\\ s
wrz
| L © A
| | =
M *
1""
\
\




Questions in Deep Learning

Architecture Design Optimization Generalization
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Questions in Deep Learning

Are there principled ways to design networks?

* How many layers?
e Size of layers?

* Choice of layer types?

KRB

 How does architecture impact expressiveness? [1]

rrrrrrrr

[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016) gﬁ
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Questions in Deep Learning

How to train neural networks?

* Problem is non-convex.

 What does the loss surface look like? [1]
* Any guarantees for network training? [2]
* How to guarantee optimality?

* When will local descent succeed?

[1] Choromanska, et al., "The loss surfaces of multilayer networks." Artificial Intelligence and Statistics. (2015)
[2] Janzamin, et al., "Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods." arXiv (2015).
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Questions in Deep Learning

Performance Guarantees?

v Simple X Complex

* How do networks generalize?
J 4 * How should networks be regularized?

* How to prevent overfitting?




Interrelated Problems

Architecture

* Optimization can impact
generalization. [1]

* Architecture has a strong effect on the

Generalization/ C .
Regularization Optimization generalization of networks. [2]
e -  Some architectures could be easier to
BTN optimize than others.

rrrrrrrr

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015).
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017). @
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Today’s Talk: The Questions

Architecture * Are there properties of the network

: architecture that allow efficient
optimization?

* Positive Homogeneity

* Parallel Subnetwork Structure

Generalization/
Regularization Optimization * Are there properties of the

regularization that allow efficient

. optimization?

S P * Positive Homogeneity

) » Adapt network architecture to data [1]

L]

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)
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Today’s Talk: The Results

Optimization

CA local minimum such that :

onhe subnetwork is all zero is
x global minimum.

)

4-'@11’///{
R \\\

S

o\‘

O
B »'!.5’; 3
/i ";'\\yl

i b
252 '/.:-:; >
= 7X

94

D
*
V/

4

\
%

N\ ’///
N U v, A
AN ‘
\\

%
)
W

rrrrrrrrr

CCCCCCC



Today’s Talk: The Results

Optimization

* Once the size of the network
becomes large enough...

s Local descent can reacha
global minimum from any
initialization.

" )

Non-Convex Function

rrrrrrrrr
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Architecture 1. Network properties that allow
efficient optimization

* Positive Homogeneity

e Parallel Subnetwork Structure

Generalization/ 2. Network size from regularization
Regularization Optimization

3. Theoretical guarantees
0l "  Sufficient conditions for global optimality
° * Local descent can reach global minimizers




Key Property 1: Positive Homogeneity

e Start with a network.

AN N T

Network
Outputs
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X 2N OERI KR X
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Network Weights
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Key Property 1: Positive Homogeneity

 Scale the weights by a non-negative constant.
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Key Property 1: Positive Homogeneity

 Scale the weights by a non-negative constant.
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Key Property 1: Positive Homogeneity

* The network output scales by the constant to some power.

&

XN
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Key Property 1: Positive Homogeneity

* The network output scales by the constant to some power.

WZOSREZO
LK 2N K KA
SSTOKRS
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PSSO

g

Network Mapping
WL W2 W?) =X
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Key Property 1: Positive Homogeneity

* The network output scales by the constant to some power.

Network Mapping
WL W2 W?) =X

g

AN

_ XN
ZX "i:;:;&:;:ﬁ“. X
Y A AEZZ RN

Zaa\

O(aW?, aW? aW?) =aPX

P - Degree of positive homogeneity
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Most Modern Networks Are Positively Homogeneous

* Example: Rectified Linear Units (ReLUs)

w1
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* Example: Rectified Linear Units (ReLUs)
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Most Modern Networks Are Positively Homogeneous

* Example: Rectified Linear Units (ReLUs)

QW1 a >0

l

amax{ z, 0}

A

W9

Doesn’t change

rectification
w3
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* Simple Network

a2 max{ 21 s ZQ}
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Most Modern Networks Are Positively Homogeneous

* Simple Network

a2 max{ 21 s ZQ}

Max
q

Pool

a1 o W2 a )3

* Typically each weight layer increases degree of homogeneity by 1.




Most Modern Networks Are Positively Homogeneous

Some Common Positively Homogeneous Layers

v'Fully Connected + RelLU

v'Convolution + RelLU
v'"Max Pooling

v'Linear Layers

v'"Mean Pooling

v'"Max Out

v'"Many possibilities...

rrrrrrrrr
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Most Modern Networks Are Positively Homogeneous

Some Common Positively Homogeneous Layers
v'Fully Connected + RelLU

v'Convolution + RelLU
v'"Max Pooling

v'Linear Layers X Not Sigmoids\
v'"Mean Pooling
v'"Max Out

v'"Many possibilities...
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Architecture 1. Network properties that allow
efficient optimization

* Positive Homogeneity

* Parallel Subnetwork Structure

Generalization/ 2. Network regularization
Regularization Optimization

3. Theoretical guarantees
0l "  Sufficient conditions for global optimality
° * Local descent can reach global minimizers




Key Property 2: Parallel Subnetworks

* Subnetworks with identical architecture connected in parallel.
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Key Property 2: Parallel Subnetworks

* Subnetworks with identical architecture connected in parallel.
e Simple Example: Single hidden layer network

‘:‘1 {"

’ .:1:
SN
ll’liﬁ;

RS 7
N 7/’

rrrrrrrrr

CCCCCCC



Key Property 2: Parallel Subnetworks

* Subnetworks with identical architecture connected in parallel.
e Simple Example: Single hidden layer network

 Subnetwork: One RelLU hidden unit

fffffffff
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Key Property 2: Parallel Subnetworks

* Any positively homogeneous subnetwork can be used

BT O * Subnetwork: Multiple RelLU layers
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Key Property 2: Parallel Subnetworks

 Example: Parallel AlexNets[1]

e Subnetwork: AlexNet

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012.




Architecture 1. Network properties that allow efficient
optimization

* Positive Homogeneity

e Parallel Subnetwork Structure
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Generalization/ 2. Network regularization
Regularization Optimization

3. Theoretical guarantees
0l "  Sufficient conditions for global optimality
. ) * Local descent can reach global minimizers




Basic Regularization: Weight Decay
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Basic Regularization: Weight Decay

OWL, W= W?) = [WHE + W25 + W75
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Basic Regularization: Weight Decay

OWL, W= W?) = [WHE + W25 + W75
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Basic Regularization: Weight Decay

OWL, W= W?) = [WHE + W25 + W75

N Z7OQIREES -
S /\ NHKT —
5K X NGRS @,

AETK \
252\ %:1‘0‘::‘% L\
W3

wt o w2
Network Weights

O(aW?!, aW? aW?) = a*0(W, W2, W?)
O(aW?!, aW? aW?) = (W, W2 W?)
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Basic Regularization: Weight Decay

OWL, W= W?) = [WHE + W25 + W75

O(aW?, aW? aW?) d a*p(W, W2, W?)

:{ O(aW!, aW?, aW?) o 3pW! W2 w3)

XTOSRL
X X >

/2 “FL NN
wl w2 w3

Network Weights
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Basic Regularization: Weight Decay

OWL, W= W?) = [WHE + W25 + W75

S oA O(aW!, aW? aW?) 4 a’p(W!, W2, W?)

\RSETOKNRED -
KK 0K 0>
N

N5 Yoo

. SR \

S0t
wt o ws w3

Network Weights

O(aW?!, aW? aW?) Hoe(W, W2 W?)

Degrees of positive homogeneity don’t
match = Bad things happen.
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Basic Regularization: Weight Decay

IR A

74 O(aW?, aW? aW?) d a*p(W, W2, W?)

N L7ORSRES -
N '\“3‘3 ﬁﬁ‘/ / 1 9 3 3 1 5 3
X %:%Q( B(aW?, aW?2,aW?) o a3(W, W2, W)

LA SN

ZES N
— N2\ ' Degrees of positive homogeneity don’t
1 9 3 match = Bad things happen.
W W . W / ] ) . . \
Network Weights Proposition: There will always exist
\non-optimal local minima. )
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e Start with a positively homogeneous network with parallel structure
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Adapting the size of the network via regularization

* Take the weights of one subnetwork.
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Adapting the size of the network via regularization

* Define a regularization function on the weights.

O(Ws, W3, W3, Wi, W3)
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Adapting the size of the network via regularization

* Define a regularization function on the weights.
1 2 3 4 5
9(W37W37W37W37W3)

* Non-negative.

* Positively homogeneous with same
degree as network mapping.
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Adapting the size of the network via regularization

* Define a regularization function on the weights.
1 2 3 4 5
9(W37W37W37W37W3)

* Non-negative.

* Positively homogeneous with same
degree as network mapping.

(aW) =aPP(W)
O(aW) =aPO(W)
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Adapting the size of the network via regularization

* Define a regularization function on the weights.
1 2 3 4 5
9(W37W37W37W37W3)

* Non-negative.

* Positively homogeneous with same
degree as network mapping.

O(aW) =aPd (W)
O(aW) =aPh(W)
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Adapting the size of the network via regularization

* Define a regularization function on the weights.
1 2 3 4 5
9(W37W37W37W37W3)

* Non-negative.

* Positively homogeneous with same
degree as network mapping.
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Adapting the size of the network via regularization

e Sum over all the subnetworks.

f(Subnetwork 3)
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Adapting the size of the network via regularization

e Sum over all the subnetworks.

0 (Subnetwork 3)-+
Subnetwork 2 0(Subnetwork 2)
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Adapting the size of the network via regularization

e Sum over all the subnetworks.
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Adapting the size of the network via regularization

e Sum over all the subnetworks.
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Adapting the size of the network via regularization

* Allow the number of subnetworks to vary.
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by an additional term in the sum.

%

N
4
\

.\ DO
‘ DRI
A\

\
Nz

e Acts to constrain the number of
subnetworks.

QP

WAV)
KX X
A

fffffffff

CCCCCCC



Architecture 1. Network properties that allow efficient
optimization

* Positive Homogeneity

e Parallel Subnetwork Structure

Generalization/ 2. Network regularization
Regularization Optimization

3. Theoretical guarantees
c v . °  Sufficient conditions for global optimality
° * Local descent can reach global minimizers
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Our problem

* The non-convex problem we’re interested in

FOW) = (Y, B(W)) + XO(W)
O(W) = Z 0 (Subnetwork i)

1=1




Our problem

* The non-convex problem we’re interested in

fW) =LY, o(W)) + \O(W) T

Labels OW) = Z f(Subnetwork 1)
! 1
Loss Function: /(Y, X) 7’
Assume convex and once differentiable in X

Examples: /

= Cross-entropy

= Least-squares \_/
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Why do all this?

* Induces a convex function on the network outputs.
F(X) =Y, X) + \Q(X)

Induced Function: Q(X)
Comes from the regularization

Q(X) = mmi/n ©(W) subject to X = &(W)

Q(X) <O(W) VX = (W)
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Why do all this?

* Induces a convex function on the network outputs.
F(X) =Y, X) + \Q(X)

Induced Function: Q(X)
Comes from the regularization

Q(X) = mﬂi/n ©(W) subject to X = &(W)

Q(X) <O(W) VX = (W)

{Proposition: (2(X) is a convex function.}
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Why do all this?

* Induces a convex function on the network outputs.
F(X) =Y, X) + \Q(X)

* The convex problem provides an achievable lower bound for the
non-convex network training problem.

FIW) = 6Y, (W) + \O(W)
F(X) < f(W) VX = (W)
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* Induces a convex function on the network outputs.
F(X) =Y, X) + AQUX)

* The convex problem provides an achievable lower bound for the
non-convex network training problem.

F(W) = £V, B(W)) + AO(W)
F(X) < f(W) VX = (W)

* Use the convex function as an analysis tool to study the non-convex
network training problem.
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Sufficient Conditions for Global Optimality

s . N
e Theorem: A local minimum

such that one subnetwork is
all zero is a global minimum.
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Sufficient Conditions for Global Optimality

s . N
e Theorem: A local minimum

such that one subnetwork is
all zero is a global minimum.
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Sufficient Conditions for Global Optimality

s . N
e Theorem: A local minimum

such that one subnetwork is
\all zero is a global minimum.

)

* Intuition: The local minimum
satisfies the optimality

conditions for the convex
problem.

F(X) < f(W)
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Global Minima from Local Descent

‘e Theorem: If the size of the network is large enough (has A
enough subnetworks), then a global minimum can always be
_ reached by local descent from any initialization. P
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Global Minima from Local Descent

‘e Theorem: If the size of the network is large enough (has A
enough subnetworks), then a global minimum can always be
_ reached by local descent from any initialization. P

Today’s Framework

Non-Convex Function
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‘s Theorem: If the size of the network is large enough (has h

enough subnetworks), then a global minimum can always be
_ reached by local descent from any initialization. P

Today’s Framework

Non-Convex Function

* Meta-Algorithm:

If not at a local minima, perform local descent

At local minima, test if first Theorem is satisfied

If not, add a subnetwork in parallel and continue

Maximum number of subnetworks guaranteed to be bounded by the dimensions of the network

output
.Q'Tcx...._x-. rfror
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Conclusions

* Network size matters
* Optimize network weights AND network size
e Current: Size = Number of parallel subnetworks
* Future: Size = Number of layers, neurons per layer, etc...

* Regularization design matters
* Match the degrees of positive homogeneity between network and regularization
e Regularization can control the size of the network

* Not done yet
» Several practical and theoretical limitations
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Thank You

Vision Lab @ Johns Hopkins University
http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University
http://www.cis.jhu.edu

Work supported by NSF grants 1447822, 1618485 and 1618637
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