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Abstract We consider the problem of subspace clustering with data that is potentially
corrupted by both dense noise and sparse gross errors. In particular, we study a recently
proposed low rank subspace clustering approach based on a nonconvex modeling
formulation. This formulation includes a nonconvex spectral function in the objective
function that makes the optimization task challenging, e.g., it is unknown whether the
alternating direction method of multipliers (ADMM) framework proposed to solve the
nonconvex model formulation is provably convergent. In this paper, we establish that
the spectral function is differentiable and give a formula for computing the derivative.
Moreover, we show that the derivative of the spectral function is Lipschitz continuous
and provide an explicit value for the Lipschitz constant. These facts are then used to
provide a lower bound for how the penalty parameter in the ADMM method should
be chosen. As long as the penalty parameter is chosen according to this bound, we
show that the ADMM algorithm computes iterates that have a limit point satisfying
first-order optimality conditions. We also present a second strategy for solving the
nonconvex problem that is based on proximal gradient calculations. The convergence
and performance of the algorithms is verified through experiments on real data from
face and digit clustering and motion segmentation.
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1 Introduction

In many computer vision and pattern recognition applications such as motion seg-
mentation [44], face clustering [20], and image processing [21], the high-dimensional
data we observe lie approximately in a union of low-dimensional subspaces. The
task of subspace clustering is to automatically identify the number of subspaces, the
dimension of each subspace, and the data membership, i.e., to partition the data by
assigning each data point to its corresponding low-dimensional subspace. See Fig. 1
for examples of data for face clustering and motion segmentation.

Formally, let X ∈ R
D×N denote a data matrix where each column is a data point in

R
D obtained by adding noise and sparse errors to a clean data point drawn from among

a collection of unknown subspaces of unknown dimensions. Subspace clustering seeks
to cluster the data points from X into groups such that the points generated from the
same subspace are in the same group. This is an unsupervised learning problem since
the subspaces and their dimensions are all assumed to be unknown and therefore must
be learned from the data matrix X only.

1.1 Prior work on subspace clustering

Many methods have been developed for subspace clustering that include algebraic,
iterative, statistical, and spectral clustering based methods (see [41,42] and the refer-
ences therein). Overall, the best performance has been achieved by spectral clustering
methods [42], which proceed in two stages. In the first stage, they compute an affinity
matrix from the data that encodes the similarity between pairs of data points. During
the second stage, a weighted graph is constructed from the affinity matrix and spectral
clustering [45] on the graph is performed. The accuracy of the spectral clustering stage
depends critically on the computation of an appropriate affinity matrix in stage one.
For this reason an extensive amount of research has focused on computing excellent
affinity matrices, which is also the focus of this paper.

Many recent spectral clustering based methods compute the affinity matrix by
capitalizing on the self-expressiveness property thatwas first proposed in [14]. The data

Fig. 1 Left figure: face images from multiple individuals under different lighting conditions can be well
approximated by multiple low-dimensional subspaces denoted by S1 and S2. Right figure: marker trajec-
tories from multiple rigid objectives can be well approximated by multiple low-dimensional subspaces
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matrix X is said to satisfy the self-expressiveness property if there exists C ∈ R
N×N

such that X = XC and diag(C) = 0, where diag(C) is a vector formed from the
diagonal elements of C ; the constraint diag(C) = 0 ensures that a data point does not
use itself in its own representation. Although many such matrices C may exist, the
ones satisfying Ci j = 0 if data points xi and x j are from different subspaces are of
particular interest since they are good candidates for building the affinity matrix. To
find such a matrix C , existing methods typically choose a norm ‖ · ‖ and solve the
regularized optimization problem

min
C

‖C‖ subject to(s.t.) X = XC and diag(C) = 0. (1)

Once C is obtained, the affinity matrix is usually defined as |C | + |CT | and spectral
clustering is performed. Clearly, the choice of the norm is important to the perfor-
mance of the method because it affects the type of matrix C that is computed, which
subsequently affects the definition of the affinity matrix used during the spectral clus-
tering step. Sparse subspace clustering methods use the �1-norm to promote sparsity
in the coefficient matrix C [13–15,37,38,52], whereas low-rank subspace clustering
(LRSC) methods use the nuclear norm to encourage C to be low-rank. Other choices
of regularization that have been studied include the �2-norm [33], TraceLasso norm
[32], elastic net regularization [50], and a mixture of �1-norm and nuclear norm reg-
ularization [47]. In this paper, we focus on the class of LRSC methods.

Several LRSC models have been studied. The work in [29,31] presents a convex
formulation of LRSC for noiseless data and data with outliers. An alternative frame-
work that builds upon nonconvex formulations of LRSC is presented in [43] for data
contaminated by dense noise and sparse gross errors. A latent low-rank representation
method is proposed in [30,35,36] for joint subspace clustering and feature extraction.
As an alternative low-rank model, [28] proposed the fix-rank representation method.
To deal with nonlinear manifolds, a graph Laplacian regularized LRSC is presented
in [49]. Finally, a more general discussion on LRSC approaches that includes the
relationship between several LRSC methods is presented in [53].

1.2 The alternating direction method of multipliers and proximal gradient
method

The alternating direction method of multipliers (ADMM) has found many applica-
tions that include robust principle component analysis, consensus optimization, matrix
completion, power state estimation, and statistical estimation. The frameworkwas first
introduced in the 1970s by Glowinski and Marroco [19] and Gabay and Mercier [18].
The theory of ADMM was further developed by Fortin and Glowinski [16], and its
relationship with the Douglas–Rachford splitting procedure for monotone operators
[27] was established by Gabay in [17]. Although there is a plethora of papers on
ADMM, here we simply highlight the tutorial style papers by Eckstein and Yao [12]
and Boyd et al. [5] for the interested reader.

Most analyses for ADMM are in the convex setting, although researchers have
recently established convergence results for the nonconvex case [9,22,46,48] under
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certain assumptions. The work [22] is particularly relevant, which proves convergence
to a first-order solution under assumptions that include the Lipschitz continuity of
the gradient of a function appearing in the objective function. Establishing that this
assumption holds for the objective function arising in certain LRSC formulations is a
key contribution of our manuscript.

Proximal gradient calculations play an important role in the formulation of opti-
mization algorithms. The basic proximal gradient method can be applied to problems
whose objective function is the sum of two functions, one that is differentiable and the
other that has a closed form solution for an associated proximal mapping. These
methods and their variants have been very popular, with notable examples being
those designed for sparse [4] and low rank [39] optimization. Although originally
designed for convex problems, proximal gradient methods can also be used to solve
nonconvex instances [2,6]. The convergence results—similar to ADMM—require a
certain Lipschitz continuity assumption on the gradient of one of the problem func-
tions.

1.3 Notation

The matrix X ∈ R
D×N is reserved for the data matrix, where D is the dimension

of each data point and N is the number of data points; we define R := min{D, N }.
Given a vector x and positive integer i we let [x]i denote the i-th component of x .
Similarly, for a matrix S and pair of positive integers (i, j) we let [S]i j denote the
(i, j)-th entry of S. For real-valued matrices X and Y that are of the same dimension,
we let 〈X,Y 〉F := trace(XT Y ) = ∑

i, j [X ]i j [Y ]i j denote the Frobenius inner-product
and ‖X‖2F = 〈X, X〉F = ∑

i, j [X ]2i j the squared Frobenius norm.

1.4 Review of LRSC and contributions of this paper

The main contributions of this paper involve guarantees of converge for the optimiza-
tion problem used in the LRSC method introduced in [43]. (Henceforth, the acronym
LRSC is used to refer to this particular method.) For LRSC, the authors compute the
matrix C from an optimization problem different from (1) that aims to model noise
that is often present in data. Specifically, the optimization problem used by LRSC to
define the affinity matrix C is given by

min
A,C,E

‖C‖∗ + τ
2‖A − AC‖2F + γ ‖E‖1 s.t. X = A + E and C = CT (2)

for chosen parameters τ ∈ (0,∞) and γ ∈ (0,∞], where X ∈ R
D×N is the given

data matrix, E ∈ R
D×N represents sparse corruptions, and A ∈ R

D×N represents the
sum of the clean data matrix with dense noise. Since A is assumed to contain dense
noise an explicit constraint of the form A = AC that encodes the self-expressiveness
property (see the paragraph before (1)) would not be compatible. For this reason, a
soft constraint on A = AC is used via a penalty term in (2).
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Using the result [43, Theorem 1], we know that for fixed A, the solution to

min
C

‖C‖∗ + τ
2‖A − AC‖2F s.t. C = CT (3)

has the closed-form minimizer C = VPτ (�)V T , where U�V T = A is the reduced
singular value decomposition (SVD) of A with U ∈ R

D×R , V ∈ R
N×R , and � ∈

R
R×R , and Pτ is the nonlinear thresholding operator defined componentwise as

[Pτ (�)]i j :=
{
1 − 1

τ [�]2i j
if [�]i j ∈ I1 := (1/

√
τ,+∞),

0 if [�]i j ∈ I2 := [0, 1/√
τ],

(4)

for all {i, j} ⊂ {1, . . . , R}. (We note that we choose to use a reduced SVD of size
R = min{D, N } instead of a compact SVD of size rank(A) to make the analysis
performed in Sect. 2 less cumbersome.) Using this result, it is also shown [43, Theorem
1] that the optimal value of the objective in (3) is

Φτ (A) :=
R∑

i=1

φτ ([�]i i ) ≥ 0, (5)

where [�]i i is the i-th singular value of A,

φτ (σ ) :=
(
1 − 1

2τ σ−2
)
1I1(σ ) + τ

2σ 21I2(σ ), (6)

and the indicator function is defined for an arbitrary set I as

1I(α) :=
{
1 if α ∈ I,

0 if α /∈ I.

Therefore, solving problem (2) is equivalent to first solving the optimization problem

min
A,E

Φτ (A) + γ ‖E‖1 s.t. X = A + E (7)

for (A∗, E∗) and then setting C∗ = V∗Pτ (�∗)V T∗ , where U∗�∗V T∗ = A∗ is the
reduced SVDof A∗. Solving the nonconvex problem (7) is not straightforward because
of the definition of the spectral function Φτ . In Sect. 2 we establish critical properties
of Φτ that will be used to analyze optimization algorithms for solving (7).

The contributions made by this paper include the following:

– We prove that the spectral function Φτ in (7), which is used in the definition of the
objective function from [43], is differentiable and that its derivative is Lipschitz
continuous. Moreover, we are able to give the explicit value for the Lipschitz
constant by using several elements of spectral function theory.
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– After establishing the smoothness properties of the spectral function, we use them
to establish convergence for an ADMM algorithm for solving the optimization
problem introduced in [43] for LRSC; this answers an open theoretical question
about the convergence of ADMM for this low-rank subspace clustering formula-
tion. Specifically, we prove that the iterate sequence has at least one limit point,
and that every limit point satisfies the first-order optimality conditions. This does
mean, unfortunately, that limit points could be maximizers or saddle points since
the objective function is nonconvex.We also use the derived Lipschitz constant for
∇Φτ to give a computable threshold value that the penalty parameter must satisfy
in order for the analysis to hold.

– As an alternative to the ADMM, we present and analyze a proximal gradient
method for solving the same optimization problem. Even though the optimization
problem is nonconvex, we are able to use its structure and our derived explicit
value for the Lipschitz constant of ∇Φτ to prove that the iterates are uniformly
bounded and that all limit points satisfy first-order optimality conditions.

– Numerical experiments illustrate the performance of our approach on real data
from face and digit clustering and motion segmentation.

We emphasize that although (2) and (7) have the same minimizers, we analyze the
latter because we do not know how to prove convergence of ADMM when applied
to (2). (In general, it has been shown [10] that ADMMis not guaranteed to convergence
in the 3-block setting, with (2) being such an example.) Thus, we have exchanged
problem (2) whose objective function is defined from three simple functions, for
formulation (7) whose objective function is defined by one simple function and one
more complicated function Φτ because we are able to prove a first-order convergence
result. As an illustrative example, properties that we establish for Φτ are used in
Lemma 5 to prove that the objective function in a key subproblem of ADMM is
strongly convex for an appropriate and computable choice of the penalty parameter.

1.5 Paper outline

In Sect. 2 we establish critical properties of the spectral function appearing in (7).
We use these properties of the spectral function to establish a convergence result for
an ADMM algorithm and a proximal gradient method in Sect. 3. We give numerical
experiments on real data (motion segmentation, face clustering, and handwritten digits
clustering) in Sect. 4. Conclusions are presented in Sect. 5.

2 Properties of the spectral function Φτ

The most efficient algorithms for solving problem (7) require Φτ to be differentiable.
For this reason, our first result proves that Φτ is differentiable as well as offers an
explicit form of the derivative, which is needed to implement an optimization algo-
rithm.
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Fig. 2 Graphs of the function φτ from (5) and the function φ̃τ used in the proof of Lemma 1 for τ = 1.
Other positive values of τ produce functions of a similar shape

Lemma 1 The spectral function Φτ : R
D×N → R defined in (5) is continuously

differentiable with gradient given by

∇Φτ (A) := U diag[φ′
τ ([�]11), . . . , φ′

τ ([�]RR)]V T , (8)

where R := min{D, N } and U ∈ R
D×R, V ∈ R

N×R, and � ∈ R
R×R are the factors

of the reduced SVD of A satisfying U�V T = A.

Proof For any A ∈ R
D×N let R = min{D, N } and U , V , and � be the factors of a

reduced SVD of A as given in the statement of this lemma. According to the definition
of Φτ in (5), Φτ (A) can be regarded as a function of the singular values of A given by
{[�]i i }Ri=1, i.e., Φτ (A) = f (σ (A)), where σ(A) ∈ R

R denotes the vector of singular
values of the matrix A and f : RR → R is

f (σ ) :=
R∑

i=1

φ̃τ ([σ ]i ), where φ̃τ ([σ ]i ) :=
{

φτ ([σ ]i ) if [σ ]i ≥ 0,

φτ (−[σ ]i ) if [σ ]i < 0.

See Fig. 2 for an illustration of φτ and φ̃τ , and note that our introduction of φ̃τ allows
for f to be defined over all of RR . It is not difficult to show using the definition of
φτ (also see Fig. 2) that all first-order partial derivatives of f exist and are continuous
on R

R . It follows that f is continuously differentiable on R
R and therefore by [26,

Corollary 7.4] we also know that Φτ is differentiable. The gradient of Φτ can be
computed by applying [26, Theorem 7.1], which gives the result

∇Φτ (A) := U diag[φ′
τ ([�]11), . . . , φ′

τ ([�]RR)]V T , (9)

which is the desired result (8). This completes the proof. ��
Our next aim is to prove that∇Φτ is Lipschitz continuous whenever φ′ is Lipschitz

continuous, and that in this case their Lipschitz constants are the same. Our proof
requires two preliminary results and a definition.
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Lemma 2 ( [1, Proposition 4.1]) Let f : R+ → R be any Lipschitz continuous
function satisfying f (0) = 0, L( f ) denote the smallest Lipschitz constant of f , i.e.,

L( f ) := sup
x,y∈R+

| f (x) − f (y)|
|x − y| ,

and define

LT( f ) := sup
x,y∈R+,c∈T

| f (x) − c f (y)|
|x − cy| ,

where T := {z ∈ C | |z| = 1}. Then, it follows that LT( f ) ≡ L( f ).

Themain result of this section uses a result related to complex doubly substochastic
matrices. The definition of this subset of matrices is given next.

Definition 1 (Complex doubly substochastic)A complex squarematrix is called com-
plex doubly substochastic if and only if the �1-norm of each row and column is less
than or equal to 1.

With this definition, we may now state the next known result.

Lemma 3 ( [1, Lemma 3.1]) Define the set of permutation functions of size R by


 := {π | π : {1, . . . , R} → {1, . . . , R} is a bijection}

and the set of vectors in CR with unimodular entries as

U := {u ∈ C
R | |[u]i | = 1 for all 1 ≤ i ≤ R}.

It holds that a matrix A ∈ C
R×R is complex doubly substochastic if and only if

A ∈ conv({Mπ,u | π ∈ 
 and u ∈ U})

where Mπ,u ∈ R
R×R is defined as

[Mπ,u]i, j :=
{

[u]i if j = π(i),

0 otherwise,

for all {i, j} ⊂ {1, . . . , R} and conv(S) denotes the convex hull of the set S.
We can now establish a sufficient condition for the Lipschitz continuity of ∇Φτ .

We remark that the proof is based on the logic used to establish [1, Theorem 1.1].

Lemma 4 Let ∇Φτ (A) be defined as in Lemma 1. If φ′
τ is Lipschitz continuous, then

∇Φτ is Lipschitz continuous and they have the same Lipschitz constants.
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Proof Let A ∈ R
D×N and B ∈ R

D×N be arbitrary matrices and let us write their
reduced SVD factorizations as

UA�AV
T
A = A and UB�BV

T
B = B, (10)

where UA and UB are in R
D×R , �A and �B are in R

R×R , and VA and VB are in
R

N×R . It follows that the quantity ‖A − B‖2F can be written as

‖A − B‖2F = ‖A‖2F + ‖B‖2F − 2 〈A, B〉F
= ‖A‖2F + ‖B‖2F − 2

〈
UA�AV

T
A ,UB�BV

T
B

〉

F

= ‖A‖2F + ‖B‖2F − 2
〈
UT

BUA�A, �BV
T
B VA

〉

F

= ‖A‖2F + ‖B‖2F − 2
∑

i, j

[
(�BV

T
B VA) � (UT

BUA�A)
]

i j
, (11)

where � denotes the Hadamard product. It can be shown that (V T
B VA) � (UT

BUA)

is complex doubly substochastic by first showing that the two-norm of each row and
column of V T

B VA and UT
BUA is less than or equal to 1 (this latter property can be

shown using the orthogonality of the columns of the matrices). Therefore, Lemma 3
implies that there exists a positive integer m, scalars {c1, . . . , cm} ⊂ [0, 1] satisfy-
ing

∑m
�=1 c� = 1, permutation functions {π�}m�=1 of length R, and a set of vectors

{u�}m�=1 ⊂ C
R such that |[u�]p| = 1 for all 1 ≤ � ≤ m and 1 ≤ p ≤ R, satisfying

(V T
B VA) � (UT

BUA) =
m∑

�=1

c�Mπ�,u�
. (12)

Combining (11) with (�BV T
B VA) � (UT

BUA�A) ≡ �B(V T
B VA � UT

BUA)�A, (12),
the fact that

∑
i, j [�B(

∑m
�=1 c�Mπ�,u�

)�A]i j is in R in light of (12),
∑m

�=1 c� = 1,
the definition of Mπ�,u�

, and |[u�]p| = 1 shows that

‖A − B‖2F = ‖A‖2F + ‖B‖2F − 2
∑

i, j

[

�B

(
m∑

�=1

c�Mπ�,u�

)

�A

]

i j

= ‖A‖2F + ‖B‖2F − 2Re

⎛

⎝
∑

i, j

[

�B

(
m∑

�=1

c�Mπ�,u�

)

�A

]

i j

⎞

⎠

= ‖A‖2F + ‖B‖2F − 2Re

⎛

⎝
m∑

�=1

c�

∑

i, j

[
�BMπ�,u�

�A
]
i j

⎞

⎠

=
m∑

�=1

c�

⎡

⎣
R∑

p=1

[�A]2pp +
R∑

p=1

[�B ]2pp − 2Re

⎛

⎝
R∑

p=1

[�B ]pp[u�]p[�A][π�]p[π�]p

⎞

⎠

⎤

⎦

=
m∑

�=1

c�

R∑

p=1

∣
∣[�B ]pp − [u�]p[�A][π�]p[π�]p

∣
∣2 , (13)
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where Re(c) denotes the real part of a complex number c.
Next, we recall from (8) that ∇Φτ (A) and ∇Φτ (B) have the same form as (10)

except for the singular values are different. Since m, {c�}m�=1, {u�}m�=1, and {π�}m�=1
do not depend on �A and �B , using the same argument as above for ∇Φτ (A) and
∇Φτ (B) in place of A and B and using (8) shows that

‖∇Φτ (A) − ∇Φτ (B)‖2F =
m∑

�=1

c�

R∑

p=1

∣
∣φ′

τ ([�B]pp) − [u�]pφ′
τ ([�A][π�]p,[π�]p )

∣
∣2 .

Combining this equality with the assumption that φ′
τ is Lipschitz continuous, the

definition of LT(φ′
τ ) in Lemma 2, and (13) yields

‖∇Φτ (A) − ∇Φτ (B)‖2F ≤ (
LT(φ′

τ )
)2

m∑

�=1

c�

R∑

p=1

∣
∣[�B]pp − [u�]p[�A][π�]p[π�]p

∣
∣2

= (
LT(φ′

τ )
)2‖A − B‖2F = (

L(φ′
τ )

)2‖A − B‖2F ,

which is the desired conclusion. This completes the proof. ��
We have arrived to the main result of this section.

Theorem 1 The function ∇Φτ is Lipschitz continuous with constant L(∇Φτ ) := 3τ .

Proof It is straightforward to show that φ′
τ (σ ) = 1

τ
σ−31I1(σ ) + τσ1I2(σ ) is Lips-

chitz continuous with constant 3τ . Thus, Lemma 4 gives the desired result. ��
Now that we know how to compute ∇Φτ (A) (see Lemma 1) and that ∇Φτ is

Lipschitz continuous with constant L(∇Φτ ) = 3τ , we proceed to discuss algorithms
that use these properties to solve our key optimization problem (7).

3 Algorithms for solving the optimization problem (7)

We now consider two algorithms for solving (7). Specifically, in Sect. 3.1 we describe
an ADMM method and in Sect. 3.2 we describe a proximal gradient method.

3.1 An ADMM algorithm

An ADMM algorithm for solving (7) is given as Algorithm 1. The method is based
on the augmented Lagrangian (AL) function for problem (7), which is defined as

L(A, E,Y ) := Φτ (A) + γ ‖E‖1 + 〈Y, X − A − E〉F + ρ
2 ‖X − A − E‖2F (14)

with ρ ∈ (0,∞) the penalty parameter and Y ∈ R
D×N the matrix of dual variables.

The basic idea behind ADMM is to perform one pass of alternating minimization over
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E and A (for fixed Yk), followed by a first-order multiplier update to Yk . These updates
should be performed in sequence during the kth iteration and take the form

Ek+1 = argminE γ ‖E‖1 + 〈Yk, X − Ak − E〉F + ρ
2 ‖X − Ak − E‖2F

= argminE
γ

ρ
‖E‖1 + 1

2

∥
∥ 1

ρ
Yk + X − Ak − E

∥
∥2
F

= prox γ
ρ

‖·‖1
(
1
ρ
Yk + X − Ak

)
(15)

Ak+1 = argminA Φτ (A) + 〈Yk, X − A − Ek+1〉F + ρ
2 ‖X − A − Ek+1‖2F

= argminA
1
ρ
Φτ (A) + 1

2

∥
∥Yk

ρ
+ X − A − Ek+1

∥
∥2
F

= prox 1
ρ

Φτ

(
1
ρ
Yk + X − Ek+1

)
(16)

Yk+1 = Yk + ρ(X − Ak+1 − Ek+1), (17)

where prox f (Z) := argminB f (B)+ 1
2‖B− Z‖2F denotes the proximal operator of f .

For any ε > 0, the proximal operator of ε‖ · ‖1, namely proxε‖·‖1(Z), is given by
the shrinkage thresholding operator Sε(Z), which is defined as

[Sε(Z)]i j := sgn([Z ]i j ) · max(|[Z ]i j | − ε, 0). (18)

Therefore, the matrix Ek+1 that solves (15) and that is computed in Step 3 of Algo-
rithm 1 corresponds to ε = γ /ρ and may be calculated as

Ek+1 = S γ
ρ

(
1
ρ
Yk + X − Ak

)
. (19)

For any ε > 0, the computation of the proximal operator of εΦτ is more involved.
In fact, it is shown in [43, Theorem 3] that one can exploit the fact that Φτ is a spectral
function to reduce the computation of proxεΦτ

to the computation of proxεφτ
, where

φτ is defined in (6). Specifically, if Z = U�V T is the SVD of Z , then proxεΦτ
(Z) =

U�V T , where each diagonal entry of � is obtained from the corresponding diagonal
entry of � as [�]i i = proxεφτ

([�]i i ). Now, the quantity proxεφτ
(σ ) for any σ ≥ 0 is

given by the argument that solves the optimization problem

min
λ

φ(λ; σ) (20)

where

φ(λ; σ) := 1
2 (σ − λ)2 + εφτ (λ) = 1

2 (σ − λ)2 + ε

{
1 − 1

2τ λ−2 if λ > 1/
√

τ
τ
2λ2 if λ ≤ 1/

√
τ .

(21)

The first-order optimality condition for the problem in (20) is given by the system

σ = ψ(λ), with ψ(λ) :=
{

λ + ε
τ
λ−3 if λ > 1/

√
τ ,

λ + ετλ if λ ≤ 1/
√

τ .
(22)

123



406 H. Jiang et al.

Since the system in (22) is equivalent to a system of polynomial equations in λ, to
compute proxεφτ

(σ ), we need to find a rootλ of this system thatminimizes the function
φ(· ; σ) in (20). A method for computing such a root is described in the proof of [43,
Theorem 4] and formalized here as Algorithm 2. Specifically, Step 3 of Algorithm 2
computes λ = proxεφτ

(σ ) for σ = [�]i i , λ = [�]i i and ε = 1/ρ. The choice
ε = 1/ρ corresponds to the computation of the matrix Ak+1 that solves (16) and that
is computed in Step 4 of Algorithm 1 as

Ak+1 = U�V T ,
Yk
ρ

+ X − Ek+1 = U�V T , and [�]i i = proxεφτ
([�]i i ). (23)

Algorithm 1 ADMM for solving (7).

1: Choose values A0 ∈ R
D×N , Y0 ∈ R

D×N , and ρ > 6τ (see the proof of Lemma 8).
2: for k = 0, 1, 2, . . . do
3: Compute Ek+1 from (15) for given (Ak , Yk ), i.e., set Ek+1 according to (19).
4: Compute Ak+1 from (16) for given (Ek+1, Yk ), i.e., set Ak+1 according to Algorithm 2.
5: Compute Yk+1 from (17) for given (Ek+1, Ak+1).
6: end for

Algorithm 2 Algorithm for computing Ak+1 that solves (16).

1: Compute a reduced SVD of the matrix X − Ek+1 + 1
ρ Yk such that U�V T = X − Ek+1 + 1

ρ Yk .

2: Set � ∈ R
R×R to be the zero matrix.

3: for i = 1, . . . , R do
4: if 3τ ≤ ρ then
5: if [�]i i ≤ (ρ + τ)/(ρ

√
τ) then � see Fig. 3a

6: Set [�]i i ←
(

ρ
ρ+τ

)
[�]i i .

7: else
8: Set [�]i i as the unique real number satisfying [�]i i > 1/

√
τ and [�]i i = ψ([�]i i ).

9: end if
10: else
11: if [�]i i < 4

3
4
√

3
ρτ then � see Fig. 3b

12: Set [�]i i ←
(

ρ
ρ+τ

)
[�]i i .

13: else if [�]i i >
ρ+τ

ρ
√

τ
then

14: Set [�]i i as the unique real number satisfying [�]i i > 1/
√

τ and [�]i i = ψ([�]i i ).
15: else
16: Set [�(1)]i i ←

(
ρ

ρ+τ

)
[�]i i . � note that [�(1)]i i ∈ (0, 1/

√
τ ]

17: Set [�(2)]i i as the larger of the two � ∈ R satisfying � > 1/
√

τ and [�]i i = ψ(�).
18: if φ([�(1)]i i ; [�]i i ) ≤ φ([�(2)]i i ; [�]i i ) then
19: Set [�]i i ← [�(1)]i i .
20: else
21: Set [�]i i ← [�(2)]i i .
22: end if
23: end if
24: end if
25: end for
26: Set Ak+1 ← U�V T .

A convergence guarantee for Algorithm 1 is not immediate because problem (7)
is nonconvex. Our goal for the remainder of this section is to use the properties we
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(a) (b)

Fig. 3 Plots of ψ(λ) with ε = 1/ρ defined in (22) for different values of τ and ρ. (a) Plot of ψ(λ) when
3τ ≤ ρ, (b) plot of ψ(λ) when 3τ > ρ

established in Sect. 2 for Φτ to show that the assumptions in [22, Section 4] hold,
which will then allow us to deduce that Algorithm 1 has a convergence guarantee.

We first show that the minimization problem in (16) is strongly convex if ρ > 3τ .

Lemma 5 For all k ≥ 0, the function L(A, Ek+1,Yk) being minimized in (16) is
strongly convex with strong convexity constant ρ − 3τ .

Proof Showing that the function L(A, Ek+1,Yk) being minimized in (16) is strongly
convex is equivalent to showing that Φτ (A) + ρ

2 ‖A‖2F is strongly convex. From the
Lipschitz continuity of ∇Φτ (see Theorem 1) and [11, Theorem 3.1.4] it follows that
for any {A1, A2} ⊂ R

D×N the following inequality holds:

|Φτ (A1) − Φτ (A2) − 〈∇Φτ (A2), A1 − A2〉F | ≤ L(∇Φτ )
2 ‖A1 − A2‖2F . (24)

We can use the definition of the absolute value and rearrange terms in (24) to obtain

Φτ (A1) ≥ Φτ (A2) + 〈∇Φτ (A2), A1 − A2〉F − L(∇Φτ )
2 ‖A1 − A2‖2F , (25)

and then add ρ
2 ‖A1‖2F to both sides to obtain

Φτ (A1) + ρ
2 ‖A1‖2F

≥ Φτ (A2) + 〈∇Φτ (A2), A1 − A2〉F − L(∇Φτ )
2 ‖A1 − A2‖2F + ρ

2 ‖A1‖2F
= Φτ (A2) + ρ

2 ‖A2‖2F + 〈∇Φτ (A2) + ρA2, A1 − A2〉F
− ρ

2 ‖A2‖2F − 〈ρA2, A1 − A2〉F − L(∇Φτ )
2 ‖A1 − A2‖2F + ρ

2 ‖A1‖2F
= Φτ (A2) + ρ

2 ‖A2‖2F + 〈∇Φτ (A2) + ρA2, A1 − A2〉F + ρ−L(∇Φτ )
2 ‖A1 − A2‖2F

= Φτ (A2) + ρ
2 ‖A2‖2F + 〈∇Φτ (A2) + ρA2, A1 − A2〉F + ρ−3τ

2 ‖A1 − A2‖2F ,
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wherewe used Theorem 1 in the last equality. The previous inequality gives the desired
result once we note that ρ > 6τ > 3τ by the choice of ρ in Algorithm 1. ��

We next establish a critical bound on the distance between consecutive Lagrange
multiplier estimates produced by the multiplier update (17).

Lemma 6 For all k ≥ 1, the Lagrange multiplier estimates satisfy

‖Yk+1 − Yk‖F ≤ 3τ‖Ak+1 − Ak‖F .

Proof Lemma 5 established that the objective function in problem (16) is strongly
convex so that the matrix Ak+1 exists and is unique. Moreover, from the optimality
conditions for problem (16) we know that Ak+1 must satisfy

∇Φτ (Ak+1) − Yk − ρ(X − Ak+1 − Ek+1) = 0.

Combining this with (17) yields

∇Φτ (Ak+1) = Yk+1 (26)

for all k ≥ 0, which may then be combined with Theorem 1 to deduce that

‖Yk+1 − Yk‖F = ‖∇Φτ (Ak+1) − ∇Φτ (Ak)‖F ≤ 3τ‖Ak+1 − Ak‖F (27)

for all k ≥ 1, which completes the proof. ��
We now show that the augmented Lagrangian is bounded below over the sequence

of iterates computed by Algorithm 1.

Lemma 7 For all k ≥ 1, it holds that

L(Ak, Ek,Yk) ≥ γ ‖Ek‖1 + Φτ (X − Ek) + ρ−3τ
2 ‖X − Ek − Ak‖2F ≥ 0.

Proof It follows from the definition of L, (26), (24) with A1 = X − Ek and A2 = Ak ,
Theorem 1, and (5) that the following holds for all k ≥ 1:

L(Ak, Ek,Yk)

= γ ‖Ek‖1 + Φτ (Ak) + 〈Yk, X − Ek − Ak〉 + ρ
2 ‖X − Ek − Ak‖2F

= γ ‖Ek‖1 + Φτ (Ak) + 〈∇Φτ (Ak), X − Ek − Ak〉 + ρ
2 ‖X − Ek − Ak‖2F

≥ γ ‖Ek‖1 + Φτ (X − Ek) + ρ−L(∇φτ )
2 ‖X − Ek − Ak‖2F

= γ ‖Ek‖1 + Φτ (X − Ek) + ρ−3τ
2 ‖X − Ek − Ak‖2F ≥ 0,

where the final claim of non-negativity follows from ρ > 6τ > 3τ by the choice of ρ

in Algorithm 1. This is the desired result and therefore completes the proof. ��
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Our next lemma summarizes the critical properties of the iterates computed by the
ADMM algorithm that are needed to prove convergence.

Lemma 8 The sequence {(Ak, Ek,Yk)}k≥0 computed by the ADMM method stated
as Algorithm 1 satisfies the following properties:

D1 The iterates Ak+1 and Ek+1 exist and are unique. Also, the sequence of augmented
Lagrangian values {L(Ak, Ek,Yk)}k≥0 is uniformly bounded below.

D2 For the constant c := (3τ)2 it holds that

‖Yk+1 − Yk‖2F ≤ c
(‖Ak+1 − Ak‖2F + ‖Ek+1 − Ek‖2F

)
.

D3 The feasible set for problem (7) is nonempty,Φτ is smooth, and γ ‖E‖1 is convex.
D4 Problem (15) is strongly convex with parameter cE := ρ and problem (16) is

strongly convex with parameter cA := ρ − 3τ > 0. Also, these constants satisfy

ρcE ≥ 2c and ρcA ≥ 2c

where c is the constant defined in D2.

Proof To prove D2, we observe from Lemma 6 that, for all k ≥ 1, we have

‖Yk+1 − Yk‖2F ≤ (3τ)2‖Ak+1 − Ak‖2F ≤ c
(‖Ak+1 − Ak‖2F + ‖Ek+1 − Ek‖2F

)
,

where we have used c = (3τ)2 as defined in the statement of D2.
Next, we prove D4. First, note that problem (15) is clearly strongly convex with

parameter cE := ρ and that problem (16) is strongly convex because of Lemma 5 with
parameter cA := ρ − 3τ > 0. We now use ρ > 6τ (see Algorithm 1) to derive

ρcE = ρ2 > 36τ 2 > 18τ 2 = 2(3τ)2 = 2c and

ρcA = ρ(ρ − 3τ) > (6τ)(6τ − 3τ) > 2(3τ)2 = 2c,

which completes the proof of D4.
To prove D1, we first observe that the iterates Ak+1 and Ek+1 exist and are unique

because of the strong convexity noted in the previous paragraph. Combining this with
the fact that {L(Ak, Ek,Yk)}k≥0 was shown to be bounded uniformly from below in
Lemma 7 establishes that D1 holds.

Finally, D3 holds because the feasible set for problem (7) is clearly nonempty, Φτ

is smooth (see Lemma 1), and γ ‖E‖1 is a convex function because γ > 0. ��
We now state our convergence result for the ADMM method.

Theorem 2 The sequence {(Ak, Ek,Yk)}k≥0 computed by the ADMM method stated
as Algorithm 1 has at least one limit point, and every one of those limit points satisfies
the first-order optimality conditions for problem (7).
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Proof Since D1–D4 in Lemma 8 are precisely conditions D1–D4 from [22, Section
4], we can apply their theory to conclude that every limit point of {Ak, Ek,Yk}k≥0
satisfies the first-order optimality conditions for problem (7). The fact that at least one
limit point exists follows from the fact that the sequence {(Ak, Ek,Yk)}k≥0 is bounded
as shown in [23, Lemma 6.5.6]. This completes the proof. ��

3.2 A proximal gradient algorithm

We now describe a proximal gradient based method for solving (7). To this end, we
use the constraint in (7) to substitute E = X − A into the objective function of (7),
which transforms problem (7) into the unconstrained problem

min
A

Φτ (A) + γ ‖A − X‖1. (28)

The proximal gradient algorithm for problem (28) is given by Algorithm 3. Note that
α ∈ (0, 2/(3τ)) ≡ (0, 2/L(∇Φτ )) is a step size parameter that must be chosen and
that the minimizer needed in Step 3 has the closed-form solution

Ak+1 = Sαγ (Ak − α∇Φτ (Ak) − X) + X,

where Sαγ is the shrinkage thresholding operator defined in (18).

Algorithm 3 Proximal gradient algorithm for solving (28).

1: Choose an initial iterate A0 ∈ R
D×N and a step size parameter α ∈ (0, 2/(3τ)).

2: for k = 0, 1, 2, . . . do
3: Compute Ak+1 = argminA

1
2α ‖A − (Ak − α∇Φτ (Ak )) ‖2F + γ ‖A − X‖1.

4: end for

Most of the next result is standard for proximal gradientmethods.One enhancement,
namely that the iterates {Ak} are guaranteed to be bounded, is achieved by using the
fact that Φτ is bounded below by zero as noted in (5).

Lemma 9 The sequence {Ak}k≥0 from Algorithm 3 is bounded and it has a limit point
that satisfies the first-order optimality conditions for problem (28).

Proof It is known from the theory for proximal gradient methods that if the stepsize
parameter is chosen to satisfy α ∈ (0, 2/L(∇Φτ )) (see Algorithm 3 and recall that
L(∇Φτ ) = 3τ ) then the objective function

f (A) := Φτ (A) + γ ‖A − X‖1
is monotonically decreasing. Thus, it follows that

f (Ak) ≤ f (A0) for all k ≥ 0. (29)
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Now, for a proof by contradiction, assume there exists a subsequenceK of the iterations
such that {‖Ak‖F }k∈K → ∞. Combining this with the observation that Φτ (A) ≥ 0
for all A (see (5)), we can conclude that

lim inf
k∈K

f (Ak) = lim inf
k∈K

[
Φτ (Ak) + γ ‖Ak − X‖1

]

≥ lim inf
k∈K

Φτ (Ak) + lim inf
k∈K

γ ‖Ak − X‖1
≥ lim inf

k∈K
γ ‖Ak − X‖1 = ∞,

which contradicts (29). Thus, the sequence {Ak}k≥0 is bounded,whichmeans that there
exists at least one limit point. The fact that every limit point satisfies the first-order
optimality conditions for problem (28) follows from the fact that Φτ is a continuously
differentiable nonconvex function with Lipschitz continuous gradient (see Lemma 1
and Lemma 4) and [2,6]. This completes the proof. ��

4 Numerical results

In this section, we evaluate the performance of the LRSC method. We refer to the
instance of the LRSC method that uses Algorithm 1 as the subproblem solver as
LRSC-ADMM and the one based on using Algorithm 3 as the subproblem solver as
LRSC-PROX. To evaluate these approaches, we compare their performance to the
state-of-the-art low rank subspace clustering methods LRR [31] and REDU-EXPR
[53]. The LRRmethod computes the affinity matrixC as a solution to the optimization
problem

min
C,E

‖C‖∗ + γ ‖E‖2,1 s.t. X = XC + E, (30)

for some chosen parameter γ ∈ (0,∞), where ‖E‖2,1 is the sum of the �2 norms of
the columns of E . The REDU-EXPR first applies robust PCA [8] to the data X by
computing a denoised data L by solving the optimization problem

min
L ,E

‖L‖∗ + γ ‖E‖1 s.t. X = L + E, (31)

and then computes the affinity matrix C from L by setting it to C = V1V T
1 , where

U1�1V T
1 = L is the reduced SVD of L .

For all methods tested, once a coefficient matrix, say C∗, has been found, we
use |C∗| + |C∗|T as the symmetric affinity matrix. This affinity matrix is used in
the spectral clustering phase as mentioned in the first paragraph of Sect. 1.1. Since
spectral clustering involves solving a nonconvex optimization problem associatedwith
k-means, we perform 20 clustering trials with random initializations and select the
one with the lowest k-means objective function value. Once this clustering has been
obtained, we compute the clustering accuracy as
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clustering accuracy = # of correctly classified data points

total # of data points
.

All experiments are run on a single core of an Intel Xeon E5-2680v3 (Haswell) pro-
cessor with 128 GB DDR4 RAM and all algorithms are written in Matlab.

An implementation of our solvers must include termination conditions and choices
for algorithm parameters. Since LRSC-ADMM and LRSC-PROX are designed to
solve the optimization problem (7), our termination conditions should reflect this fact.
In particular, we terminate when the triple (Ak, Ek,Yk) approximately satisfies the
first-order necessary optimality conditions for problem (7), namely, when it satisfies

‖X − Ak − Ek‖1
DN

≤ 10−9, (32a)

‖∇Φτ (Ak) − Yk‖1
DN

≤ 10−9, and (32b)

inf
G∈∂γ ‖Ek‖1

‖Yk − G‖1
DN

≤ 10−9, (32c)

or 500 iterations is reached. Any triple (Ak, Ek,Yk) satisfying (32) with 10−9 replaced
by 0 is called a Karush–Kuhn Tucker (KKT) point for problem (7). The iterate triple
(Ak, Ek,Yk) is automatically obtained for LRSC-ADMM directly in Algorithm 1.
On the other hand, for LRSC-PROX only the iterate Ak is obtained in Algorithm 3.
However, motivated by the optimality conditions in (32a) and (32b), for LRSC-PROX
we set (for each Ak) Ek = X − Ak and Yk = ∇Φτ (Ak) during each iteration.
LRSC-ADMM is initialized with (A0,Y0) = (X,∇Φτ (X)) and the parameter value
ρ = 7τ was used. LRSC-PROX was initialized with A0 = X and the parameter
value α = 1/(6τ) was used. In both cases, the parameter value was chosen based on
obtaining the best optimization performance.

4.1 Results for motion segmentation

Motion segmentation refers to the problem of decomposing a video that contains
multiple rigid-moving objects into multiple regions that correspond to the different
motions. This problem is often solved by first extracting feature points (see Fig. 1) that
are tracked throughout F frames of the video. Then, the set of coordinates correspond-
ing to each feature point are vectorized to form a data point of dimension 2F obtained
by concatenating the (x, y) coordinates for each frame. Finally, the collection of data
points are clustered so that ideally each cluster will correspond to a single moving
object. This is achieved by exploiting the fact that the set of trajectories associated
with a single rigid moving object lie approximately in an affine subspace of dimension
at most 3. Therefore, the trajectories of several rigid moving objects lie approximately
in a union of affine subspaces. Since LRSC is designed to cluster linear subspaces, we
append the constant 0.1 to each trajectory vector andworkwith the 2F+1 dimensional
data vectors.
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Table 1 Clustering accuracy (as a percentage), computational time (in seconds), and number of iterations
averaged over all videos from the Hopkins155 database

# of motions LRR REDU-EXPR LRSC-ADMM LRSC-PROX

Accuracy

2 95.26 93.24 96.82 96.82

3 90.78 89.90 93.02 93.02

Time

2 7.48 2.49 0.27 0.11

3 15.18 3.11 0.47 0.16

# of iterations

2 327.5 500.0 21.9 17.7

3 333.1 500.0 26.0 23.6

We use the Hopkins155 [40] database, which contains 155 videos (120 videos with
2 motions and 35 videos with 3 motions). For each video, trajectories are extracted
automatically with a tracking algorithm implemented in OpenCV [34] and the ground
truth segmentation is obtained by manually labeling the first frame and eliminating
wrong trajectories, as described in [40]. Table 1 reports the average clustering accuracy
(“accuracy”), average computational time (“time”), and average number of iterations
required by the solver (“# of iterations”)—here, the average is over all of the videos for
a given number of motions. Parameter tuning for all algorithms gave the following:
(i) for LRR we use γ = 100 and 150 for 2 and 3 motions, respectively; (ii) for
REDU-EXPR we use γ = 0.05 and 0.06 for 2 and 3 motions, respectively; and
(iii) for LRSC-ADMM and LRSC-PROX we use (γ, τ ) = (5, 250) for 2 motions and
(γ, τ ) = (5, 350) for 3 motions. From Table 1 we can observe that LRSC-ADMMand
LRSC-PROX achieve the best clustering accuracy, while at the same time requiring
the smallest computational time. Although not presented here, we also verified that
the final objective function values for LRSC-ADMM and LRSC-PROX differed by a
relative value of at most 10−6. Finally, both LRSC-ADMM and LRSC-PROX require
relatively few iterations to satisfy the termination conditions in (32).

4.2 Results on face clustering

Face clustering is the problem of clustering a set of face images of multiple individuals
according to the identity of each individual. For a Lambertian object, the set of all
images taken from the sameviewpoint andwith the same expression but under different
lighting conditions lies approximately in a low dimensional subspace [3]. Moreover,
due to cast shadows and specularities, a few pixels of the face image can have large
errors. Therefore, the face clustering problem can be treated as a subspace clustering
problem with data corrupted by small noise and sparse gross errors.

We use the Extended Yale B database [25], which includes 64 frontal face images
of 38 individuals acquired under 64 different lighting conditions. To reduce the com-
putational cost, we downsample the original images to 48 by 42 pixels and treat each
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Table 2 Clustering accuracy (as a percentage), average total computational time (in seconds), and number
of iterations averaged over 20 trials on the face clustering data

# of subjects LRR REDU-EXPR LRSC-ADMM LRSC-PROX

Accuracy

2 97.40 89.91 98.15 98.15

10 67.35 72.44 65.33 65.33

38 72.44 71.36 70.52 70.52

Time

2 4.5 14.5 1.0 0.2

10 106.0 243.9 82.0 32.6

38 3867.0 4676.4 2900.3 1787.8

# of iterations

2 239.3 500 1.0 1.0

10 243.7 500 73.6 35.7

38 239.0 500 212.0 136.0

2016-dimensional vectorized image as a data point. Since LRSC is designed to cluster
linear subspaces, we follow the setup in [43] and append the constant 0.03 to each vec-
torized image; this gives a 2017-dimensional feature vector for each image. We apply
the four methods to cluster n ∈ {2, 10, 38} subjects and record in Table 2 the average
clustering accuracy (“accuracy”), average computational time (“time”), and average
number of iterations required by the solver (“# of iterations”) over 20 trials—each trial
consists of choosing n subjects randomly from among the 38 subjects. The problem
parameters that we use for the different methods are tuned based on the clustering
performance and are given by the following: (i) for LRR we set γ = 0.005, 0.003,
and 0.0075 to correspond to n = 2, 10, and 38, respectively; (ii) for REDU-EXPR
we set γ = 0.011, 0.01, and 0.01 to correspond to n = 2, 10, and 38, respectively;
and (iii) for both LRSC-ADMM and LRSC-PROX we set (γ, τ ) = (0.05, 0.03)
for n = 2, (γ, τ ) = (0.02, 0.05) for n = 10, and (γ, τ ) = (0.0075, 0.065) for
n = 38.

Table 2 shows that both LRR, LRSC-ADMM, and LRSC-PROX achieve the best
clustering accuracies for the 2 subject setting. For the 10 subject case, LRR, LRSC-
ADMM, and LRSC-PROX again achieve similar clustering accuracies, but they are
surpassed by REDU-EXPR by approximately 6%. Finally, for the 38 subject case the 4
methods achieve clustering accuracieswithin 2%of each otherwithLRRbeing the best
at 72.44%. In terms of computational time, LRSC-ADMM and LRSC-PROX again
are the most efficient by a significant margin in all cases. As was true in the previous
section, both LRSC-ADMM and LRSC-PROX require relatively few iterations to
satisfy the termination conditions in (32).Although not presented here,we also verified
that the final objective function values for LRSC-ADMM and LRSC-PROX differed
by a relative value of atmost 10−6.We note that LRSC-ADMMandLRSC-PROXonly
require 1 iteration for the 2 subject case because the initialization A0 = X , E0 = 0,
and Y0 = ∇Φτ (X) is approximately optimal.
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Table 3 Clustering accuracy (as a percentage), computational time (in seconds), and number of iterations
averaged over 20 trials on the handwritten digits data

# of images LRR REDU-EXPR LRSC-ADMM LRSC-PROX

Accuracy

500 78.98 77.93 80.44 80.48

2000 80.14 79.99 80.08 80.08

5000 79.68 80.84 81.77 81.77

Time

500 44.0 54.4 8.9 4.2

2000 1473.0 184.5 2.1 3.3

5000 24,633.5 518.4 10.3 18.3

# of iterations

500 274.0 500.0 49.6 11.8

2000 186.7 500.0 1.0 1.0

5000 184.9 500.0 1.0 1.0

4.3 Results on clustering images of handwritten digits

The MNIST database [24] contains 70,000 images of handwritten digits 0–9. We
test the performance of the LRSC methods on clustering a set of images drawn
from MNIST into 10 groups corresponding to the 10 digits. Following [51], we
represent each image by a feature vector of dimension 3,472 computed from the scat-
tering transform [7]. Such feature vectors are translation invariant and deformation
stable.

In each experiment, we randomly choose N/10 images for each digit 0–9, where
N ∈ {500, 2000, 5000}, and then apply LRSC to cluster the resulting N images. To
reduce the computational cost, the feature vectors for all images in each experiment are
projected to dimension 500 using PCA before performing LRSC. The average cluster-
ing accuracy (“accuracy”), average computational time (“time”), and average number
of iterations required by the solver (“# of iterations”) for N ∈ {500, 2000, 5000} are
reported in Table 3—the average is over 20 random choices of the N/10 images.
Tuning the parameters for each method resulted in the following: (i) for LRR we use
γ = 0.006; (ii) for REDU-EXPR we use γ = 0.001; and (iii) for both LRSC-ADMM
and LRSC-PROXwe use (γ, τ ) = (0.02, 0.01). From Table 3 we may observe that all
four methods achieve similar clustering accuracies, and consistent with the previous
sections LRSC-ADMM and LRSC-PROX require the smallest computational time by
a wide margin. Although not presented, we verified that the final objective values for
LRSC-ADMM and LRSC-PROX differed by a relative value of at most 10−6. Finally,
consistent with the previous sections, we can observe that relatively few iterations are
required by LRSC-ADMM and LRSC-PROX to satisfy the termination conditions
in (32). In particular, we comment that LRSC-ADMM and LRSC-PROX only need 1
iteration for the 2000 and 5000 images cases for the same reason as described in the
last paragraph of Sect. 4.2.
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5 Conclusions

We established convergence of an ADMM algorithm for solving the optimization
problem introduced in [43] for LRSC, thus answering an open theoretical question
for this LRSC formulation. As an alternative to the ADMM, we presented and ana-
lyzed a proximal gradient method for solving the same optimization problem. Our
numerical experiments illustrated that our method on real data from face and digit
clustering and motion segmentation is comparable (often better) than state-of-the-
art LRSC methods in terms of clustering accuracy. (An exception is face clustering
in the 10 subject case since our methods obtained 7% less accuracy.) In terms of
efficiency, our ADMM and proximal gradient method both consistently required the
smallest computational time by a wide margin, with neither always being superior to
the other.
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