC
achieved 98.6%. Hence, by using LLDTC to automatically generate a ROI, we can obtain
a good estimate of the fiber bundles, even when tracking is not completely accurate.

Real data. We also test the LLDTC algorithm in the segmentation of the corpus callosum
and the cingulum from real DTI data using the affine-invariant metric. The corpus
callosum is the major communications conduit linking the two hemispheres of the human
brain. The two cerebral hemispheres are responsible for distinct and dissimilar cognitive
processes, as well as control of contralateral motion and proprioception. Consisting
of over 200 million individual nerve fibers, it provides not only a physical, but also a
functional connection essential for the coordination of our motor, language, and cognitive
abilities. The cingulum bundle, measuring 5-7 mm in diameter, runs dorsal to the corpus
callosum, and is the most prominent fiber bundle of the limbic lobe. Many studies have
suggested that some functions of the cingulate gyrus depend on the integrity of its
connections with other parts of the neuronal network. Therefore, the cingulum bundle,
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which serves to connect the cingulate cortex with other regions, would be important in the
maintenance of the processing of cognitive functions. The corpus callosum and cingulum
bundles have been studied extensively using DTI in many clinical populations, including
Alzheimer’s disease [31], schizophrenia [32] and autism [33]. For example, patients who
have Alzheimer’s disease have reduced fractional anisotropy in the cingulum bundle
compared to normal aging patients, suggesting that lower anisotropy is associated with
cognitive dysfunction and atrophy of the limbic system [31].

The size of the entire DTI volume of the brain is 128 × 128 × 58 voxels and the
voxel size is 2 × 2 × 2 mm. From the visualization of the tensor data, we know the
approximate location of each cingulum bundle in the left and right hemispheres. Hence,
we reduce the input volume to the algorithm by focusing in this location. In addition, we
also mask out voxels with fractional anisotropy that is below a threshold of 0.2 in order
to separate white matter from the rest of the brain. We set the value of the spatial radius
R to be 5 and the number of nearest neighbors to be 25.

Fig. 3 and 4 show the results of the left and right hemispheres respectively. Figs.
3(a)-3(e) and 4(a)-4(e) show the sagittal slices used and the ellipsoid visualization of the
tensors. The corpus callosum is the bundle with the red tensors pointing out of the plane
and resembles the letter ‘C’. The cingulum, which is significantly smaller, is the bundle
left to the corpus callosum with the green tensors oriented vertically. Figs. 3(f)-3(j) and
4(f)-4(j) show an eigenvector of the matrix M for each of the sagittal slice. We see
that that the corpus callosum and the cingulum are clustered around different centers.
Figs. 3(k)-3(o) and 4(k)-4(o) show the results of LLDTC. In both cases, the corpus
callosum forms a distinct cluster (in red). The cingulum is better segmented in the left
hemisphere as it consists of the light blue cluster. In the right hemisphere, however, the
segmentation of the cingulum is not as distinct. In addition, as our algorithm does not
incorporate any smoothness constraint, our segmentation is noisier compared to energy
minimization methods such as [16–18]. However, for the segmentation of the cingulum
bundle in [16–18], a significant effort was required to manually remove voxels in the
corpus callosum before running their respective algorithms. Our algorithm, on the other
hand, is automatic. Hence, an immediate use for our method is that the output could be
used as an automatic initialization for such algorithms.

6 Conclusion

We have presented an algorithm for the automatic segmentation of fiber bundles in DT
images. Our method requires no initialization or fiber tracking. Instead, it makes the
reasonable assumption that tensors at adjacent voxels within a fiber bundle have similar
eigenvectors and eigenvalues. Results on synthetic and real data were encouraging.
However, an open problem is to incorporate spatial coherence into the algorithm.
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(b) Slice 2 of LH

(c) Slice 3 of LH

(d) Slice 4 of LH

(e) Slice 5 of LH

(f) Eigenvector of S1 LH

(g) Eigenvector of S2 LH

(h) Eigenvector of S3 LH
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Fig. 3. Segmenting the corpus callosum and the cingulum in the left hemisphere (LH) using
the affine-invariant metric. The first column shows the visualization of the data in five sagittal
slices and the tensor at each voxel is represented by an ellipsoid. The second column shows an
eigenvector of the LLE matrix M for each of the sagittal slices. The third column shows the
clustering result given by LLDTC. The corpus callosum is segmented into the red cluster and the
cingulum into the light blue cluster.
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