Efficient Reconstruction of Holographic Lens-Free Images by Sparse Phase Recovery

Benjamin D. Haeffele¹, Richard Stahl², Geert Vanmeerbeeck², and René Vidal¹

JOHNS HOPKINS ¹Johns Hopkins University. ²Imec

Lens-Free Holographic Imaging

- Coherent light is passed through specimen.
- Resulting diffraction pattern is recorded.
- Image is reconstructed via post-processing.

The Reconstruction Problem

Standard approach: Back-project recorded diffraction pattern to the image plane.

- Problem: The image sensor only records the amplitude of the diffraction pattern.
- Standard Result: The "Twin-Image" artifact corrupts the reconstructed image.
- Our Model: Use sparse priors to reconstruct image and estimate missing phase.

Our Model min $\frac{1}{2} \|H \odot W - k\mathbf{1} - \sum_{i=1}^{D} T(z[i]) * X_i \|_{T}^2 + \lambda \sum_{i=1}^{D} \|X_i\|_{1}$ subject to $\|W\| = 1$

- $H \in \Re^{m \times n}$: Hologram
- $W \in \mathbb{C}^{m \times n}$: Phase Estimate
 - $\mu \in \mathbb{C}$: Background Estimate
- $z \in \Re^D$: Vector of Focal Depths $T(z[j]) \in \mathbb{C}^{m \times n}$: Diffraction Tranfer Function at Depth z[j] $X_j \in \mathbb{C}^{m \times n}$: Reconstructed Image at Depth z[j]

Single Depth Reconstructions

- Closed form updates for each variable via alternating minimization.
- Quick convergence in a small number of iterations (~15 iterations).
- Efficient implementation on GPU and reconstruction of (2048x4096) image in <1sec.

Reconstructions of Human Blood

Standard Result

Our Model

Multi Depth Reconstructions

- Robustly finds the focal depth of objects in the specimen.
- Variable updates via alternating accelerated proximal gradient descent.

Acknowledgements: We thank Florence Yellin, Lin Zhou, Sophie Roth, Murali Jayapala, Christian Pick, and Stuart Ray for insightful discussions. This work was funded by miDIAGNOSTICS.