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Abstract. Representing objects using elements from a visual dictio-
nary is widely used in object detection and categorization. Prior work
on dictionary learning has shown improvements in the accuracy of ob-
ject detection and categorization by learning discriminative dictionaries.
However none of these dictionaries are learnt for joint object categoriza-
tion and segmentation. Moreover, dictionary learning is often done sep-
arately from classifier training, which reduces the discriminative power
of the model. In this paper, we formulate the semantic segmentation
problem as a joint categorization, segmentation and dictionary learn-
ing problem. To that end, we propose a latent conditional random field
(CRF) model in which the observed variables are pixel category labels
and the latent variables are visual word assignments. The CRF energy
consists of a bottom-up segmentation cost, a top-down bag of (latent)
words categorization cost, and a dictionary learning cost. Together, these
costs capture relationships between image features and visual words, re-
lationships between visual words and object categories, and spatial re-
lationships among visual words. The segmentation, categorization, and
dictionary learning parameters are learnt jointly using latent structural
SVMs, and the segmentation and visual words assignments are inferred
jointly using energy minimization techniques. Experiments on the Graz02
and CamVid datasets demonstrate the performance of our approach.

1 Introduction

Joint categorization and segmentation (JCaS) refers to the problem of assigning
an object category label to each pixel in a given image. Most existing solutions
to this problem use conditional random field (CRF) formulations. The sites of
the CRF are image pixels [1], patches [2, 3], superpixels [4–7], or a hierarchy of
regions [8, 9]. Local interactions among these sites are captured by unary and
pairwise potentials, which model, respectively, the cost of assigning a category
label to each site and the spatial smoothness of the segmentation. Long-range
interactions among many sites of the CRF are captured by higher-order poten-
tials, which model the statistics of an object and/or encode contextual informa-
tion. However, such long-range interactions are typically restricted to fairly local
neighborhoods to avoid crossing the boundaries of an object. Notable exceptions
are [10], which uses interactions among several sites to model co-occurrence
statistics between object categories, and [11, 12], which use a bag-of-features
(BoF) model to define a potential over the whole region occupied by the object.
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The BoF approach is one of the most widely used models for object catego-
rization. In this approach, an object is represented by the distribution of a set
of visual words, which are usually obtained by K-means clustering of a set of
feature descriptors obtained from the training images. While BoF methods have
shown good performance in object categorization [13–15], the visual dictionary
may not be descriptive of the object categories, because the words are learnt in
an unsupervised manner. Discriminative dictionary learning methods for object
categorization such as [16] incorporate class-specific information during dictio-
nary learning, which improves the discriminative capability of the dictionary.
However, one drawback of this technique is that the dictionary learning and
classifier training steps are done separately. This leads to reduced categorization
accuracy because the words, while individually discriminative, may not be opti-
mal for categorization. The work of [17] overcomes this drawback by learning the
dictionary and the classifiers simultaneously, and shows improved performance.

In our view, the method used for learning the dictionary depends heavily on
the task at hand. To the best of our knowledge, none of the existing dictionary
learning techniques has been used to learn dictionaries that are specifically de-
signed for the JCaS problem. For instance, the work of [18] combines CRFs with
dictionary learning for object detection purposes, but it does not address seg-
mentation or categorization. Also, the work of [12] uses dictionaries to construct
the higher-order CRF potentials, but the method for learning the dictionary is
unsupervisedK-means. Moreover, this dictionary is kept fixed while learning the
categorization and segmentation parameters of the CRF. We believe that unsu-
pervised, discriminative or object-specific dictionaries are suboptimal for solving
the JCaS problem, because they are learnt independently from the categoriza-
tion and segmentation parameters of the CRF, and hence their discriminative
power is compromised.

In this work we propose a JCaS framework in which the visual dictionary is
learnt jointly with the CRF categorization and segmentation parameters. In our
framework, the assignment of key-points to visual words is assumed to be un-
known and is modeled as a latent variable of the CRF, which needs to be inferred
during inference and training. In addition to the standard potentials defined to
ensure smoothness of the segmentation, we introduce a set of potentials that
model the interaction between feature descriptors and visual word assignments,
and another set of potentials that model the probability that each visual word
belongs to a particular object category. We also extend this framework beyond
the BoF model and introduce additional potentials that take into account inter-
actions between the visual word assignments of neighboring key-points.

We show that the parameters of this model can be learnt jointly using latent
structural SVMs. The visual dictionary learnt in this manner uses the informa-
tion from the categorization and segmentation parameters, which increases the
discriminative power of our model. Given the model parameters, we show that
the segmentation and visual word assignments can be found using graph cuts
or loopy-belief propagation. Experiments on the Graz02 and CamVid databases
show that our approach improves segmentation accuracy of structured objects.
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2 A CRF-BoF Model for JCaS

In this section, we review the CRF model for JCaS proposed in [12], which is
based on a BoF categorization cost. While [12] uses kernel SVM classifiers with
the intersection kernel, we will describe the model using linear classifiers.

CRF Structure. The CRF is defined over a set of superpixels V extracted
from the image I. Each site i ∈ V is associated with an object category label
xi ∈ L = {1, . . . , L}. The labelling of the image is denoted by the vector x ∈ L|V|.
The interaction between various sites of the CRF is captured by the set of edges
E ⊂ V ×V , where each edge eij ∈ E corresponds to a pair of superpixels i, j ∈ V
that share a boundary. Besides sites and edges, we can also define higher-order
cliques. A clique is a subset of sites c ⊂ V whose labels, xc, are conditionally
dependent on each other. For example, a site i ∈ V is a clique of size 1 and an
edge eij ∈ E corresponds to a clique of size 2.

Having defined the structure of the random field, in what follows we define
the CRF energy, which consists of a segmentation cost and a categorization cost.

Bottom-Up Segmentation Cost. We define the segmentation cost as:

Eseg(x, I) = λU
∑

i∈V
ψU
i (xi, I) + λP

∑

eij∈E
ψP
ij(xi, xj , I) = w�

segΨseg(x, I), (1)

where λU ≥ 0 and λP ≥ 0 are the relative weights of the unary and pairwise

potentials, w�
seg =

[
λU λP

]
and Ψseg(x, I) =

[ ∑
i∈V ψ

U
i (xi, I)∑

eij∈E ψ
P
ij(xi, xj , I)

]
.

The unary potential, ψU
i (xi, I), models the cost of assigning a class label xi ∈

L to superpixel i in image I. It is defined as the score of a kernel SVM classifier for
class xi applied to a normalized histogram of quantized SIFT features extracted
from a neighborhood of superpixel i of size τ (see [19]). The classifier for class
l ∈ L is trained using the normalized histograms extracted from the superpixels
in the training set whose label is l. We use the RBF-χ2 kernel k(f, g) = e−γχ2(f,g).

The pairwise potential, ψP
ij(xi, xj , I), models the cost of assigning labels xi and

xj to sites i and j, respectively. When using a CRF formulation for segmentation,
the pairwise potentials are typically used to ensure the smoothness of the label

assignments. We use a contrast sensitive cost
Lijδ(xi �=xj)

1+‖Īi−Īj‖ , where Lij is the length

of the shared boundary between superpixels i and j, and Īi and Īj are the mean
color (in the LUV space) of superpixels i and j, respectively.

BoF Categorization Cost. The segmentation cost models only the local fea-
tures and characteristics of the image. To infer the class of an object, we also
need to account for long-range interactions between various sites in the CRF.

One way to capture such long-range interactions is to represent each object
class with a BoF model, and define a categorization potential over all the sites
corresponding to an object class. To that end, let {θk}k∈K be a dictionary of
|K| visual words. This dictionary is obtained by applying K-means to the SIFT
features extracted from all the superpixels in the training images. We represent
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each image I with |L| histograms of these visual words. More specifically, let SI

denote a set of key-points extracted from image I and let dIp denote the feature

descriptor of key-point p ∈ SI . Each descriptor dIp is assigned to its closest word,

θ(dIp), and a histogram of these words, hl(x, I) ∈ R
K
+ , is used to represent the

portion of the image occupied by object class l. We can write the histogram bin
count for class l corresponding to visual word k as

hl,k(x, I) =
∑

p∈SI

δ(θ(dIp) = θk)δ(xip = l) =
∑

p∈Sk
I

δ(xip = l), (2)

where ip ∈ V is the superpixel associated with key-point p ∈ SI and Sk
I ⊂ SI is

the set of key-points associated to word k.

Let us now define a classifier Φl for each class label l, where Φl(h) : R
|K|
+ �→ R

represents the score assigned to the histogram h. Using a linear classifier we have

Φl(h) = α�
l h+ βl =

∑

k∈K
αl,khk + βl, (3)

where αl ∈ R
|K| and βl ∈ R are the parameters of the linear classifier for class

l. With the above notation, we define a categorization cost, Ecat, as the sum of
the categorization costs for each class, i.e.,

Ecat(x, I) =
∑

l∈L
Φl(hl(x, I))δ(||hl(x, I)|| > 0). (4)

Notice that we pay no cost when no key-point is assigned to category l, i.e.,
Ecat(x, I) = 0 when hl(x, I) = 0. Also, since we wish to minimize this cost, we
train classifiers Φl to assign low scores to histograms in class l and high scores
to histograms corresponding to other classes (contrary to the usual convention).

Although the energy Ecat may seem a complicated function of x, notice that
we can write it linearly in terms of the classifier parameters as

Ecat(x, I) = w�
catΨcat(x, I) =

[ · · · αl,k βl · · ·
]

⎡

⎢⎢⎢⎢⎣

...
ψH
l,k(x, I)

ψδ
l (x, I)
...

⎤

⎥⎥⎥⎥⎦
, (5)

where ψH
l,k(x, I) =

∑
p∈Sk

I
δ(xip = l) and ψδ

l (x, I) = min{1,∑p∈SI
δ(xip = l)}.

Inference and Learning. The inference task is to minimize the segmentation
and categorization cost :

Eseg+cat(x, I) = w�
seg+catΨseg+cat(x, I) =

[
w�

seg w
�
cat

] [Ψseg(x, I)
Ψcat(x, I)

]
. (6)

The segmentation cost is a standard unary+pairwise cost that can be minimized
by graph cuts [20]. On the other hand, the categorization cost is a higher-order
cost defined over a clique of size |SI | formed by the all the superpixels that
contain key-points. It is shown in [12] that this higher-order potential belongs
to the class of robust Potts model [21], which can be minimized by graph cuts.
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The learning task is to estimate the parameters of the energy wseg+cat from
a training set of segmented images {Ij}Nj=1 and their corresponding labellings

{xj}Nj=1. Since the energy is linear in the parameters λU , λP , {αl, βl}l∈L, we can
use the cutting plane training algorithm for structural SVMs [22] to learn these
parameters, as shown in [12]. Since negative examples (wrong segmentations) are
not given, at each step of the cutting plane algorithm, the wrong segmentation
with the worst margin is selected. This can also be done using graph cuts.

For more details on inference and learning, we refer the reader to [12].

3 A Latent CRF-BoF Model for JCaS

In the BoF model for JCaS described in the previous section, K-means cluster-
ing is used to generate the visual dictionary. Therefore, this visual dictionary
is learnt independently from the categorization and segmentation parameters.
Since dictionary learning helps categorization and segmentation, and knowledge
about the categorization and segmentation parameters helps dictionary learn-
ing, a more meaningful dictionary could be obtained by learning the visual words
together with the categorization and segmentation parameters.

In this section, we will re-formulate the energy E to incorporate the visual
words as additional parameters of the energy and the visual word assignments
as latent variables. We introduce a categorization cost that depends on both the
segmentation and the visual word assignments. This cost captures the relation-
ships among the visual words and the object categories. We also introduce a new
dictionary learning cost, which relates the image features to the visual words.

Latent BoF Categorization Cost. Let {θk}k∈K be an (unknown) dictionary
of |K| visual words. Instead of fixing the visual word assignment prior to cate-
gorization, we associate a random variable zp ∈ K with every key-point p ∈ SI .
The vector z ∈ K|SI | is then a latent variable of a CRF defined over the key-
points. Let us recall the categorization cost introduced in (4)-(5). This cost
depends on the histogram counts hl,k(x, I) =

∑
p∈Sk

I
δ(xip = l), where the set

of key-points SI is divided into |K| disjoint subsets Sk
I containing the key-points

assigned to visual word k. Since the word assignments are unknown, so are the
sets Sk

I . Nonetheless, we can easily express hl,k in terms of the word assignment
variables as

hl,k(x, z, I) =
∑

p∈SI

δ(xip = l, zp = k). (7)

Therefore, the categorization cost in (5) can be re-written as:

Ecat(x, z, I) = w�
catΨcat(x, z, I) =

[ · · · αl,k βl · · ·
]

⎡

⎢⎢⎢⎢⎣

...
ψH
l,k(x, z, I)

ψδ
l (x, I)
...

⎤

⎥⎥⎥⎥⎦
, (8)

where ψH
l,k(x, z, I) =

∑
p∈SI

δ(xip = l, zp = k).
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Dictionary Learning Cost. We now define a dictionary learning cost that
relates the word assignments {z}p∈SI to the image features {dIp}p∈SI . In standard

K-means, the assignment of a feature dIp to a visual word θk is given by

zp = argmin
k∈K

||θk − dIp||2. (9)

In our formulation, however, θk is unknown and our goal is to learn the dictionary
together with the segmentation and categorization parameters. To that end, we
re-interpret θk as the parameters of a classifier, rather than as a cluster center.
Specifically, we let θk be the parameters of a linear classifier for visual word k. If
the visual words were learnt independently from the other parameters, we could
determine z by assigning dIp to the classifier with the lowest score,1 i.e.,

zp = argmin
k∈K

θ�k d
I
p. (10)

However, since our goal is to learn all the parameters simultaneously, we de-
fine an additional dictionary learning cost, which captures the cost of assigning
feature descriptor dIp to visual word θk with a word assignment z. This cost is
defined as:

Edict(z, I) =
∑

p∈SI

∑

k∈K
δ(zp = k)θ�k d

I
p =

∑

k∈K
θ�k ψ

D
k (z, I) = w�

dictΨdict(z, I), (11)

where ψD
k (z, I) =

∑
p∈SI

δ(zp = k)dIp, w
�
dict =

[
θ�1 θ�2 · · · θ�|K|

]
, and

Ψdict(z, I) =

⎡

⎢⎣
ψD
1 (z, I)

...
ψD
|K|(z, I)

⎤

⎥⎦ . (12)

Joint Inference of the Segmentation and Visual Words Assignments.
We propose to solve the JCaS problem by minimizing the following energy over
both the class labels and the visual word labels (x, z) ∈ L|V| ×K|SI |

Eseg+cat+dict(x, z, I) = w�Ψ(x, z, I) =
[
w�

seg w
�
cat w

�
dict

]
⎡

⎣
Ψseg(x, I)
Ψcat(x, z, I)
Ψdict(z, I)

⎤

⎦ . (13)

Notice that the minimization over z is equivalent to

min
z∈K|SI |

∑

k∈K

∑

p∈SI

(∑

l∈L
αl,kδ(xip = l) + θ�k d

I
p

)
δ(zp = k). (14)

Therefore, given x, the optimal z can be computed in closed form as:

1 Notice that, modulo the sign change due to the change on the standard convention
for defining the classifiers, the proposed assignments are equivalent to those of K-
means when the features and the words are normalized such that ‖dIp‖ = 1 and
‖θk‖ = 1, because zp = argmink∈K ||θk −dIp||2 = argmink∈K ||θk||2+ ||dIp||2−2θ�k dIp.
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zp = argmin
k∈K

(∑

l∈L
αl,kδ(xip = l) + θ�k d

I
p

)
. (15)

Conversely, given z, the word assignments are fixed, and the optimization prob-
lem over x reduces to that considered in §2, which can be solved using graph
cuts, as shown in [12]. By alternating between these two steps till convergence,
we obtain a local minimizer of Eseg+cat+dict(x, z, I).

4 A Latent Structural CRF-BoF Model for JCaS

The latent CRF model for JCaS discussed in Section 3 represents objects as a
collection of latent words. A drawback of this model is that it fails to take into
account the relative positions of these words with respect to each other. The work
of [7] shows that the structure of an object defined by the relative arrangement
of its features can play an important role in identifying it. In this section, we
extend the model for JCaS discussed in Section 3 to capture the dependencies
between the visual word assignments of the neighboring key-points.

Dictionary Structure Cost. Let us define a second CRF (V ′, E ′), whose nodes
are the key-points, i.e., V ′ = SI , and whose edges e′pq ∈ E ′ ⊂ V ′ × V ′ connect a
key-point p ∈ SI to its n nearest neighbors q ∈ SI . We define the CRF energy as

Estruct(z, I) =
∑

e′pq∈E′

∑

(k1,k2)∈K×K
ρk1,k2δ(zp = k1, zq = k2) (16)

=
∑

(k1,k2)∈K×K
ρk1,k2ψ

S
k1,k2

(z, I) = w�
structΨstruct(z, I) (17)

where ρk1,k2 ∈ R models the negative log probability of the co-occurrence of
visual words k1 and k2 as neighbors, ψS

k1,k2
(z, I) =

∑
e′pq∈E′ δ(zp = k1, zq = k2),

w�
struct =

[· · · ρk1,k2 · · ·] and Ψstruct(z, I) =

⎡

⎢⎢⎣

...
φSk,l(z, I)

...

⎤

⎥⎥⎦.

Joint Inference of the Segmentation and Visual Words Assignments.
We propose to solve the JCaS problem by minimizing the following energy over
both the class labels and the visual word labels (x, z) ∈ L|V| ×K|SI |

E(x, z, I) = Eseg(x, I) + Ecat(x, z, I) + Edict(z, I) + Estruct(z, I). (18)

As before, given z, the word assignments are fixed, and the optimization prob-
lem over x reduces to that considered in §2, which can be solved using graph
cuts. However, given x, the minimization over z cannot be done by graph cuts,
because the pairwise potentials in Estruct may not satisfy the sub-modularity
constraint ρk1,k2 < ρk1,k3 + ρk3,k1 . While this simple linear constraint could
easily be enforced during learning, doing so would mean that we disregard the
actual visual word co-occurrence probabilities and impose an artificial constraint
that might not necessarily hold. This can cause the co-occurrence probabilities of
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visual words to result in a model which is not coherent with the object structure.
Therefore, we choose not to impose these constraints on the parameters and re-
sort to loopy-belief propagation techniques [23, 24] for computing the optimal z
given x. We alternate these two steps till convergence to a local minimum.

5 Max-Margin Learning Using Latent SVMs

So far, we have proposed a new framework for JCaS based on minimizing the
energy E(x, z, I) = w�Ψ(x, z, I). As shown in §3 and §4, this problem can be
solved using graph cuts and/or loopy-belief propagation.

In this section, we consider the learning problem. That is, given a collection
of training images {Ij}Nj=1 and their corresponding ground-truth segmentations

{x̂j}Nj=1, our goal is to learn the parameters w. The main challenge is that we do

not know the latent variables {zj}Nj=1. We address this problem using the latent
structural SVM framework proposed in [25]. In this framework, the parameters
w are learnt using an iterative algorithm that alternates between solving for the
latent variables zj given the energy parameters w, and solving for the parameters
w given the latent variables. More specifically, the algorithm proceeds as follows:

– Step 1: Given a current estimate of the energy parameters ŵ, compute an
estimate ẑj of the latent variables as

ẑj = argmin
z∈K|S

Ij
|
ŵ�Ψ(x̂j , z, Ij) ∀j ∈ {1, · · · , N}. (19)

– Step 2: Given an estimate ẑj of the latent variables, learn w by solving the
following structural SVM training problem [22]

{w∗, {ξ∗j }Nj=1} = argminw,{ξj}N
j=1

1

2
‖w‖2 + μ

N

N∑

j=1

ξj , subject to

(a) ∀i = 1, . . . , N : ∀(x, z) ∈ L|V| ×K|SI | :

w�(Ψ(x, z; Ij)− Ψ(x̂j , ẑj; Ij)
) ≥ Δ(x, x̂j)− ξj ,

(b) ∀i = 1, . . . , N : ξi ≥ 0 and (c) w ≥ 0.

(20)

In step 2, we want to learn the parameter vector w such that the value of E
for the ground truth segmentation x̂ and imputed word assignments ẑ is smaller
than its value for other possible labellings and words assignments, i.e., ∀(x, z) ∈
L|V| × K|SI | \ (x̂, ẑ), E(x̂, ẑ, I) < E(x, z, I). However, all wrong segmentations
and assignments can not be penalized equally. For example, a segmentation that
labels one superpixel wrong is better than one that labels 80% of the superpixels
wrong. The loss function Δ(x, x̂) measures the deviation of a given segmentation
from the ground truth as

Δ(x, x̂) =
d(x, x̂)

|x| , (21)

where d(x, x̂) measures the number of sites which have different labels in x and x̂.
Finally, ξj represents the slack variable for training example j. The introduction
of slack variables is necessary because, otherwise, there may not be a set of
parameters w that satisfies all the constraints described in (20).
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We refer the reader to [22] for the details of the cutting plane method used
to solve this optimization problem efficiently.

6 Experiments

Datasets. We performed our experiments on the Graz-02 dataset [26] and the
CamVid dataset [27]. The Graz dataset contains 900 images of bikes, humans and
cars. 450 images were used for training and the rest of the images were used for
testing. The CamVid dataset has 700 labelled images out of which we used 350
for training and 350 for testing. The CamVid dataset has been annotated into
32 classes out of which we chose the 11 classes that were considered in [28]. Also,
to make our results comparable with prior work, we down-sampled the images
by 1/3 and did not consider the void class. For both databases, we created the
superpixels using the quickshift method [19].

Metrics. We compared the different methods using two performance metrics.
The pixel accuracy is the percentage of correctly labeled pixels per image aver-
aged over all the images. The intersection/union metric considers not only the
true positives (TP), but also the false positives (FP) and false negatives (FN).
For each image, the intersection/union metric is computed as 100×#TP

#TP+#FP+#FN .

Methods and Baselines. We compared the following methods:

1. CRF-U: this is a simplified version of the method described in Section 2,
which uses only the unary segmentation cost. This method is a particular
case of that in [6]. We report results from our implementation.

2. CRF-UP: this is a simplified version of the method described in Section
2, which uses only the unary and pairwise segmentation costs. This is the
method proposed in [6]. We report results from our implementation.

3. CRF-BoF-L: this method is described in Section 2. It uses a CRF model with
a BoF categorization cost constructed using linear classifiers. This method is
a particular case of that in [12]. We report results from our implementation.

4. CRF-BoF-IK: this is the method proposed in [12], which uses a CRF model
with a BoF categorization cost constructed using kernel-SVM classifiers with
the intersection kernel. We report results from [12].

5. LCRF-BoF-L: this method is described in Section 3. It uses a latent CRF
model with a BoF cost with linear classifiers plus a dictionary learning cost.

6. SLCRF-BoF-L: this method is described in Section 4. It uses a latent CRF
model with a BoF cost with linear classifiers plus a structured dictionary
learning cost.

Implementation Details. The parameters of the unary segmentation cost are
chosen as follows. The size of the superpixel neighborhood used to define the
features for the unary classifiers is set to τ = 8. The number of visual words is
set to |K| = 400. The parameter of the RBF kernel is set to γ = 1/ξ20.25, where
ξ20.25 is the first quartile of the ξ2 distances in the training set. The parameter
of the categorization cost is set to |K| = 20 visual words. The parameter of the
structural SVM learning method is set to μ = 106.
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Table 1. Performance of different methods on the Graz02 database using the inter-
section/union metric. CRF-U gives the results of using only the unary segmentation
cost in [6] (CRF-U), while CRF-UP gives the results of using both unary and pairwise
segmentation costs in [6]. CRF-BoF-L and CRF-BoF-IK give the results of using a bag
of features models for the objects using the linear kernel and the intersection kernel,
respectively, as described in [12]. LCRF-BoF and SLCRF-BoF give the results of our
latent CRF models without and with structure in the dictionary cost, respectively.

background bikes cars humans mean

CRF-U 69.39 36.85 29.27 28.30 40.95
CRF-UP 79.12 42.02 45.06 37.09 50.82

CRF-BoF-L 79.48 42.82 44.34 37.38 51.01
CRF-BoF-IK [12] 82.32 46.18 36.49 38.99 50.99

LCRF-BoF-L 76.40 53.57 39.22 37.05 51.19
SLCRF-BoF-L 77.97 55.60 41.51 37.26 53.08

Table 2. Performance of the different methods on the Graz02 database using the pixel
accuracy metric. The acronyms for the different methods are as in Table 1.

Method background bikes cars humans mean

CRF-U 70.63 86.42 77.36 81.81 79.05
CRF-UP 81.42 86.40 76.46 77.17 80.36

CRF-BoF-L 81.81 86.47 74.48 77.86 80.16
CRF-BoF-IK [12] 86.44 73.01 68.71 71.32 74.87

LCRF-BoF-L 78.34 84.33 74.71 78.51 78.97
SLCRF-BoF-L 75.90 84.91 76.74 79.78 79.33

Results on the Graz02 Dataset. Table 1 shows the values of the intersection-
union metric for the different methods we compared. We observed a significant
improvement in the segmentation accuracy for bikes and cars when latent vari-
able models were used. Incorporating structure by adding the pairwise term
between the latent variables led to a further improvement in the segmentation
accuracy (again, for bikes and cars). We did not see this improvement in the hu-
mans category because of the significant variations in human poses. It is harder
to capture the structural variations in humans than in bikes and cars. The accu-
racy for background did not increase significantly for the same reason. Because
of the clutter in the background, there is no structure to capture, so the improve-
ment attained by adding the pairwise term between the latent variables is very
small. Table 2 shows the pixel accuracies for the Graz02 dataset. Notice that
the method based on unary costs only (CRF-U) performs very well according to
this metric. This is because the objective function used to learn the unary terms
is directly related to the pixel accuracy, which does not penalize false positives.

Figure 1 shows some qualitative results on six images from the Graz02 dataset.
Overall, SLCRF-BoF-L performs better than LCRF-BoF-L, which in turn per-
forms better than CRF-BoF-L. For example, in the first row the error on the
back wheel is corrected. Likewise, in the third row the size of person halluci-
nated in lieu of the trash can is reduced. However, important errors still persist.
In the first row, for example, a piece of the background is labeled as bike. We
believe this is partly due to the fact that in the Graz02 dataset the interior of
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Image Ground Truth CRF-BoF-L LCRF-BoF-L SLCRF-BoF-L

Fig. 1. JCaS results for the Graz-02 dataset: Background, bikes, cars and humans are
color coded as red, green, blue and yellow respectively

the wheels is labeled as bike, while the background is also visible. This may also
be the cause for the erroneous segmentation of the bikes in the second row.

Results on the CamVid Dataset. Since the CamVid dataset has 11 classes,
we could not run the experiments using the CRF-BoF-IK method proposed in
[12], because the optimization with graph cuts became prohibitive due to the
number of auxiliary variables needed to implement the intersection kernel. Table
3 shows the values of the intersection-union metric for the remaining methods.
We observed that for objects with a clearly defined structure, such as cars, signs
and buildings, the proposed latent models (LCRF-BoF-L and SLCRF-BoF-L)
performed well. However for textured objects such as sky, road and fence, the
purely bottom-up methods (CRF-U and CRF-UP) gave better results, because
the top-down cost captures an object model that is not very relevant for such.
Overall, SLCRF-BoF-L is not as effective as LCRF-BoF-L because of the absence
of structure in object categories like sky. This leads to very bad results for the
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Table 3. Performance of different methods on the CamVid database using the inter-
section/union metric. The acronyms for the different methods are as in Table 1.

Bldg Roads Tree Sky Car Ped Fence Col. SW Bike Sign Mean
CRF-U 46.84 68.03 43.26 54.84 27.75 6.33 24.53 2.84 35.73 16.50 5.50 30.20
CRF-UP 51.61 74.96 46.61 65.54 31.09 7.43 27.94 3.33 39.47 17.83 7.21 33.91
CRF-BoF-L 42.95 40.53 38.96 48.55 12.79 6.19 9.47 1.58 17.18 4.67 1.17 20.37
LCRF-BoF-L 48.73 72.22 52.01 45.58 37.15 9.79 23.64 8.62 33.88 29.35 12.18 33.92
SLCRF-BoF-L 51.91 53.75 48.84 34.09 37.18 9.90 23.21 8.09 23.00 28.87 14.80 30.33

Table 4. Performance of the different methods on the CamVid database using the
pixel accuracy metric. The acronyms for the different methods are as in Table 1.

Method Bldg Roads Tree Sky Car Ped Fence Col. SW Bike Sign Mean
CRF-U 52.35 71.89 60.14 64.91 54.05 42.44 59.06 15.25 71.83 65.22 40.76 54.36
CRF-UP 56.18 80.16 61.43 77.08 53.86 41.10 60.60 15.97 73.39 60.16 41.59 56.50
CRF-BoF-L 47.98 42.05 59.50 56.74 15.14 13.62 35.33 17.54 51.11 60.86 38.72 39.87
LCRF-BoF-L 51.65 80.30 65.73 74.47 53.47 49.75 56.45 28.77 71.75 73.70 46.37 59.31
SLCRF-BoF-L 55.60 60.01 65.37 54.82 55.02 43.62 52.21 28.50 70.11 71.68 44.03 54.63
STL [28] 68.90 82.10 79.30 96.70 54.10 18.20 43.10 1.00 75.90 40.80 19.10 54.65
2D-3D [29] 71.10 88.40 56.10 89.50 76.50 59.10 4.80 11.40 84.70 28.10 12.50 52.99

SLCRF-BoF-L method because it tries to model the structure of these categories,
which leads to over-fitting.

Table 4 shows the values of the pixel accuracies for the CamVid database.
In this case, we also compare our results to those obtained using supervised
label transfer (STL) [28] and joint 2D-3D segmentation of street scenes (2D-3D)
[29]. For textured classes such as trees, road and sky, STL performs better than
the latent variable models. However, on structured objects such as bikes and
cars, 2D-3D performs better because it captures the 3D structure of the object.
The overall performance of these methods is worse than that of LCRF-BoF-L
because they perform very poorly for certain classes, while LCRF-BoF-L and
SLCRF-BoF-L are more consistent in their performance.

Finally, Figure 2 shows some qualitative results on two images from the
CamVid dataset. Overall, SLCRF-BoF-L performs slightly better than LCRF-
BoF-L, which in turn performs better than CRF-BoF-L.

Image Ground Truth CRF-BoF-L LCRF-BoF SLCRF-BoF

Fig. 2. JCaS results for the CamVid dataset: buildings, roads, tree, sky, car, pedestrian,
fence, column, sidewalk, bike, sign are color coded as dark red, light purple, green, gray,
dark purple, dark green, dark blue, light green, blue, sky blue, and pink, respectively.
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7 Conclusion

We have shown that learning a task specific dictionary jointly with the clas-
sification and segmentation parameters leads to a significant improvement in
the accuracy of the results. Our experiments suggest that for object classes
where spatial context is important, using context-based dictionary learning (la-
tent CRFs with connected hidden variables) increases the accuracy of results.
However, for classes such as sky or fence, which do not have a fixed structure,
context-based dictionary learning leads to inaccurate segmentations.

In future work, it would be interesting to identify the set of object models
which can be used along with the latent CRF formulation for JCaS. A compar-
ison of the results of task specific context dependent dictionary learning with
different kinds of neighborhood structures (not just nearest neighbors) can pro-
vide us with more accurate object models and better segmentations. Identifying
the neighborhood structures and potentials which would allow us to use faster
inference techniques (unlike loopy belief propagation) and studying the effects
of using a different feature descriptor or a combination of feature descriptors for
the interest points are other promising directions.
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