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Abstract—Methods for obtaining cardiomyocytes from human
embryonic stem cells (hESCs) are improving at a significant
rate. However, the characterization of these cardiomyocytes is
evolving at a relatively slower rate. In particular, there is
still uncertainty in classifying the phenotype (ventricular-like,
atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte
(hESC-CM). While previous studies identified the phenotype of a
cardiomyocyte based on electrophysiological features of its action
potential, the criteria for classification were typically subjective
and differed across studies. In this paper, we use techniques from
signal processing and machine learning to develop an automated
approach to discriminate the electrophysiological differences
between hESC-CMs. Specifically, we propose a spectral grouping-
based algorithm to separate a population of cardiomyocytes into
distinct groups based on the similarity of their action potential
shapes. We applied this method to a dataset of optical maps
of cardiac cell clusters dissected from human embryoid bodies
(hEBs). While some of the 9 cell clusters in the dataset presented
with just one phenotype, the majority of the cell clusters
presented with multiple phenotypes. The proposed algorithm is
generally applicable to other action potential datasets and could
prove useful in investigating the purification of specific types of
cardiomyocytes from an electrophysiological perspective.

Index Terms—Stem Cells, Cardiac Electrophysiology, Spectral
Grouping, Cardiomyocyte.

I. INTRODUCTION

THE application of stem cells in the field of cardiology
has been exciting and rapidly evolving in the last decade.

Methods for cardiac differentiation of human pluripotent stem
cells have been constantly improving since it was first reported
using human embryonic stem cells (hESCs) [1]. Cardiomy-
ocytes (CMs) can be obtained by differentiating natural or
forced aggregates of hESCs (termed human embryoid bodies,
hEBs), as hESC monolayers, or through co-culture with END2
cells [1]–[3]. The efficiency of differentiation has also been
greatly improved, as seen in both the quantity and quality
of hESC derived cardiomyocytes (hESC-CMs). For example,
in hEB-based methods, contraction can be observed in over
90% of hEBs starting as early as 9 days after initiating
differentiation [4], and in monolayer-based methods, greater
than 85% cardiomyocyte purity has been reported [5]. Com-
bined with both genetic- [6] and non-genetic- [7], [8] based
purification methods, it is now possible to generate large
populations of high purity hESC-CMs. These advances in stem
cell biology have greatly expanded the applications of these
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human cardiomyocytes from in vitro sources, especially in
regenerative medicine [9]–[12] and drug models [13], [14].

The applications of hESC-CMs depend on their biological
properties, especially whether and how well they faithfully
represent native CMs. Generally, hESC-CMs have been found
to be immature in both cellular structure and electrophysiology
[5], [15], [16]. The cells usually have a small and rounded mor-
phology, less organized sarcomere [5] and possess immature
calcium handling mechanisms [17].

In addition to their immaturity, hESC-CMs are also hetero-
geneous. The variability of hESC-CMs is usually described
by categorizing their APs into different electrophysiological
phenotypes, usually referred to as nodal (or pacemaker)-like,
atrial-like and ventricular-like hESC-CMs [18]–[22], which
correspond to the three major native CM phenotypes. The
development of hESC-CMs into multiple phenotypes during
differentiation is considered to recapitulate embryonic heart
development [18]. Phenotypes of hESC-CMs are typically
determined by parameters obtained from microelectrode or
patch clamp recordings of APs, such as resting potential (or
maximum diastolic potential for spontaneously beating cells),
action potential duration (APD), action potential amplitude,
and upstroke velocity. However, the criteria for assigning phe-
notypes by these AP parameters in different research labs are
most often subjective in nature, and only rarely quantitatively
defined, as in [23], [24]. The manual assessment of features to
determine the phenotype of a cardiomyocyte is near impossible
to scale to large datasets, or to remain consistent across
research labs, as AP morphologies of hESC-CMs differ when
using different differentiation protocols [13], [18], [23]–[25].
Confounding the analysis further, the APs of hESC-CMs have
generally been spontaneously active even among cells believed
to represent the ventricular phenotype, which could lead to
classifications that can change over time, as the hESC-CMs
mature. In addition, most AP parameters vary with beating
rate, which is highly variable [18], making it problematic for
phenotype identification.

In this paper, we propose a new, automated framework for
separating a population of hESC-CMs into different groups,
which we hope will lead to more objective and biologically
relevant methods for studying electrophysiological phenotypes
of hESC-CMs. Our framework relies on signal processing and
machine learning techniques that have been successfully used
in other biological fields, such as neurophysiology [26], ge-
nomics and proteomics [27], and epidemiology [28]. However,
to the best of our knowledge, they have not been applied to
discriminate cardiac APs. We operate under the hypothesis that
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Fig. 1. Schematic drawing of the proposed method. (a) Raw measured signals were obtained over 16 second intervals at a sampling rate of 500Hz. (b)
From these 16 second traces, we obtained a representative AP by averaging over the individual APs. (c) These serve as input data for the spectral grouping
algorithm, which treats the signals as vertices on a graph. Two vertices were connected by a weight defined by the integral of the squared difference between
the corresponding signals. (d)-(e) The grouping of the data was obtained by finding the cut that minimizes a normalized sum of the weights.

APs belonging to the same phenotype will have more similar
shapes than APs belonging to different phenotypes, and that
this similarity can be captured by machine learning algorithms.
Specifically, we collected an original dataset of APs using
optical mapping and used signal processing techniques to
transform paced electrical activities at each recording site
into representative APs. These representatives were aligned by
activation time and compared using the Euclidean distance to
define the similarity between APs. The similarities were used
as the input to a spectral grouping algorithm to determine an
objective separation of populations of cardiac APs with distinct
phenotypes. Model selection techniques were then used to
determine the optimal number of groups that represent that
population. Our work, partially outlined in [29], shows the
viability of automated methods for determining electrophysi-
ologically related groups among populations of cardiac APs.

II. METHODS AND MATERIALS

This section describes our framework for grouping APs of
hESC-CMs. §II-A describes the acquisition protocol used to
collect our optical mapping dataset. §II-B describes signal
processing methods used to obtain a representative AP at each
site of each optical map. §II-C describes the algorithm used
to group these APs into different phenotypes. §II-D describes
model selection criteria used to determine the number of
phenotypes. The overall processing pipeline is illustrated in
Figure 1.

A. Signal Acquisition

The H9 line of human embryonic stem cells was differ-
entiated into cardiomyocytes using a previously described
hEB-based protocol [30]. The hEBs usually start beating
around Day 9 after the initiation of differentiation. Beating
areas of hEBs were mechanically dissected on Day 15-16 of
differentiation, and plated on gelatin-coated plastic coverslips

as cardiac cell clusters for optical mapping. Cardiac cell
clusters were stained with 10µM voltage-sensitive dye di-4-
ANEPPS (Invitrogen, Grand Island, NY), and 50µM myosin
II inhibitor blebbistatin (Sigma-Aldrich, St. Louis, MO) was
applied throughout experiments to inhibit motion. Action
potentials were recorded using a MiCAM Ultima-L CMOS
camera (100 × 100 pixels, 16µm/pixel) at 500 frames per
second (fps). A pair of platinum electrodes was used to deliver
fixed 90 beat per minute (bpm) pacing to the clusters, and 16
second recordings containing multiple APs were obtained from
each cluster. Figure 1(a) illustrates the recordings obtained
with this protocol. Note that the resulting optical recordings
are normalized to be in the range [0, 1].

B. Signal Processing

To improve signal-to-noise ratio, we processed the optical
recordings of cardiac cell clusters into one representative AP
for each pixel within the each cluster (each pixel represents
16µm × 16µm area of the cluster). Let I(x, t) be the input
optical recording, and let g(x) be a 5×5 boxcar filter. First, we
generate a spatially averaged image Ix(x, t) by convolution of
the input image with the boxcar filter in space:

I x̄(x, t) = g(x) ∗ I(x, t) (1)

Then, let T be the period of the pacing cycle. I x̄(x, t) is
condensed into a one cycle recording Ixt(x, t) by averaging
temporally over the period:

Ixt(x, t) =
1

N

N∑
j=1

I x̄(x, t+ (j − 1)T ), (2)

for t ∈ [0, T ). Ixt(x, t) is a single AP indicative of the
cardiomyocytes in a neighborhood around each pixel. The
APs from different averaged pixels were then aligned by their
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activation time, which was calculated to be the time point with
maximal upstroke slope:

Ixta(x, t) = Ixt(x, t−
∗
t(x)) (3)

where
∗
t(x) = argmax

t∈[0,T )

∂Ixt(x, t)

∂t
. (4)

This alignment allows us to compare signals from different
regions of the cell cluster that may be offset due to differences
in activation time owing to electrical conduction of the AP
wavefront through the cell cluster. Alignment is done post
spatial averaging because the increased signal-to-noise ratio
allows us to determine a more accurate

∗
t(x), and experimen-

tally we have found that the local misalignment is negligible
compared to misalignment from different regions of the cell
cluster. These aligned APs serve as our data elements for the
machine learning framework. Figure 1(b) illustrates typical
representatives obtained by this method.

C. Spectral Grouping

Once signals have been processed, the spectral grouping
method of [31] is used to obtain the segmentation of the dataset
into multiple groups. This algorithm represents the dataset with
a graph G = (V, E), where V = {1, . . . , N} is the set of nodes
and E ⊂ V×V is the set of edges. Each node i ∈ V represents
the i-th signal in the dataset, xi. Each edge (i, j) ∈ E connects
nodes i and j, i 6= j, with a weight w(i, j) ≥ 0 that depends
on the similarity between the signals xi and xj . Specifically,
two similar signals are connected with a higher weight than
two dissimilar signals. This weight is defined as

w(i, j) = e−
d2(xi,xj)

σ2 , (5)

where

d2(xi, xj) =

∫ T

0

(Ixta(xi, t)− Ixta(xj , t))2dt (6)

is the Euclidean distance between the APs xi and xj , T is
the AP cycle length, and σ > 0 is a scaling parameter. By
convention, there is no edge connecting node i with itself.
This means the weight w(i, i) = 0,∀i ∈ V .

The selection of the scaling parameter σ has an important
effect in the final grouping. On the one hand, a high σ makes
all the weights closer to zero, which encourages each AP to
form its own group. On the other hand, a low σ makes all
the weights closer to one, which encourages all APs to form
a single group. A good balance is obtained when σ is chosen
to be in the typical range of the pairwise distances between
APs. For this study, σ is chosen to be the mean of the squared
pairwise distances,

σ2 =
1

|E|
∑

(i,j)∈E

d2(xi, xj), (7)

where |E| is the number of edges in G.
Once the weights have been computed, the goal is to group

the nodes into K groups {Vk}Kk=1, i.e. to decompose V as
∪Kk=1Vk, where Vk ∩ Vk′ = ∅ for all k 6= k′. Since low

weights correspond to low similarities, one possible criterion
is to minimize the average over the K groups of the sum of
the weights between signals in group k and signals not in
group k, i.e., Cut({Vk}Kk=1) = 1

K

∑K
k=1

∑
i∈Vk,j 6∈Vk w(i, j).

However, this criterion can lead to unbalanced groupings, as
shown in [32]. To avoid this issue, [32] proposes to normalize
each term of the Cut criterion by the sum of the weights of
every signal in group k to every other signal, i.e.,

NCut({Vk}Kk=1) =
1

K

K∑
k=1

∑
i∈Vk,j 6∈Vk w(i, j)∑
i∈Vk,m∈V w(i,m)

. (8)

Since finding the set of groups that minimizes (8) is a
combinatorial problem, the spectral grouping methods in [31],
[32] find an approximate solution from the eigenvectors of a
matrix built from the weights. In this paper we use the spectral
grouping approach of [31]. Once the grouping of the graph has
been found, the phenotype of a signal is decided by the group
to which the corresponding node in the graph belongs.

D. Model Selection

Spectral grouping requires the number of groups K to be
known beforehand. To determine K, we need a measure of
the quality of a segmentation as a function of K.

1) Normalized Cut Cost (NCC): The first measure that is
considered is the objective function of our grouping method
in (8). For well separated clusters, the numerator will be very
small, while the denominator will be large, because signal
pairs of the same group will be well connected while signal
pairs of different groups will be poorly connected. Thus a good
grouping will have a low normalized cut cost.

2) Davies-Bouldin Index (DBI): The other measure consid-
ered is a cluster distance between pairs of groups [26], [27],
[33]. Given two groups, Vk and Vk′ , the DBI distance between
the groups is defined as follows:

DBI(k, k′) =
Sk + Sk′

Mkk′
, (9)

where Sk and Sk′ are values for the dispersion or spread within
each group, and Mkk′ is a measure between groups. For our
work, Sk is defined as the average of the distances of the
signals within one group to the average signal of that group,
while the measure Mkk′ is the distance between the average
signals of the two groups:

Sk =
1

|Vk|
∑

xi∈Vk

d(Ixta(xi, t), µk(t)) (10)

Mkk′ = d(µk(t), µk′(t)), (11)

where,

µk(t) =
1

|Vk|
∑

xi∈Vk

Ixta(xi, t) (12)

For well separated, tight clusters, the dispersion for each
group is very small, since the distances to the mean will
be small, while the measure Mkk′ between groups will be
large because the means are well separated from each other.
Therefore, a lower DBI indicates better grouping. For K
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groups, the average DBI over all pairs of groups is chosen
to be the group measure:

DBI =
1

|K|
∑
K
DBI(k, k′), (13)

where K = {k, k′ ∈ 1, . . . ,K, k < k′}.

III. RESULTS

Using the methods in §II-A and §II-B, we obtained a dataset
of 6940 APs from 9 cardiac cell clusters paced at 90 bpm.
To quantify the differences in morphology between two APs,
we computed the weight in (5) for all pairs of APs. Figure
2(a) shows these weights for a subset of all pairs. Specifically,
from each cell cluster we define a reference line and plot the
weights for pairs of pixels in this line. We use red to indicate
high similarity (w > 0.9) between the action potentials (low
distance) and blue to indicate low similarity (w < 10−3). We
observe in Figure 2(b) that the similarity between cell clusters
1 and 9 (counting from left to right) was low, as indicated by
the two large blue blocks in Figure 2(b). Thus, we expected
these two cell clusters to separate into different groups. In
Figure 2(c), we see that the similiarity between cell clusters 2
and 3 is high in some regions, as the left part of cell cluster 2
shared high similarity with the right part of cell cluster 3 and
vice versa. We can also observe variability within the clusters,
as the left part of cell cluster 2 had low similiarity with the
right part of that cluster.

Figure 3 shows the results of applying spectral grouping to
this dataset using 2, 3 and 4 groups. Notice that cell clusters
1 and 9 presented with predominantly one phenotype, while
the other 7 cell clusters showed varying degrees of mixed
phenotypes. Notice also that, even though the grouping algo-
rithm did not incorporate spatial regularization, the resulting
groupings are spatially smooth, suggesting that the grouping
algorithm to identify phenotype was robust. In the rightmost
column, the temporal average of APs for each phenotype is
presented. We see that the two group results produce two
distinct AP phenotypes, while increasing number of groups
produce intermediate APs that are increasingly less distinct.
This conclusion is supported by the NCC and DBI numbers,
which suggest an optimal segmentation into 2 groups (NCC
= 0.1457 and DBI = 1.1655).

To further evaluate the characteristics of the obtained
groups, we also computed the distributions of commonly
used AP features [18], [19], [23], [24]. In particular, Figure
4 shows the distributions of APD30, APD80, triangulation
(APD90−APD30), and normalized triangulation ( APD90−APD30

APD90
)

for the groups determined by spectral grouping and visu-
alized in Figure 3. For the case of 2 groups, APD30 and
APD80 histograms were fitted well as distinctly separated sub-
populations. However, triangulation, a parameter indicative
of a proarrhythmic substrate when prolonged, had a wide
range in both groups, with substantial overlap. By normalizing
triangulation to APD90, we obtained a shape parameter that
showed better discrimination of AP morphology between the
two groups, and that the group with shorter APD30 and
APD80 had greater triangulation. With increased number in

groups (3 and 4 groups), we observed increased overlap in all
AP features among different groups, especially in normalized
triangulation. This increased overlap suggests that APs in
different groups are similar in shape, thus increasing difficulty
in discriminating the groups by such features. Overall, these
results suggest that grouping the population based on standard
AP features would be possible for 2 groups, while using the
entire AP waveform is effective for 2, 3, or 4 groups.

IV. DISCUSSION

We have introduced a framework for automated grouping
of their APs and tested it using optical mapping data obtained
from hESC-CM cardiac cell clusters. In contrast to con-
ventional subjective criteria for phenotype classification, our
automated algorithm relies entirely on raw signal information
from the dataset. The grouping of signals is made based on
the similarities between all pairs of signals in the dataset.
This leads to an unbiased and reproducible method for dis-
crimination that is also widely applicable to larger populations
of cells. We believe that objective and consistent phenotype
classification algorithms are important in understanding the
biology of hESC-CMs, and our results show that applying
methods developed in signal processing and machine learning
is a viable approach.

A. Spatial Distribution and AP Variability of cell clusters

The existence of both similar and dissimilar regions, seen in
2(a), within some cardiac cell clusters indicates that more than
one phenotype may coexist within a single cluster, consistent
with previous work [16]. Our results show that while there
were cell clusters in our dataset that expressed primarily
one phenotype, the majority of the cell clusters presented
with multiple phenotypes. For the clusters with more than
one phenotype, even though the grouping method did not
enforce spatial regularity, continous regions of cell clusters
with only one phenotype were obtained. Further, we observed
smoothly varying AP shape across the boundary separating
phenotypes. This is partly because of the spatial averaging
performed during preprocessing, but it primarily reflects that
APs vary as a continuum from one phenotype to another. Thus,
it is particularly important to develop automated algorithms to
maintain a consistent decision boundary across datasets.

B. Biological Interpretation

The differences in AP shapes and parameters between
groups suggest that our algorithm is capable of distinguishing
morphological differences of APs within a dataset, which
is also the main goal of widely used subjective methods
for phenotype identification. In our two-group classification
results, APs were either less triangular (as quantified by
normalized triangulation) with long APD, or more triangular
with short APD. This can be interpreted as ventricular-like and
nonventricular-like APs, respectively. However, definitive bio-
logical interpretation remains to be validated by further investi-
gations. Possible avenues include phenotype-related biomark-
ers and patch clamp studies of phenotype-specific currents. It
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(a) AP similarity for the 9 cell clusters of our dataset

(b) AP similarity between cell clusters
1 and 9

(c) AP similarity between cell clusters
2 and 3

Fig. 2. Observed Weight Matrices. (a) AP similarity for a subset of our dataset. The silhouettes of the 9 cell clusters (black regions) are shown on the top
and rotated 90 degrees on the left. The subset of pixels being analyzed from each cell cluster is marked by the blue lines crossing each cluster. The similarity
between the signals at pixels i and j in a line is measured by the weight w(i, j) defined in (5). Red indicates high weight and blue indicates low weight.
Weights along the diagonal are 0 by convention of spectral grouping. Areas with high weight should belong to the same group, and areas with low weight to
belong to different groups. (b) AP similarity for a subset of cell clusters 1 and 9. Since the weights relating these two clusters are blue (see the top right and
bottom left areas of the submatrix), they should be in different groups. (c) AP similarity for a subset of cell clusters 2 and 3. In contrast with (b), there are
high similarities between the left part of cluster 2 and the right part of cluster 3 and vice versa, as well as low similarity between the left and right parts of
each of the clusters individually. The left side of cell cluster 2 should group with the right side of cell cluster 3 and the right side of cluster 2 should group
with the left side of cluster 3.

should also be noted that the global gene expression profile
of hESC-CMs generally differs from both adult and fetal
CMs [34], [35], and should also be taken into consideration.
Also, unlike most studies of spontaneously beating hESC-CMs
[18], [19], we specifically controlled the beating rate to 90
bpm by delivering an external stimulus. The fixed pacing rate
eliminated rate-dependent variations in AP morphology and
exposed intrinsic differences in electrophysiology, which we
believe are due to true phenotypic differences, and can provide
insights into the mechanisms of variability among APs.

C. Adaptability of the Framework

We used optical mapping recordings for our dataset, but
because the spectral grouping and fitness evaluation operate
with a processed action potential signal, they are amenable to
action potential recordings obtained from other techniques, and
thus could be used to investigate variability in current methods
for purification of specific phenotypes of hESC-CMs [24],
[36], [37]. Also, we used a very basic signal distance measure,
the Euclidean distance, which assesses AP differences equally
at every time point. This could be modified to emphasize
AP differences in different segments of the action potential

(e.g., more weight on the depolarization and repolarization
phases of the AP and less on phase 4 resting potential), or
to forgo the Euclidean distance altogether for other distances
between AP shapes [38], [39]. Future work could investigate
these other metrics and how the resulting groupings compare
to this work. Another possiblity is to operate with other
representations of the action potential such as the phase plot
(dVmdt vs. Vm) representation. A benefit to phase plot analysis
is that the need to align the signals temporally is no longer
necessary. However, appropriate measures to compare and
quantify the differences between the phase plots, so that
electrophysiological phenotypes can be identified.

V. CONCLUSION

We have introduced a framework for automated grouping
of action potentials of cardiomyocytes derived from human
embryonic stem cells together with a dataset with which future
methods can be evaluated. Our results on this dataset showed
that the groups obtained by our algorithm reflect phenotype
differences in electrophysiology of hESC-CMs. We believe
that the proposed framework provides a landmark first step
into using machine learning techniques in the classification of
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(a) 2 Groups: NCC = 0.1457, DBI = 1.1655

(b) 3 Groups: NCC = 0.2756, DBI = 1.3203

(c) 4 Groups: NCC = 0.3883, DBI = 1.5863

Fig. 3. Grouping Visualizaton. The first 9 columns show the results of applying spectral grouping to all the APs in our dataset for 2 (top row), 3 (middle
row), and 4 (bottom row) groups with corresponding NCC and DBI measures listed underneath. Scale bars indicate 200 µm. Some cell clusters present with
primarily one phenotype, while others present a mixture of phenotypes. Both NCC and DBI suggest that K = 2 gives the best grouping fitness. The average
AP of each phenotype as determined by spectral grouping is shown on the last column. Scale bar indicates 100 ms. The average 2-group APs suggest different
phenotypes, while for 3 and 4 groups, pairs of phenotypes (phenotypes 2 and 3 for 3 groups, phenotypes 1 and 2 and phenotypes 3 and 4 for 4 groups) have
similar shapes.

stem cell-derived cardiomyocyte phenotypes by their action
potentials.
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