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Questions in Deep Learning

Are there principled ways to design networks?

• How many layers?

• Size of layers?

• Choice of layer types?

• How does architecture impact expressiveness? [1]

[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016)
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Questions in Deep Learning

• Problem is non-convex.

• What does the loss surface look like? [1]

• Any guarantees for network training? [2]

• How to guarantee optimality?

• When will local descent succeed?

How to train neural networks?

X

[1] Choromanska, et al., "The loss surfaces of multilayer networks." Artificial Intelligence and Statistics. (2015)
[2] Janzamin, et al., "Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods." arXiv (2015).



Questions in Deep Learning

Performance Guarantees?

• How do networks generalize?

• How should networks be regularized?

• How to prevent overfitting?

X ComplexSimple



Interrelated Problems

• Optimization can impact 
generalization. [1]

• Architecture has a strong effect on the 
generalization of networks. [2]

• Some architectures could be easier to 
optimize than others.

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015). 
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).
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Today’s Talk: The Questions

• Are there properties of the network 
architecture that allow efficient 
optimization?
• Positive Homogeneity
• Parallel Subnetwork Structure

• Are there properties of the 
regularization that allow efficient 
optimization?
• Positive Homogeneity
• Adapt network architecture to data [1]

Optimization
Generalization/
Regularization

Architecture

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)
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Today’s Talk: The Results
Optimization

•A local minimum such that 
one subnetwork is all zero is 
a global minimum. 



Today’s Talk: The Results

•Once the size of the network 
becomes large enough...

• Local descent can reach a 
global minimum from any 
initialization.

Optimization

Non-Convex Function Today’s Framework



1. Network properties that allow 
efficient optimization
• Positive Homogeneity

• Parallel Subnetwork Structure

2. Network size from regularization

3. Theoretical guarantees
• Sufficient conditions for global optimality

• Local descent can reach global minimizers

Optimization
Generalization/
Regularization

Architecture

Outline



Key Property 1: Positive Homogeneity

• Start with a network.
Network 

Outputs

Network Weights
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Key Property 1: Positive Homogeneity

• The network output scales by the constant to some power.

Network Mapping

- Degree of positive homogeneity
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Most Modern Networks Are Positively Homogeneous

• Simple Network

Input
Conv 

+ 
ReLU

Linear Out
Max 
Pool

Conv 
+ 

ReLU

• Typically each weight layer increases degree of homogeneity by 1.



Most Modern Networks Are Positively Homogeneous

Some Common Positively Homogeneous Layers
Fully Connected + ReLU

Convolution + ReLU

Max Pooling

Linear Layers

Mean Pooling

Max Out

Many possibilities…



Most Modern Networks Are Positively Homogeneous

Some Common Positively Homogeneous Layers
Fully Connected + ReLU

Convolution + ReLU

Max Pooling

Linear Layers

Mean Pooling

Max Out

Many possibilities…

X Not Sigmoids



1. Network properties that allow 
efficient optimization
• Positive Homogeneity

• Parallel Subnetwork Structure

2. Network regularization

3. Theoretical guarantees
• Sufficient conditions for global optimality

• Local descent can reach global minimizers

Optimization
Generalization/
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Key Property 2: Parallel Subnetworks

• Subnetworks with identical architecture connected in parallel.
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Key Property 2: Parallel Subnetworks

• Subnetworks with identical architecture connected in parallel.
• Simple Example: Single hidden layer network

• Subnetwork: One ReLU hidden unit



Key Property 2: Parallel Subnetworks

• Subnetwork: Multiple ReLU layers

• Any positively homogeneous subnetwork can be used



Key Property 2: Parallel Subnetworks

• Subnetwork: AlexNet

• Example: Parallel AlexNets[1]

AlexNet

AlexNet

AlexNet

AlexNet

AlexNet

Input Output

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012.



Optimization
Generalization/
Regularization

Architecture 1. Network properties that allow efficient 
optimization
• Positive Homogeneity

• Parallel Subnetwork Structure

2. Network regularization

3. Theoretical guarantees
• Sufficient conditions for global optimality

• Local descent can reach global minimizers

Outline



Basic Regularization: Weight Decay
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Basic Regularization: Weight Decay

Network Weights

Degrees of positive homogeneity don’t 
match = Bad things happen.



Basic Regularization: Weight Decay

Network Weights Proposition: There will always exist 
non-optimal local minima.

Degrees of positive homogeneity don’t 
match = Bad things happen.



Adapting the size of the network via regularization

• Start with a positively homogeneous network with parallel structure



Adapting the size of the network via regularization

• Take the weights of one subnetwork.
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Adapting the size of the network via regularization

• Define a regularization function on the weights.

• Non-negative.

• Positively homogeneous with same 
degree as network mapping.

Example: Product of norms



• Sum over all the subnetworks.
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• Sum over all the subnetworks.

Adapting the size of the network via regularization

# of Subnetworks



• Allow the number of subnetworks to vary.

Adapting the size of the network via regularization

• Adding a subnetwork is penalized 
by an additional term in the sum.

• Acts to constrain the number of 
subnetworks.

# of Subnetworks



Architecture

Optimization
Generalization/
Regularization

1. Network properties that allow efficient 
optimization
• Positive Homogeneity

• Parallel Subnetwork Structure

2. Network regularization

3. Theoretical guarantees
• Sufficient conditions for global optimality

• Local descent can reach global minimizers

Outline



Our problem
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• The non-convex problem we’re interested in

Our problem

Loss Function:

Assume convex and once differentiable in

Examples:

 Cross-entropy

 Least-squares

Labels
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• Induces a convex function on the network outputs.

Why do all this?

• The convex problem provides an achievable lower bound for the 
non-convex network training problem.

• Use the convex function as an analysis tool to study the non-convex 
network training problem.
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• Theorem: A local minimum 
such that one subnetwork is 
all zero is a global minimum. 

Sufficient Conditions for Global Optimality

• Intuition: The local minimum 
satisfies the optimality 
conditions for the convex 
problem.
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enough subnetworks), then a global minimum can always be 
reached by local descent from any initialization.
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• Theorem: If the size of the network is large enough (has 
enough subnetworks), then a global minimum can always be 
reached by local descent from any initialization.

Global Minima from Local Descent

• Meta-Algorithm:
• If not at a local minima, perform local descent
• At local minima, test if first Theorem is satisfied
• If not, add a subnetwork in parallel and continue
• Maximum number of subnetworks guaranteed to be bounded by the dimensions of the network 

output

Non-Convex Function Today’s Framework



Conclusions

• Network size matters
• Optimize network weights AND network size

• Current: Size = Number of parallel subnetworks

• Future: Size = Number of layers, neurons per layer, etc…

• Regularization design matters
• Match the degrees of positive homogeneity between network and regularization

• Regularization can control the size of the network

• Not done yet
• Several practical and theoretical limitations



Thank You

Vision Lab @ Johns Hopkins University
http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University
http://www.cis.jhu.edu
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