
Fast Jacobi-type Algorithm for Computing Distances Between Linear
Dynamical Systems

Nicolas D. Jimenez Bijan Afsari René Vidal
Center for Imaging Science, Johns Hopkins University

{njimenez, bijan, rvidal}@cis.jhu.edu

Abstract— A novel metric between linear dynamical systems,
the alignment distance, was recently introduced, with promising
results in many computer vision tasks. The computation of the
alignment distance requires a minimization over the orthogonal
group. In this paper, we present a fast and accurate Jacobi-type
algorithm that solves this problem. Each step of the algorithm
is equivalent to finding the roots of a quartic polynomial. We
show that this rooting may be done efficiently and accurately
using a careful implementation of Ferrari’s classical closed-
form solution for quartic polynomials. For linear systems with
orders that commonly arise in computer vision scenarios, our
algorithm is roughly twenty times faster than a fast Riemannian
gradient descent algorithm implementation and has comparable
accuracy.

I. INTRODUCTION

A distance between two linear dynamical systems (LDSs)
is a useful notion and several attempts have been made to de-
fine distances between LDSs. In control theory such attempts
go back to 1970’s (e.g., [14]) for applications in system iden-
tification. More recently, interest in distances between LDSs
has resurfaced for applications in pattern recognition (e.g.,
classification and clustering) for high dimensional time-series
data. A particular example is the automatic classification of
videos of human activities such as walking, running, and
jumping or more even more complicated human activities
[7] or natural dynamic scenes [9]. A common approach to
this problem is to, first, estimate LDS parameters to model
observed video sequences (or features extracted thereof) and
then to compare the learnt LDSs via an appropriate distance
(see e.g., [4], [7] and references therein). Notice that such a
distance is a versatile tool and can be used to perform more
general statistical analysis (e.g., to compute averages).

In the above mentioned setting one usually is led to
compare two LDSs of the same fixed size (i.e., numbers of
inputs and outputs) and the same fixed order, and hence
one would like to define a distance between such LDSs.
In [4] an example of such a distance called the alignment
distance was introduced for a specific class of LDSs (see
[4] and §II for details).1 The main idea behind the alignment
distance is that an LDS has an equivalent class of state-space
realizations and two such realizations cannot be compared

1In this paper, we introduce our algorithm with respect to this specific
class of LDSs. However, the alignment distance can be extended to more
general classes of LDSs including stochastic systems (the details of this will
appear in forthcoming papers [5], [6]). Interestingly, the algorithm presented
here is still applicable (with little or no modification) to all these general
classes.

directly. Recall that the equivalent realizations are related
to each other via linear change of basis in the state-space
domain. Hence, in computing the alignment distance one,
first, solves the (realization) alignment problem to align (in
a specific sense) the given realizations of two LDSs and then
compares the aligned realizations (see §II for more details).

The alignment problem is, in fact, a minimization prob-
lem over a group of orthogonal matrices for which in [4]
a Riemannian gradient descent algorithm was introduced.
As a better alternative, in this paper, we introduce a fast
and accurate Jacobi-type algorithm for computing alignment
distances. Our Jacobi-type algorithm solves the multidimen-
sional optimization problem by solving a sequence of 1-
dimensional subproblems. These 1-dimensional subproblems
can be solved by prudent use of closed form solutions
for quartic polynomials. In computer vision applications,
such as classification and clustering of video sequences, one
deals with large numbers of systems. Thus, fast computation
of these distances is extremely desirable for ensuring the
feasibility of clustering and classification tasks. Our method
is significantly faster than the Riemannian gradient descent,
as we will show. Besides that, our algorithm is step-size free
(a significant merit over the gradient descent algorithm), and
moreover, as our experiments show, it is more likely than
the gradient descent algorithm to find global minimizers.
Although control applications are not the focus of this paper,
we mention that, the alignment distance could be potentially
used in system identification or robust control applications.

This paper is organized as follows: In §II, we briefly
review the methodology needed to define the alignment
distances. In §III the details of the proposed algorithm are
described. In §IV numerical simulations are presented to val-
idate the performance of our algorithms. Efficient MATLAB
implementations of these algorithms may be downloaded
from http://www.vision.jhu.edu/downloads/.

II. BRIEF INTRODUCTION TO THE ALIGNMENT DISTANCE

We now briefly describe the theoretical basis for the
alignment distance for deterministic LDSs (more details,
extensions, and proofs will appear in [5], [6]). Our treatment
is based on intuition, but it can be made rigorous via the
machinery of differential geometry, specifically, the theory
of fiber bundles. Consider a discrete-time LDS M of order n
and size (p,m) (i.e., m-dimensional input and p-dimensional

http://www.vision.jhu.edu/downloads/


output) described by:

xt = Axt−1 +Bvt

yt = Cxt
(1)

where R = (A,B,C) ∈ L̃m,n,p = Rn×n×Rn×m×Rp×n is
a realization of M . Here, vt is the input which we assume
to be deterministic. We call L̃m,n,p a realization space and
we explicitly distinguish it from Lm,n,p the space of LDSs
of size (p,m) and order n. The space Lm,n,p is comprised
of equivalent classes of realizations where (A,B,C) is
equivalent to

P ◦ (A,B,C) = (P−1AP,B−1P,CP ), (2)

for any P ∈ GL(n), where GL(n) is the group of non-
singular n× n matrices. Due to this equivalence relation, in
order to compare two systems M1 and M2 one cannot simply
compare their arbitrary realizations R1 and R2. Instead, one
needs first to optimally align the two realizations (i.e., bring
them closest together by sliding them along their respective
equivalence classes). However, due to certain theoretical
and computational difficulties, mostly stemming from non-
compactness of GL(n), such an alignment is hard to define
and perform. Instead, we propose first to standardize the
realizations and then align them. By standardization, intu-
itively, we mean a step in which the non-compact part of
GL(n) is thrown out and only its maximal compact subgroup
namely the group of n × n matrices O(n) is kept. It can
be shown that standardization is possible for a large class
of LDSs; however, here, we only consider it in relation
to a specific class of LDSs which we call tall and full
rank. This class appears naturally as the output of a system
identification algorithm popular in video sequence analysis
(see [4], [9]). Let L̃tC

m,n,p = {R ∈ L̃m,n,p|rank(C) = n},
i.e., realizations in which C is of full column rank. Denote
the corresponding space of LDSs by LtC

m,n,p. A simple

standardized space related to LtC
m,n,p is ÕL

tC
m,n,p = {R ∈

L̃tC
m,n,p|C>C = In}, where In is the n × n identity matrix

and > denotes matrix transpose. Notice that any realization in
LtC
m,n,p can be standardized e.g., via SVD of C. Moreover, on

ÕL
tC
m,n,p, GL(n) acts only through its subgroup O(n), since

P ◦ R ∈ ÕL
tC
m,n,p implies P ∈ O(n) for any P ∈ GL(n)

and R ∈ ÕL
tC
m,n,p.

Upon standardization, aligning the realizations and com-
parison of LDSs become straightforward. More specifi-
cally, given any realizations R1, R2 ∈ ÕL

tC
m,n,p of LDSs

M1,M2 ∈ LtC
m,n,p, we define the distance

d2(M1,M2) = min
Q∈O(n)

d2F (Q ◦R1, R2), (3)

where dF is the following Frobenius norm based distance on
ÕL

tC
m,n,p:

d̃2F
(
R1,R2)=λA‖A1−A2‖2F+λB‖B1−B2‖2F+λC‖C1−C2‖2F ,

(4)

The minimization in (3) is called the (realization) alignment
problem and can be explicitly expressed as d2(M1,M2) =
minQ∈O(n) f1(Q;R1, R2), where f : O(n)→ R is:

f(Q;R1, R2) =λA‖Q>A1Q−A2‖2F + λB‖Q>B1 −B2‖2F
+ λC‖C1Q− C2‖2F . (5)

Note that the parameters λA, λB , λC determine the relative
contributions of the A,B,C matrices to the cost function.
As such, they allow the possibility of tuning the metric for
a particular application.

III. JACOBI-TYPE ALGORITHM FOR COMPUTING THE
ALIGNMENT DISTANCE

The Jacobi eigenvalue algorithm is a well established
method in numerical linear algebra [12]. More generally
Jacobi-type methods have been used for minimizing func-
tions defined on O(n) (e.g., joint diagonalization). Such
methods are essentially coordinate descent optimizations
on the manifold O(n), i.e., one performs a sequence of
1-dimensional minimizations along fixed directions. These
directions are, in fact, geodesics (equivalent of straight line
on O(n)) along the components of an orthogonal basis of
the tangent space at each point. The amount of descent
is preferably determined by finding the exact solution to
the 1-dimensional minimization sub-problem. Due to the
specific selection of descent directions, the 1-dimensional
sub-problems are usually easy to solve, and in fact a global
minimizer can often be found. A major benefit of Jacobi-type
methods is their local quadratic rate of convergence [13].
These methods can be extended to groups other than O(n),
including non-compact groups (see e.g., [3], [13], [15]).

A. Jacobi-type Algorithm and Lagrangian for Minimizing f

First, recall that O(n) has two connected components:
SO(n), which is comprised of orthogonal matrices of de-
terminant +1, and O−(n), whose elements have determinant
−1. To minimize f(Q;R1, R2) (see (5)), we choose an initial
value for Q (once in SO(n) and once in O(n)) and update
R1 as follows: R1 ← Q ◦ R1. Given this initialization, we
then perform updates of the form

Q← QQpq(θpq) and R1 ←Qpq(θpq) ◦R1, (6)

where Qpq(θ) is the Givens rotation matrix

Qpq(θ) =



1 · · ·
p

↓ · · ·
q

↓ · · · 0
...

. . .
...

...
...

p→ · · · c · · · −s · · · 0
...

...
. . .

...
...

q → · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


(7)

with c = cos(θ) and s = sin(θ) with θ ∈ (−π, π].
We find θpq via minθ f(Qpq(θ);R1, R2). However, it is
more convenient to do minimization over s, c subject to the
constraint s2 + c2 = 1. The algorithm usually begins from



(p, q) = (1, 2) and progresses by sweeping through all index
pairs (p, q) such that q > p (this is called one sweep) and
then repeats the process till convergence. In view of our
discussion above, we mention that θ 7→ Qpq(θ) = exp(θΩpq)
is the geodesic starting from In along the direction of the
skew-symmetric tangent vector Ωpq , where exp is the matrix
exponential (Ωpq is found by simply setting the diagonal of
Qpq to zero and replacing s by 1.)

Next, we turn to the 1-dimensional minimization problem
minc2+s2=1 f(Qpq(c, s);R1, R2). Clearly, the minimization
of f (see (5)) is equivalent to maximizing:

f(Qpq(c, s)) = λA tr(Q>A>1 QA2) + tr(Q>D) (8)

where D = λB(B1B
>
2 )+λC(C>1 C2) (note that Q>Q = In).

We denote the elements of the defined matrices as follows:
[A1]ij = aij , [A2]ij = a′ij , [D]ij = dij . A straightforward
computation shows that

f(Qpq(c, s)) = k0c
2 + k1s

2 + k2cs+ k3c+ k4s, (9)

where

k0 =λA[appa
′
pp + apqa

′
pq + aqqa

′
qq + aqpa

′
qp]

k1 =λA[appa
′
qq + aqqa

′
pp − apqa′qp − aqpa′pq]

k2 =λA[app(−a′qp − a′pq) + apq(a
′
pp − a′qq)+

aqp(a
′
pp − a′qq) + aqq(a

′
pq + a′qp)] (10)

k3 =dpp + dqq + λA
∑
j 6=p,q

ajpa
′
jp + ajqa

′
jq + apja

′
pj + aqja

′
qj

k4 =dqp − dpq + λA
∑
j 6=p,q

ajqa
′
jp + aqja

′
pj − ajpa′jq − apja′qj

To maximize (9) we form the Lagrangian under the constraint
c2 + s2 = 1:

L(c, s, λ)=k0c
2+k1s

2+k2cs+k3c+k4s−λ(c2+s2−1). (11)

First order optimality conditions yield:

2k0c+ k2s+ k3 = 2λc (12)
2k1s+ k2c+ k4 = 2λs

c2 + s2 = 1,

Solving this set of equations for c we obtain:

Pc(c) = α4c
4 + α3c

3 + α2c
2 + α1c+ α0 = 0, (13)

where

α4 =4k22 + 4(k0 − k1)2, α3 =4k3(k0 − k1) + 4k2k4,

α0 =k22 − k23, α1 =4k3(k1 − k0)− 2k2k4, (14)

α2 =k24 − 4k22 + k23−4(k0 − k1)2.

Alternatively, we may solve for s, obtaining

Ps(s) = β4s
4 + β3s

3 + β2s
2 + β1s+ β0 = 0, (15)

where

β4 =4k22 + 4(k1 − k0)2, β3 =4k4(k1 − k0) + 4k2k3,

β0 =k22 − k24, β1 =4k4(k0 − k1)− 2k2k3, (16)

β2 = k23 − 4k22 + k24− 4(k1 − k0)2.

The relation between the roots of these two polynomials is
as follows:

s =
2k2c

2 + k4c− k2
(2k0 − 2k1)c+ k3

, c =
2k2s

2 + k3s− k2
(2k1 − 2k0)s+ k4

. (17)

To find the optimal (c, s) pairs that maximize (9), we must
root (13) or (15) and then make a substitution using (17)
to obtain the (c, s) pair. Unfortunately, (17) was derived
supposing that the (c, s) pair is a critical point of (9). If
the computed roots are inexact, the evaluation of (17) will
result in c2 + s2 6= 1. Therefore, care must be taken to
ensure that inaccuracies in the rooting of these polynomials
does not result in non-orthogonal updates. We adopt the
following method to circumvent this issue. Suppose that we
have obtained a root c. To compute the corresponding s while
ensuring the orthogonality of the matrix Qpq(θ), we find:

s=sign(s′)
√

1− c2, where s′ =
2k2c

2 + k4c− k2
(2k0 − 2k1)c+ k3

. (18)

The next step is to evaluate the cost function for each
obtained (c, s) pair. The (c, s) pair that results in the largest
value of (9) is then used to perform the Jacobi update.
Since the matrices Qpq(c, s) are sparse, these updates can be
executed efficiently using standard Jacobi-update algorithms
such as those found in [12].

Algorithm 1: Jacobi-type algorithm for computing
d2(M1,M2)

Data: Realizations R1 = (A10, B10, C10) ∈ ˜OΣm,n,p and
R2 = (A20, B20, C20) ∈ ˜OΣm,n,p of LDSs M1 and
M2 in ∈ Σm,n,p, weight parameters λA, λB , λC , a set
of orthogonal matrices {Q1

+, . . . , Q
l
+, Q

l+1
− , . . . , Q2l

−}
where Qi

+ ∈ SO(n) and Qj
− ∈ O−(n), and stopping

criteria StopCrit ≥ 0.
Result: Q ∈ O(n) that minimizes f1(Q;R1, R2) and

d2 = f(Q;R1, R2).

for j = 1 : 2l do
StopFlag← 0;
Q← Qj ;
A1 ← Q>A10Q;
D ← Q>(λB(B10B

>
20) + λC(C>10C20));

i = 1;
while StopFlag = 0 do

StopFlag← 1;
for p = 1 : n− 1 do

for q = p+ 1 : n do
k← CalcK(A1, A2, D, λA) ; // Eq (10)
α← CalcAlpha(k) ; // Eq (14)
[c, s] = JacobiAngle(α,k); // Alg (2)
if abs(s) ≤ StopCrit then

StopFlag← 0;

A1 ← Q>pqA1Qpq;
D ← Q>pqD;
Q← QQpq;

d2(M1,M2) = f(Q;R1, R2); // Eq (5)



B. Accurate and Fast Quartic Root Finding

Obtaining the solutions to Equation (13) or (15) in a fast
and accurate manner is crucial to ensure the overall speed and
accuracy of our algorithm. Interestingly, optimizing functions
of the form (8) have appeared in the literature [8], most
notably in the orthogonal joint diagonalization problem. To
the best of our knowledge, the related fast and accurate
rooting has not been addressed in the literature.

Our approach combines a closed form solution method
with a Newton-Raphson root polishing step to obtain the
roots of Equation (13) or (15). The first closed form solution
method for quartics was derived by Ferrari in 1540 and is
described in [1]. One benefit of such a formula is that it
yields all four roots of the polynomial and hence we can,
in principle, find global minimizers for our 1-dimensional
minimization problems. Another benefit is in terms of speed:
a straightforward C implementation of Ferrari’s method is
about 17 times faster than MATLAB’s quasi-standard poly-
nomial rooting function, which performs the QR algorithm
on a polynomial’s companion matrix. Nevertheless Ferrari’s
method is not popular [16] since it is highly prone to round
off error. Strobach recently proposed a fast and accurate
(general purpose) quartic root finding method based on iter-
ative refinement of Ferrari’s solution. Strobach’s method is a
viable option in our problem. However, in our application we
can achieve the same accuracy as Strobach’s method in better
time. Note that since we are only interested in roots in [−1, 1]
our problem is easier than general rooting (as Strobach’s
method). We simply use the roots returned by Ferrari’s algo-
rithm to initialize a Newton-Raphson root-polishing iteration.
If the estimates of the roots are sufficiently accurate, a few
iterations of Newton-Raphson improve their accuracy con-
siderably as the number of significant digits nearly doubles
at each iteration [11].

Another question is whether to solve for cos(θ) or for
sin(θ). Strobach observed [16] that Ferrari’s algorithm per-
forms poorly in cases of large root spread, where this
quantity is defined as the ratio of the maximal magnitude
of a root to that of the minimal magnitude: S = |rmax|

|rmin| . As
the algorithm converges θpq → 0 and hence at least one of
the roots of the Ps(s) polynomial approaches zero. In this
case, the root spread becomes arbitrarily large. By solving the
Pc(c) polynomial, we avoid this situation. We have observed
that Ferrari’s method in combination with Newton-Raphson
is about 3 times faster than Strobach’s procedure, is easier
to implement as it involves no parallel programming, and
has comparable accuracy. Our method of computing Jacobi
angles for our optimization sub-problem is summarized in
Algorithm 2. In §IV, we present numerical evidence which
confirms our claim that a Ferrari-based optimization which
uses cos(θ) is preferable (e.g., see Figure 1).

C. Handling Local Minima

Unfortunately, f1, f2, f3 are not convex on O(n) and they
may have local minimizers which are not global. In fact,
it is known that the only continuous convex function on
a compact manifold is the constant function. Although we

Algorithm 2: Jacobi angle computation
Data: Coefficient vector k = [k0, k1, k2, k3, k4] that defines

f(cos(θ), sin(θ),k) as in Eq (9), and polynomial
coefficient vector α = [α0, α1, α2, α3, α4].

Result: The optimal (c, s) Jacobi update.

c← FerrariRoots(α);
c← NewtonRaphsonPolish(c);
s← CalcSine(c,k) ; // Eq (18)
cost[0]← f(c = 1, s = 0,k); // Eq (9)
for i = 1 : size(c); // find (c, s) pair with
largest cost
do

cost[i] = f(c(i), s(i),k);

ind← MaxInd(cost);
if ind = 1 then

break ; // Skip (p,q) pair in Alg (1)

else
c = c(ind);
s = s(ind)

find global minimizers for the 1-dimensional sub-problems
there is no guarantee that the algorithm will converge to the
global minimizer of the main problem. A simple method
to mitigate this difficulty is to begin the optimization with
different initial matrices Q. For example, Algorithm 1 may
be repeated with several random (uniformly distributed)
initial points. Alternatively, the algorithm maybe repeated
for a set of initial matrices Ql+ = {Q1, . . . , Ql} ⊂ SO(n)
and Ql− = {Ql+1, . . . , Q2l} ⊂ O(n), where the matrices
in each set are “maximally separated” in some sense. In
fact, if such a set is available by simple function evaluations
one may guess a good initial point and avoid running the
algorithm 2l times. One simple strategy to find the set Ql+
is by maximizing an energy function such as

E({Qi})=log
∏
i 6=j

‖Qi −Qj‖2F =
∑
i6=j

log ‖Qi −Qj‖2F . (19)

Notice that a set Ql− can be found simply by swapping
the first and second columns of each matrix in Ql+. This
energy function is known as the the logarithmic energy [10].
We can use a gradient method to find these matrices off-line
(although this is not a completely satisfactory solution, since
again we have no guarantee to find the global maximizers.)
For l = 2 a solution is simply Q2

+ = {In,−In} if n
is even and if n is odd Q2

+ = {In, I−n }, where I−n =
diag(−1, . . . ,−1,+1).

D. Comparison with Riemannian gradient descent

A Riemannian gradient descent algorithm for minimizing
f(Q;R1, R2) is presented in [4]. Each step of standard
Riemannian gradient descent on SO(n) involves computing
the matrix exponential. Instead, one could use the polar
decomposition (e.g., via the SVD) or the QR factorization
(such maps are called retractions [2]) to reduce the computa-
tional cost of computing the matrix exponential. Both these
approaches are of order O(n3) (our experiments show that,
as expected, the SVD-based method is several times slower



but much more accurate). Moreover, to ensure decrease of the
cost at each iteration one needs to implement a step-size rule
such as Armijo’s rule [2] which involves function evaluations
and adds to the computational cost. On the other hand, a
single sweep of our Jacobi-type algorithm requires O(n2)
updates. For each index pair, the computation of the coeffi-
cients in (10) and the Jacobi pair (c, s) are of order O(n).
Hence, the overall complexity of each step of our proposed
Jacobi algorithm is O(n3), which is the same complexity as
Riemannian gradient descent. However, Jacobi-type methods
have quadratic local convergence whereas the convergence
for gradient descent is linear.

IV. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments which
show the efficiency and accuracy of our algorithm. To that
end, we generate systems randomly. More precisely, we
generate random realizations on a realizations space and this
will induce random systems. We perform our experiments
on LtC,a

m,n,p, the asymptotically stable subset of LtC
m,n,p (al-

though the stability condition is not necessary as far as our
computations are concerned). We choose m = n = 5 and
p = 10. The space LtC,a

m,n,p with large p and n ≈ 5 is the
space which naturally appears in analysis of video sequence
data (see [4]).

Data generation and algorithm settings. We want to
generate two random systems M1,M2 ∈ LtC,a

5,5,10, where M2

is a perturbation of M1. To this end, we generate random
realizations R1, R2 ∈ ÕL

tC,a
5,5,10, (Ri = (Ai, Bi, Ci)) as

follows: We first generate random matrices S1, . . . , S5 ∈
R5×5 and T1, T2 ∈ R10×5 with unit Gaussian elements. To
generate a random stable matrix A1 ∈ R5×5, we compute
the matrix exponential A1 = exp(S1 − S>1 − S2S

>
2 ). This

ensures that the magnitude of the eigenvalues of A1 are less
than 1. We set B1 = S3. To generate a random orthogonal
matrix C1, we compute the singular value decomposition
(SVD) T1 = UΣV > and set C1 = U . To generate realization
R2 from R1, we first generate a random orthogonal matrix
Qi ∈ O(n). We then set A2 = Q>i (A1 + σS4)Qi and
B2 = Q>i (B1 + σS5). Likewise, to generate C2, we set
C ′2 = (C + σT2)Qi. Since this matrix is not orthogonal, we
compute the SVD, C ′2 = UΣV > and set C2 = U . Notice
that if σ = 0, then R2 = Qi ◦ R1 (see (2)) and hence
M1 = M2. Now we generate T = 1000 of such (M1,M2)
pairs with σ ∈ {0, 0.2}, and run our Jacobi algorithm to
find the distance d1(M1,M2) (with λA, λB , λC = 1). We
use initial sets Q2

+ and Q2
− as in §III-C. We implement our

Jacobi algorithm using MATLAB functions as well as an
optimized MATLAB executable file (MEX file). Since our
implementation of gradient descent also uses a combination
of MATLAB and MEX functions, we consider our compar-
ison to be fair.

Accuracy Comparison. The results for σ = 0 are shown
in Figure 1, which shows the point-wise median of the
cost function (across T = 1000 samples) in terms of the
number of iterations (or sweeps) of the algorithms. We use

the median simply to show a typical behavior. The results for
both the Jacobi-type algorithm and the gradient descent (with
SVD and Armjio step-size §III-D) are shown. Moreover,
several possibilities for root-finding are examined, these
include: Strobach+cos, Strobach+sin, Matlab+cos,
Matlab+cos, Ferrari+cos, and Ferrari+sin. The Fer-
rari methods use at most 5 iterations of Newton-Raphson
root polishing per root. Strobach+cos was not shown
in this figure, as its performance was indistinguishable
from Ferrari cosine. Since our implementation of Ferrari’s
method in Algorithm 2 is roughly three times faster than
Strobach’s general purpose quartic solver, we conclude
that Ferrari+cos is the best among these root solving
method for our Jacobi type algorithm. Figure 1 also shows
that the difference in accuracy between Ferrari+cos and
Ferrari+sin is significant. This difference in accuracy is
much more pronounced for the Ferrari solver than for the
Matlab and Strobach solvers, where the difference between
using cos(θ) and sin(θ) is negligible (this justifies our choice
of solving (13) instead of (15)).

Note that the Jacobi and gradient descent algorithms are
both limited in the accuracy they may attain, since the
minimum angles of rotation are limited by the machine
epsilon. It appears that this limitation affects our Jacobi algo-
rithm before affecting gradient descent. As both algorithms
converge, the Jacobi algorithm will need to take smaller steps
than gradient descent, as it is constrained to move in fixed
directions and cannot move directly towards the minimum.
As a consequence, it is expected that machine epsilon affects
the Jacobi algorithm before affecting gradient descent. This
explains the difference in maximal accuracy between the two
methods.

Speed comparison. Figure 1 clearly shows superiority of
our Jacobi-type algorithm compared with gradient descent
in terms of number of iterations. Another speed comparison
for the more realistic σ = 0.2 scenario is given in Table
I and in Figure 2, which shows the cumulative percent-
age of runs converged in terms of number of iterations
(sweeps). We consider the algorithm converged whenever
the algorithm reaches within 10−4 of the lowest value of
d21(M1,M2) computed over 300 sweeps/iterations. Time per
1000 iterations / sweeps was measured on a HP Pavilion
G7 laptop. The second column in Table I measures the
average number of iterations needed to converge to 10−4

of the lowest cost for a given computation of d2(M1,M2).
The third column is obtained by multiplying the first two.
These results demonstrate that, in this specific example, our
proposed Jacobi method converges roughly 20 times faster
than Riemannian gradient descent.

Local minima. Next, we examine how algorithms perform
when initialized only with one initial condition, namely,
Q1

+ = {I5} and Q1
− = {−I5}. When σ = 0 we consider

an algorithm “converged to a global solution,” if the final
computed value is less than 10−4. In Table II, we see that
using Q2

+ and Q2
− improves global convergence when σ = 0

for the gradient descent. However, interestingly, our Jacobi



Fig. 1 – Typical convergence behavior for different algorithms
and root finding methods (σ = 0).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Iteration / sweep

C
u

m
u

la
ti
v

e
 p

ro
b

a
b

ili
ty

 (
%

)

Empirical CDF for Convergence

 

 

Jacobi algorithm 
Gradient descent  

Fig. 2 – Empirical cumulative probability of convergence in
terms of number of iterations (σ = 0.2).

algorithm already avoids local minima with l = 1 and seems
to be less propense to local minima than the gradient descent.
This might be attributed to the fact that our Jacobi algorithm
actually solves the 1-dimensional sub-problems globally.

V. DISCUSSION

We have proposed a fast and accurate Jacobi-type algo-
rithm for computing alignment distances between LDSs. Our
algorithm is significantly faster than gradient descent for
linear systems with orders that commonly arise in computer
vision scenarios, and has comparable accuracy. Moreover,
we hope that our insights will be useful in the investiga-
tion of other optimization problems involving orthogonality
constraints.

Acknowledgements. This work has been supported in
part by the grants ONR N00014-09-10084, NSF CAREER
0447739, NSF 0941362, NSF 0941463 and NSF 0931805.

Jacobi Gradient descent
Time per 10,000 sweeps / iterations 0.50 s 4.54 s
Mean iterations to converge 19.2 43.2
Mean time to converge 1x 20.43x

TABLE I – Speed comparison between gradient descent and
our proposed Jacobi method for the σ = 0.2 case.

Number of initializations l 1 2
Jacobi global convergence (%) 100.0 100.0
Gradient global convergence (%) 96.5 98.0

TABLE II – Convergence of gradient descent to global
minimizer(s) is enhanced by using two initializations (σ = 0).

REFERENCES

[1] M. Abramowitz and I. Stegun. Handbook of mathematical functions
with formulas, graphs, and mathematical tables, volume 55. Dover
publications, 1964.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms
on Matrix Manifolds. Princeton University Press, Princeton, NJ, 2008.

[3] B. Afsari. Simple LU and QR based non-orthogonal matrix joint
diagonalization. In J. P. Rosca, D. Erdogmus, J. C. P., and S. Haykin,
editors, ICA, volume 3889 of Lecture Notes in Computer Science,
pages 1–7. Springer, 2006.

[4] B. Afsari, R. Chaudhry, A. Ravichandran, and R. Vidal. Group
action induced distances for averaging and clustering linear dynamical
systems with applications to the analysis of dynamic scenes. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, 2012.

[5] B. Afsari and R. Vidal. Group action induced distances on spaces of
high-dimensional linear stochastic processes. submitted.

[6] B. Afsari and R. Vidal. Group action induced distances on spaces of
linear dynamical systems. submitted, 2013.

[7] B. Béjar, L. Zappella, and R. Vidal. Surgical gesture classification
from video data. In N. Ayache, H. Delingette, P. Golland, and
K. Mori, editors, Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2012, volume 7510 of Lecture Notes in
Computer Science, pages 34–41. Springer, 2012.

[8] J.-F. Cardoso and A. Souloumiac. Jacobi angles for simultaneous
diagonalization. SIAM J. Mat. Anal. Appl., 17(1):161–164, January
1996.

[9] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. Dynamic textures.
International Journal of Computer Vision, 51(2):91–109, 2003.

[10] P. Dragnev, D. Legg, and D. Townsend. Discrete logarithmic energy
on the sphere. Pacific J. Math, 207(2):345–358, 2002.

[11] B. Flannery, W. Press, S. Teukolsky, and W. Vetterling. Numerical
recipes in C. Press Syndicate of the University of Cambridge, New
York, 1992.

[12] G. Golub and c. F. Van Loan. Matrix computations, volume 3. Johns
Hopkins Univ Pr, 1996.

[13] U. Helmke and K. Hüper. A Jacobi-type method for computing
balanced realizations. Systems & Control letters, 39(19-30), 2000.

[14] P. S. Krishnaprasad. Geometry of Minimal Systems and the Identifi-
cation Problem. PhD thesis, Harvard University, 1977.

[15] A. Souloumiac. Nonorthogonal joint diagonalization by combining
givens and hyperbolic rotations. IEEE Transactions on Signal Pro-
cessing, 57:2222–2231, June 2009.

[16] P. Strobach. The fast quartic solver. Journal of computational and
applied mathematics, 234(10):3007–3024, 2010.


	Introduction
	Brief introduction to the alignment distance
	Jacobi-type Algorithm for Computing the Alignment Distance
	Jacobi-type Algorithm and Lagrangian for Minimizing f
	Accurate and Fast Quartic Root Finding
	Handling Local Minima
	Comparison with Riemannian gradient descent

	Numerical Experiments
	Discussion
	References

