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Abstract. Geometric relationships governing multiple images of points and lines and associated algorithms have
been studied to a large extent separately in multiple-view geometry. The previous studies led to a characterization
based on multilinear constraints, which have been extensively used for structure and motion recovery, feature
matching and image transfer. In this paper we present a universal rank condition on the so-called multiple-view
matrix M for arbitrarily combined point and line features across multiple views. The condition gives rise to a complete
set of constraints among multiple images. All previously known multilinear constraints become simple instantiations
of the new condition. In particular, the relationship between bilinear, trilinear and quadrilinear constraints can be
clearly revealed from this new approach. The theory enables us to carry out global geometric analysis for multiple
images, as well as systematically characterize all degenerate configurations, without breaking image sequence into
pairwise or triple-wise sets of views. This global treatment allows us to utilize all incidence conditions governing
all features in all images simultaneously for a consistent recovery of motion and structure from multiple views. In
particular, a rank-based multiple-view factorization algorithm for motion and structure recovery is derived from the
rank condition. Simulation results are presented to validate the multiple-view matrix based approach.
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1. Introduction

The basic formulation of the geometric constraints
governing projections of point features in two views
originated in photogrammetry at the beginning of last
century (Kruppa, 1913) and was revived in the com-
puter vision community in the early eighties (Longuet-
Higgins, 1981). Natural extensions (of theoretical im-
portance and with profound practical implications)
had been those considering multiple views and dif-
ferent feature primitives. In the computer vision
literature, fundamental and structure independent rela-
tionships between image features and camera displace-
ments were first described by the so-called multilinear
matching constraints (Spetsakis and Aloimonos, 1990;
Faugeras and Mourrain, 1995; Triggs, 1995; Heyden
and Astrom, 1997). Most of the previous work fo-
cused on the algebraic aspects of these multilinear con-
straints, along with the algorithms which followed from
the same formulation. This line of work culminated re-
cently with the publication of two monographs on this
topic (Hartley and Zisserman, 2000; Faugeras et al.,
2001).

Although algebraic and geometric relationships
among constraints governing multiple images have
been used in numerous applications, theoretical and
algorithmic aspects of multiple-view geometry seem
to grow in separate directions. In theory, it is well-
known (but actually the understanding is not com-
plete as we will shortly see) that relationships among
multiple images all depend on those among two,
three, or four views at the time. Hence the study
of the associated bifocal (Longuet-Higgins, 1981),
trifocal (Spetsakis and Aloimonos, 1990; Shashua,
1994; Hartley, 1994) and quadrifocal tensors (Triggs,
1995; Shashua and Wolf, 2000) has been of primary
interest in the past few years. However, there is no
clear consensus on how to systematically and simul-
taneously exploit those constraints among pairwise,
triple-wise or quadruple-wise images for a consistent
3-D analysis or reconstruction from multiple images.
Many existing methods depend on a particular choice
of a (sufficient but minimal) set of cascaded pairwise,
triple-wise and quadruple-wise constraints (Avidan and
Shashua, 1998). Given that such a choice is by no means
unique—in fact, the number of choices grows exponen-
tially with the number of images—performance of such
methods is very hard to evaluate or justify. Hence, in
many practical algorithms “global” and “direct” meth-
ods, such as factorization method (Tomasi and Kanade,

1992; Triggs, 1996; Kahl and Heyden, 1999; Quan and
Kanade, 1996), are sought instead in order to use all
data simultaneously. However, such global algorithms
rely very little on the theory of multilinear constraints.
So, why is there such a separation between theory and
algorithms? Is there any way of restating the relation-
ship among multiple images that is equivalent to the
multilinear constraints but much easier to use for global
analysis and reconstruction? This paper intends to re-
solve some of that mystery by providing global condi-
tions and constraints on multiple views which facilitate
elegant geometric analysis and can be used for devel-
opment of new algorithms.

There is yet another separation in the current the-
ory of multiple-view geometry itself. To a large extent,
different image features: points, lines and planes, and
different incidence relations among these features: in-
clusion, intersection, and restriction, were studied and
presented separately, or case by case at best. Hence,
it is very difficult to incorporate all features and all
incidence relations for a global and consistent recon-
struction, using the above mentioned multifocal tensor
approach. Besides unnecessary confusion caused by
such a separation, answers to many important theoret-
ical questions were left obscured: For instance, since
all the constraints are nothing but incidence relations,
what is then a universal way of expressing invariants
under any transformations which preserve incidence
conditions?

The main contribution of our work here is the
proof of new and general rank conditions on a formal
multiple-view matrix, which combines measurements
from multiple views of point and line features. Such
conditions are proven to be a unified way of capturing
all types of incidence relations present in multiple-view
geometry. This result generalizes recently proposed
rank conditions developed separately for point, line,
and planar features (Ma et al., 2001), and it certainly
completes some previous efforts in the literature that
use both line and point features for structure from mo-
tion recovery (Liu et al., 1990; Hartley, 1994; Spetsakis
and Aloimonos, 1990). The rank conditions on the
multiple-view matrix clearly reveal the relationship
among all previously known multilinear constraints
and further imply some novel non-multilinear con-
straints among multiple images. As a simple byprod-
uct of our approach, we will be able to rigorously
show that bilinear and trilinear constraints are suffi-
cient to describe all algebraic relations among mul-
tiple corresponding views of a point or line feature;
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and quadrilinear constraints arise only for the im-
ages of a family of intersecting lines. Furthermore, the
multiple-view matrix systematically generalizes pre-
viously studied trilinear constraints involving mixed
point and line features to a multiple-view setting.
Hence, it allows for a meaningful global analysis of ar-
bitrarily many views with arbitrarily mixed incidence
relations among point, line, and plane features, with no
need to cascade pairwise, triple-wise or quadruple-wise
views.

The linear structure of the multiple-view rank condi-
tion directly facilitates feature matching, feature trans-
fer across multiple views, and motion and structure re-
covery. The presented formulation also enables a clear
geometric characterization and classification of all de-
generate configurations in the multiple-view setting,
which was intractable using multifocal tensor based
methods. As we will see, all degenerate cases will sim-
ply correspond to a drop of rank for the multiple-view
matrix. An additional appeal of our approach is the
sole use of linear algebraic techniques, with no need
to introduce tensorial notation or algebraic geometry.
Most importantly, the multiple-view rank condition di-
rectly leads to a natural class of multiple-view factor-
ization algorithms (for the perspective case) which can
incorporate point, line, plane features and any inci-
dence relations among them. The factorization algo-
rithms, which follow from the theory, enable us to re-
cover 3-D structure and camera motion from multiple
perspective views of the scene both in case of cali-
brated and uncalibrated cameras, in a spirit similar to
Triggs (1996).

Paper Outline. Section 2 introduces the notation used
in this paper as well as the basic concepts and equa-
tions for the formulation of the multiple-view matrix.
Section 3 gives the proofs for rank conditions on some
special multiple-view matrices for point, line and var-
ious incidence relations among them. Section 4 sum-
marizes and generalizes all the rank conditions into a
single condition on a universal multiple-view matrix,
from which all multiple-view rank conditions can be
instantiated. The geometric interpretation of the rank
conditions on the matrix M is given in Section 5.
Section 6 outlines some ideas on how to use the
multiple-view matrix of mixed features to incorporate
all incidence conditions in a scene for a consistent mo-
tion and structure recovery. Some simulation results in
Section 7 will demonstrate the benefits of the proposed
approach.

2. Problem Formulation: Image and Coimage

Let E
3 denote the three-dimensional Euclidean space

and p ∈ E
3 denote a point in the space. The homoge-

neous coordinates of p relative to a fixed world co-
ordinate frame are denoted as X

.= [X, Y, Z , 1]T ∈
R

4. Then the (perspective) image x(t)
.= [x(t), y(t),

z(t)]T ∈ R
3 of p, taken by a moving camera at time t

satisfies the following relationship:

λ(t) x(t) = K (t)Pg(t)X, (1)

where λ(t) ∈ R+ is the (unknown) depth of the point p
relative to the camera frame, K (t) ∈ SL(3) is the cam-
era calibration matrix (at time t),1 P = [I, 0] ∈ R

3×4

is the standard (perspective) projection matrix and
g(t) ∈ SE(3) is the coordinate transformation from
the world frame to the camera frame at time t .2 In
Eq. (1), x, X and g are all in homogeneous represen-
tation. Suppose the transformation g is specified by its
rotation R ∈ SO(3) and translation T ∈ R

3,3 then the
homogeneous representation of g is simply:

g =
[

R T
0 1

]
∈ R

4×4. (2)

Notice that Eq. (1) is also equivalent to:

λ(t)x(t) = [K (t)R(t) K (t)T (t)]X. (3)

Now suppose that p is lying on a straight line L ⊂
E

3, as shown in Fig. 1. The line L can be defined by

Figure 1. Images of a point p on a line L. Planes extended from
the image lines l̂1, l̂2 should intersect at the line L in 3-D. Lines
extended from the image points x1, x2 intersect at the point p.
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a collection of points in E
3 that can be described (in

homogeneous coordinates) as:

L
.= {X | X = Xo + µv, µ ∈ R} ⊂ R

4, (4)

where Xo = [Xo, Yo, Zo, 1]T ∈ R
4 are coordinates of a

base point po on this line and v = [v1, v2, v3, 0]T ∈ R
4

is a nonzero vector indicating the direction of the line.
Then the image of the line L at time t is simply the col-
lection of images x(t) of all points p ∈ L . It is clear that
all such x(t)’s span a plane in R

3, as shown in Fig. 1.
The projection of the line is simply the intersection of
this plane with the image plane. Usually it is more con-
venient to specify a plane by its normal vector, denoted
as l(t) = [a(t), b(t), c(t)]T ∈ R

3. We call this vector l
the coimage of the line L , which satisfies the following
equation:

l(t)T x(t) = l(t)T K (t)Pg(t)X = 0 (5)

for any image x(t) of any point p on the line L . Let
us use û ∈ R

3×3 to denote the skew-symmetric matrix
associated to a vector u ∈ R

3 such that ûw = u × w

for all w ∈ R
3. Then the column (or row) vectors of

the matrix l̂ span the image of the line L , i.e., they span
the plane which is orthogonal to l.4 This is illustrated
in Fig. 1. Similarly, if x is the image of a point p, its
coimage (the plane orthogonal to x) is given by the
matrix x̂. So in this paper, we will use the following
notation:

Image of a point: x ∈ R
3, Coimage of a point: x̂ ∈ R

3×3,

Image of a line: l̂ ∈ R
3×3, Coimage of a line: l ∈ R

3.

(6)

Notice that we always have x̂ · x = 0 and l̂ · l = 0.
Since image and coimage are equivalent representation
of the same geometric entity, sometimes for simplicity
(and by abuse of language) we may simply refer to
either one as “image” if its meaning is clear from the
context.

In a realistic situation, we usually obtain “sam-
pled” images of x(t) or l(t) at some time instances:
t1, t2, . . . , tm . For simplicity we denote:

λi = λ(ti ), xi = x(ti ), l i = l(ti ), �i = K (ti )Pg(ti ).

(7)

We will call the matrix �i the projection matrix relative
to the i th camera frame. The matrix �i is then a 3 × 4

matrix which relates the i th image of the point p to its
world coordinates X by:

λi xi = �i X (8)

and the i th coimage of the line L to its world coordi-
nates (Xo, v) by:

lT
i �i Xo = lT

i �iv = 0, (9)

for i = 1, 2, . . . , m. If the point is actually lying on the
line, we further have a relationship between the image
of the point and the coimage of the line:

lT
i xi = 0, (10)

for i = 1, 2, . . . , m.

We first observe that the unknowns, λi ’s, X, Xo and
v, which encode the information about location of the
point p or the line L in R

3 are not intrinsically avail-
able from the images. By eliminating these unknowns
from the equations we obtain the remaining intrinsic
relationships between x, l and � only, i.e. between
the image measurements and the camera configuration.
Of course there are many different, but algebraically
equivalent ways for elimination of these unknowns.
This has in fact resulted in different kinds (or forms) of
multilinear (or multifocal) constraints that exist in the
computer vision literature. We here introduce a more
systematic way of eliminating all the above unknowns
that results in a complete set of conditions and a clear
geometric characterization of all constraints. Conse-
quently, as we will soon see, all previously known and
even some unknown relationships can be easily de-
duced from our results.

3. Special Multiple-View Matrices
and Their Ranks

After rewriting Eq. (8) in matrix form, we observe that
for the point p, the basic relationship between its image
measurements and camera motions after eliminating
the unknowns λi ’s and X is, that the m + 4 column
vectors of the following matrix:

Np
.=


�1 x1 0 · · · 0

�2 0 x2
. . .

...
...

...
. . .

. . . 0
�m 0 · · · 0 xm

 ∈ R
3m×(m+4) (11)
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are linearly dependent. Equivalently:

rank(Np) ≤ m + 3 (12)

since it is direct to verify that the vector u
.=

[XT , −λ1, . . . , −λm]T ∈ R
m+4 is in the null space of

the matrix Np due to (8). On the other hand, given the
matrix Np, if its rank is exactly m + 3, we may find
the depths of the point (relative to all camera frames)
by solving the equation Npu = 0. However, if the rank
of Np is strictly less than m + 3, there might be more
solutions. Hence we need to study in more detail the
possible values of the rank of Np and understand their
geometric implications. From here, our approach will
deviate from previous ones which directly take minors
of the matrix Np and derive multifocal constraints. Our
observation here is that the matrix Np is rather sparse
and well-structured. It is then natural to try to make
it more compact before computing any minors. As we
will soon see, one may gain tremendous insight in this
way.

Similarly, one can show that for line features the
following matrix:

Nl
.=


lT
1 �1

lT
2 �2

...

lT
m�m

 ∈ R
m×4 (13)

must satisfy the rank condition

rank(Nl) ≤ 2 (14)

since it is clear that the vectors Xo and v are both in the
null space of the matrix Nl due to (9). In fact, any X ∈
R

4 in the null space of Nl represents the homogeneous
coordinates of some point lying on the line L , and vice
versa.

The above rank conditions on Np and Nl are merely
the starting point. There is some potential difficulty
if one wants to use them directly since: 1. the lower
bounds on their rank are not yet clear; 2. their dimen-
sions are high and hence the rank conditions contain
a lot of redundancy. Let us see how to systematically
reduce these conditions to more compact ones.

3.1. Rank Condition for Point Features

Let us first study the point case. Without loss of gen-
erality, we may assume that the first camera frame is

chosen to be the reference frame.5 That gives the pro-
jection matrices �i , i = 1, 2, . . . , m

�1 = [I, 0], . . . , �i = [Ri , Ti ], . . . , �m

= [Rm, Tm] ∈ R
3×4, (15)

where Ri ∈ R
3×3 represents the first three columns

of �i and Ti ∈ R
3 is the fourth column of �i , i =

2, 3, . . . , m. Although we have used the suggestive no-
tation (Ri , Ti ) here, they are not necessarily the actual
rotation and translation.6 Only in the case when the
camera is perfectly calibrated do Ri and Ti correspond
to actual camera rotation and translation. The internal
structure of Ri and Ti is not so important for the rest of
the paper, as long as Ri is invertible.

With the above notation, we eliminate x1 from the
first row of Np using column manipulation. It is easy to
see that Np has the same rank as the following matrix
in R

3m×(m+4):
I 0 0 0 · · · 0

R2 T2 R2x1 x2
. . .

...
...

...
... 0

. . . 0

Rm Tm Rmx1 0 0 xm

 =


I 0

R2

...

Rm

N ′
p

 .

Hence, the original Np is rank deficient if and only if
the sub-matrix N ′

p ∈ R
3(m−1)×(m+1) is. Left multiplying

N ′
p by the following matrix:

Dp =



xT
2 0 · · · 0

x̂2 0 · · · 0
...

. . .
. . .

...

0 · · · 0 xT
m

0 · · · 0 x̂m


∈ R

[4(m−1)]×[3(m−1)]

yields the following matrix:

Dp N ′
p =



xT
2 T2 xT

2 R2x1 xT
2 x2 0 0 0

x̂2T2 x̂2 R2x1 0 0 0 0
...

... 0
. . . 0 0

...
... 0 0

. . . 0

xT
m Tm xT

m Rmx1 0 0 0 xT
mxm

x̂m Tm x̂m Rmx1 0 0 0 0


∈ R

[4(m−1)]×(m+1).
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Since Dp is of full rank 3(m −1), we have rank(N ′
p) =

rank(Dp N ′
p). Further, since xT

i xi > 0, the original ma-
trix Np is rank deficient if and only if the following
sub-matrix of Dp N ′

p is rank deficient:

Mp
.=


x̂2 R2x1 x̂2T2

x̂3 R3x1 x̂3T3

...
...

x̂m Rmx1 x̂m Tm

 ∈ R
[3(m−1)]×2. (16)

We call Mp the multiple-view matrix associated to a
point feature p. More precisely, we have proven the
following:

Lemma 1 (Rank condition for point features). Ma-
trices Np and Mp satisfy:

0 ≤ rank(Mp) = rank(Np) − (m + 2) ≤ 1. (17)

Therefore rank(Np) is either m+3 or m+2, depending
on whether rank(Mp) is 1 or 0, respectively.

Comment 1 (Geometric interpretation of Mp). No-
tice that x̂i Ti is the normal to the epipolar plane given
by frames 1 and i and so is x̂i Ri x1. Therefore the rank-
1 condition not only implies that these two normals
are parallel (as obvious from the epipolar constraint)
but also that the scale between these two possible nor-
mal vectors is the same for all frame pairs. In fact,
if rank(Mp) = 1, its kernel must be [λ1, 1]T ∈ R

2.
Hence the depth of the point p (relative to the refer-
ence frame) is encoded in Mp too. See Ma et al. (2001)
for more details.

Corollary 1 (Algebraic relationships among multiple
views of a point). For any given m images of a point
p ∈ E

3 relative to m camera frames, the rank condition
on Mp implies the following:

1. Any algebraic constraints among m images alge-
braically depend on those involving only two and
three images at a time. Formulae of these constraints
are given by (18) and (19) respectively.

2. The three-view constraints (19) in general imply
the two-view constraints (18), except when x̂i Ti =
x̂i Ri x1 = 0 for some i . This corresponds to a de-
generate case in which the point p lies on the line
through the optical centers o1, oi .

Proof: For the first claim, notice that the rank re-
duction process is equivalent to (real) algebraic ma-
nipulations of minors of the corresponding matrices
Mp and Np. The reduction process only eliminates
nonzero factors from the minors. Hence the algebraic
constraints generated from the minors of Mp are alge-
braically equivalent to those obtained from Np (in the
ring of polynomials over the real field).

Now, the matrix Mp in (16) is rank deficient if and
only if all its 2×2 minors have determinant zero. Since
all such minors involve images xi from up to three
views, these constraints are sufficient to characterize all
relationships among the m views. For the two columns
of Mp to be linearly dependent, it is necessary that
the two vectors x̂i Ti , x̂i Ri x1 of its i th row group are
linearly dependent. This gives the well-known bilinear
constraints between the i th and 1st images:

xT
i T̂ i Ri x1 = 0. (18)

Now further consider the i th and j th row groups of
the matrix Mp together, we obtain:

(x̂i Ri x1)(x̂ j Tj )
T − (x̂i Ti )(x̂ j R j x1)T = 0

⇒ x̂i
(
Ti xT

1 RT
j − Ri x1T T

j

)
x̂ j = 0, (19)

for i, j = 2, 3, . . . , m. Note that for this is a matrix
equation, it gives a total of 3 × 3 = 9 scalar equa-
tions in terms of x1, xi , x j . For i �= j , the 9 equations
are exactly the trilinear constraints that one would ob-
tain from the minors of Np following the conventional
derivation of trilinear constraints.

Hence the bilinear and trilinear constraints are the
generators of the ideal of polynomial equations that
multiple corresponding images of a point need to sat-
isfy.7 The so-called quadrilinear constraints (Triggs,
1995; Shashua and Wolf, 2000), in the point feature
case, do not impose any algebraically independent con-
straints on the four images other than the trilinear and
bilinear ones.8

For the second claim, notice that, for i = j , the tri-
linear Eq. (19) implies that x̂i Ti and x̂i Ri x1 are linearly
dependent, except the case that both vectors are zeros.
One can easily verify from epipolar geometry that this
occurs only when the point p lies on the line through
the optical centers o1, oi (i.e., its images coincide with
the epipoles).

The two possible values for the rank of Mp classify
geometric configurations of the point relative to the m
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Figure 2. If the three images and the three optical centers lie on a
straight line, any point on this line is a valid preimage that satisfies
all the constraints.

camera frames into two categories only. If rank(Mp) =
1, then rank(Np) = m + 3 and there is a unique so-
lution to Npu = 0. If rank(Mp) = 0, however, there
are always global degenerate geometric configurations.
More explicitly, we have:

Corollary 2 (Degenerate configurations for point
features). Given m images corresponding to a point
p ∈ R

3 relative to m camera frames, they correspond
to images of a unique point in the 3-D space if the rank
of the Mp matrix (relative to any of the camera frames)
is 1. If its rank is 0, i.e. Mp = 0, the point p is deter-
mined up to a line where all the camera centers must
lie on, as shown in Fig. 2.

3.2. Rank Condition for Line Features

As before, we choose the first camera frame as the
reference. The matrix Nl then becomes:

Nl =


lT
1 0

lT
2 R2 lT

2 T2

...
...

lT
m Rm lT

m Tm

 ∈ R
m×4. (20)

This matrix should have a rank of no more than 2.
Multiplying Nl on the right by the following matrix:

Dl =
[

l̂1 l1 0

0 0 1

]
∈ R

4×5 (21)

yields:

N ′
l =


0 lT

1 l1 0

lT
2 R2l̂1 lT

2 R2l1 lT
2 T2

...
...

...

lT
m Rm l̂1 lT

m Rml1 lT
m Tm

 ∈ R
m×5. (22)

Since Dl is of full rank 4, we obtain:

rank(N ′
l ) = rank(Nl) ≤ 2.

Since lT
1 l1 > 0, this is true if and only if the following

sub-matrix of N ′
l :

Ml
.=


lT
2 R2l̂1 lT

2 T2

lT
3 R3l̂1 lT

3 T3

...
...

lT
m Rm l̂1 lT

m Tm

 ∈ R
(m−1)×4 (23)

has rank no more than one. We call the matrix Ml the
multiple-view matrix associated to a line feature L . We
have just proven the following:

Lemma 2 (Rank condition for line features). For the
two matrices Nl and Ml , we have:

0 ≤ rank(Ml) = rank(Nl) − 1 ≤ 1. (24)

Therefore rank(Nl) is either 2 or 1, depending on
whether rank(Ml) is 1 or 0, respectively.

Comment 2 (Geometric interpretation of Ml). Since
rank(Ml) ≤ 1, each row of Ml represents the same
(homogeneous) coordinates in R

4. If we normalize
them to be [v1, v2, v3, 1]T ∈ R

4, the vector v =
[v1, v2, v3, 0]T ∈ R

4 is exactly the direction of the line
L and 1/‖v‖ is exactly the distance of the line to the
camera center of the reference camera frame. See Ma
et al. (2001) for more details.

Corollary 3 (Relationships among multiple views of
a line). For any given m images of a line L in E

3

relative to m camera frames, the rank deficient matrix
Ml implies that any algebraic constraints among the m
images algebraically depend those involving only 3 im-
ages at a time, characterized by the so-called trilinear
constraints.

Proof: The rank condition stipulates that constraints
among the given m images of the line all reduces to
those involving three views at a time. To see this more
explicitly, notice that for rank(Ml) ≤ 1, it is necessary
for any pair of row vectors of Ml to be linearly depen-
dent. From the linear dependency of the two vectors
lT
i Ri l̂1, lT

j R j l̂1 from first three columns, we get

lT
i Ri l̂1 RT

j l j = 0. (25)
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Taking into account the last column, we have the more
conventional trilinear constraints for lines:

lT
j Tj lT

i Ri l̂1 − lT
i Ti lT

j R j l̂1 = 0. (26)

Both equations are trilinear among the 1st, i th and j th
images. Hence the constraint rank(Ml) ≤ 1 is a natural
generalization of the trilinear constraint (for 3 views)
to arbitrary m views since when m = 3, it is equivalent
to the trilinear constraint for lines, except for some
degenerate cases that we will discuss later.

It is easy to see from the rank of matrix Ml that
there will be no other relationships among either pair-
wise or quadruple-wise images of a line. Hence trilinear
constraints are the only constraints that corresponding
images of a single line in 3-D space satisfy.9

Comment 3 (Constraints on rotations). Notice that
Eq. (25) imposes constraints on the camera rotations Ri

only. This type of constraints has been utilized in the lit-
erature for reconstruction using line segments, e.g. see
Taylor and Kriegman (1995). However, rank(Ml) ≤ 1
obviously gives a more general presentation for all the
constraints.

Although the trilinear constraints (26) are necessary
for the rank of matrix Ml (hence Nl) to be 1, rigorously
speaking they are not sufficient. For the Eq. (26) to be
nontrivial, it is required that the entry lT

i Ti in the in-
volved rows of Ml be nonzero. This is not always true
for certain degenerate cases—such as the line being
parallel to the translational direction. The rank con-
dition on Ml is certainly a better way of capturing all
constraints among multiple images and avoids artificial
degeneracy that could be introduced by using algebraic
equations.

As with Mp, the two possible values for the rank of
Ml classify geometric configurations of the line rela-
tive to the m camera frames into two categories only.
If rank(Ml) = 1, rank(Nl) = 2 and the coordinates of
points on L are uniquely determined by the equation
Nl X = 0. If rank(Ml) = 0, however, there are always
global degenerate geometric configurations. More ex-
plicitly, we have:

Corollary 4 (Degenerate configurations for line
features). Given m vectors in R

3 representing coim-
ages of a line with respect to m camera frames, they
correspond to a unique line in the 3-D space if the rank
of the matrix Ml relative to any of the camera frames

Figure 3. If the three images and the three optical centers lie on
a plane bm P , any line on this plane would be a valid preimage of
l̂1, l̂2, l̂3 that satisfies all the constraints.

is 1. If its rank is 0, i.e., Ml = 0, then the line is deter-
mined up to a plane on which all the camera centers
must lie, as shown in Fig. 3.

3.3. Rank Conditions for Arbitrary
Incidence Relations

As we have seen in the previous sections, multiple cor-
responding images of a point or a line in E

3 are gov-
erned by certain rank conditions. Such conditions not
only concisely capture geometric constraints among
multiple images, but also are the key to further recon-
struction of the camera motion and scene structure.
In this section, we will show that all basic incidence
relationships among different features, i.e., inclusion,
intersection, or restriction of features, can also be fully
captured by such rank conditions. Since these relation-
ships can be easily detected or verified in each image,
such knowledge can be and should be exploited if a
consistent reconstruction is sought.

3.3.1. Inclusion of Features. Consider the situation
when you observe a line l1 in the reference view but in
remaining views, you observe images x2, . . . , xm of a
feature point on the line—we say that this feature point
is included by the line. To derive the constraints that
such features have to satisfy, we start with the matrix
Np and left multiply it by the following matrix:

D′
l =

 lT
1 0

l̂1 0

0 I3(m−1)×3(m−1)

 ∈ R
(3m+1)×3m . (27)
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We obtain:

D′
l Np =



lT
1 0 0 0 · · · 0

l̂1 0 l̂1x1 0 · · · 0

R2 T2 0 x2
. . .

...
...

...
...

. . .
. . . 0

Rm Tm 0 · · · 0 xm


∈ R

(3m+1)×(m+4). (28)

Since rank(D′
l) = 3m, we have rank(Np) = rank

(D′
l Np) ≤ m + 3. Now left multiply D′

l Np by the the
following matrix:

D′
p =



I4×4 0 0 · · · 0

0 x̂2 0 · · · 0

0 xT
2 0 · · · 0

0 0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 x̂m

0 · · · 0 0 xT
m


∈ R

(4m+1)×(3m+1). (29)

It is direct to verify that the rank of the resulting matrix
D′

p D′
l Np is related to the rank of its sub-matrix:

N ′′
p =


lT
1 0

x̂2 R2 x̂2T2

...
...

x̂m Rm x̂m Tm

 ∈ R
(3m−2)×4 (30)

by the expression rank(N ′′
p) + m ≤ rank(D′

p D′
l Np) =

rank(Np). Now right multiplying N ′′
p by:[

l1 l̂1 0

0 0 1

]
∈ R

4×5 (31)

yields:
lT
1 l1 0 0

x̂2 R2l1 x̂2 R2l̂1 x̂2T2

...
...

...

x̂m Rml1 x̂m Rm l̂1 x̂m Tm

 ∈ R
(3m−2)×5. (32)

We call its sub-matrix:

Mlp
.=


x̂2 R2l̂1 x̂2T2

...
...

x̂m Rm l̂1 x̂m Tm

 ∈ R
[3(m−1)]×4 (33)

the multiple-view matrix for a point included by a line.
Its rank is related to that of Np by the expression:

rank(Mlp) ≤ rank(Np) − (m + 1) ≤ 2. (34)

Since rank(AB) ≥ (rank(A) + rank(B) − n) for all
A ∈ R

m×n, B ∈ R
n×k , we have rank(x̂i Ri l̂1) ≥ 1. So

we essentially have proven the following:

Lemma 3 (Rank condition for inclusion). For multi-
ple images of a point p on a line L , the multiple-view
matrix Mlp defined above satisfies

1 ≤ rank(Mlp) ≤ rank(Np) − (m + 1) ≤ 2. (35)

The rank condition on Mlp then captures the incidence
condition in which a line with coimage l1 includes a
point p in E

3 with images x2, . . . , xm with respect to
m −1 camera frames. What kind of equations does this
rank condition give rise to? Without loss of generality,
let us look at the sub-matrix

Mlp =
[

x̂2 R2l̂1 x̂2T2

x̂3 R3l̂1 x̂3T3

]
∈ R

6×4. (36)

The rank condition implies that every 3×3 sub-matrix
of Mlp has determinant zero. The first three rows are au-
tomatically of rank 2 and so are the last three rows and
the first three columns.10 Hence any nontrivial deter-
minant consists of two and only two rows from either
the first three or last three rows, and consists of two
and only two columns from the first three columns. For
example, if we choose two rows from the first three, it
is direct to see that such a determinant is a polynomial
of degree 5 on (the entries of) l1, x2 and x3 which is
quadratic in both l1 and x2. The resulting equation is
not multilinear in these vectors at all,11 but it indeed
imposes nontrivial constraints among these images (or
coimages).

If we have four images (in Mlp), one may take one
row from the 2nd, 3rd and 4th images. The resulting
equation would involve all four images. Notice that
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Figure 4. Images of a family of lines L1, L2, . . . , Lm intersect at
a point p. Planes P1, P2, . . . , Pm extended from the image lines
might not intersect at the same line in 3-D. But all the planes must
intersect at the same point.

each row of the matrix x̂ in Mlp represents (the coim-
age of) a line l passing through the point x. Hence this
type of constraint imposes the incidence relations that
the associated lines in space all pass through the same
point, as shown in Fig. 4, which is exactly equivalent
to the conventional quadrilinear constraints (Triggs,
1995).

3.3.2. Intersection of Features. Consider the situa-
tion in which, in the reference, you observe the image
x1 of a point p, but in the remaining views, you ob-
serve coimages l2, l3, . . . , lm of lines that intersect at
the point, as shown in Fig. 4. In this case these coim-
ages do not have to correspond to the same line in E

3.
There are many different, but equivalent ways to derive
the constraints that such set of features has to satisfy
(see Ma et al., 2001). For simplicity, we start with the
matrix Mp:

Mp =


x̂2 R2x1 x̂2T2

x̂3 R3x1 x̂3T3

...
...

x̂m Rmx1 x̂m Tm

 ∈ R
[3(m−1)]×2. (37)

This matrix should have a rank of no more than 1.
Since the point belongs to all the lines, we have lT

i xi =
0, i = 1, 2, . . . , m. Hence l i ∈ range(x̂i ). That is, there
exist ui ∈ R

3 such that l i = x̂i
T ui , i = 1, 2, . . . , m.

Since rank(Mp) ≤ 1, so should be the rank of following
matrix (whose rows are simply linear combinations of

those of Mp):

 uT
2 x̂2 R2x1 uT

2 x̂2T2

...
...

uT
m x̂m Rmx1 uT

m x̂m Tm

 =


lT
2 R2x1 lT

2 T2

...
...

lT
m Rmx1 lT

m Tm


∈ R

(m−1)×2. (38)

We call the matrix

Mpl
.=


lT
2 R2x1 lT

2 T2

...
...

lT
m Rmx1 lT

m Tm

 ∈ R
(m−1)×2 (39)

the multiple-view matrix for lines intersecting at a point.
Then we have:

Lemma 4 (Rank condition for intersection). Given
the image of a point p and multiple images of lines
intersecting at p, the multiple-view matrix Mpl defined
above satisfies:

0 ≤ rank(Mpl) ≤ 1. (40)

The above rank condition on the matrix Mpl captures
the incidence condition between a point and lines which
intersect at the same point. It is worth noting that for the
rank condition to be true, it is necessary that all 2 × 2
minors of Mpl be zero, i.e., the following constraints
hold among arbitrary triplets of given images:

[
lT
i Ri x1

][
lT

j Tj
] − [

lT
i Ti

][
lT

j R j x1
] = 0 ∈ R,

i, j = 2, . . . , m. (41)

These are exactly the well-known point-line-line rela-
tionships among three views (Hartley and Zisserman,
2000). However, here l i and l j do not have to be coim-
ages of the same line in E

3. Their preimages only have
to intersect at the same point p. This undoubtedly re-
laxes the restriction on the meaning of “corresponding”
line features. Hence our results have extended the use
of the point-line-line relationship.

3.3.3. Features Restricted to a Plane. Another inci-
dence condition commonly encountered in practice is
that all features involved are actually lying on a plane,
say P , in E

3. In general, a plane can be described by
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a vector π = [a, b, c, d] ∈ R
4 such that the homoge-

neous coordinates X of any point p on this plane satisfy
the equation:

π X = 0. (42)

Although we assume such a constraint on the coordi-
nates X of p, in general we do not have to assume that
we know π in advance.

Similarly, consider a line L = {X | X = Xo +
µv, µ ∈ R}. Then this line is in the plane P if and only
if:

π Xo = πv = 0. (43)

For convenience, given a plane π = [a, b, c, d], we
usually define π1 = [a, b, c] ∈ R

3 and π2 = d ∈ R.
It turns out that, in order to take into account the

planar restriction, we only need to change the definition
of each multiple-view matrix slightly, but all the rank
conditions remain exactly the same. This is because
in order to combine Eqs. (8) and (9) with the planar
constraints (42) and (43), we only need to change the
definition of the matrices Np and Nl to:

Np
.=



�1 x1 0 · · · 0

�2 0 x2
. . .

...
...

...
. . .

. . . 0

�m 0 · · · 0 xm

π 0 · · · · · · 0


and

Nl
.=



lT
1 �1

lT
2 �2

...

lT
m�m

π


.

Such modifications do not change the rank of Np or Nl .
Therefore, as before, we have rank(Np) ≤ m + 3 and
rank(Nl) ≤ 2. Then one can easily follow the previous
proofs for all the rank conditions by carrying this extra
row of (planar) constraint with the matrices and the
rank conditions on the resulting multiple-view matrices
remain the same as before. We summarize the results
as follows:

Corollary 5 (Rank conditions for planar features).
Given a point p and a line L lying on a plane P which

is specified by the vector π ∈ R
4, in Lemmas 1 and 4,

append the matrix [π1x1 π2] to the matrices Mp and
Mpl ; in Lemmas 2 and 3, append the matrix [π1l̂1 π2]
to the matrices Ml and Mlp. Then the rank conditions
on the new matrices Mp, Ml , Mlp and Mpl remain the
same as in Lemmas 1–4.

For example, the multiple-view matrices Mp and Ml

become:

Mp =



x̂2 R2x1 x̂2T2

x̂3 R3x1 x̂3T3

...
...

x̂m Rmx1 x̂m Tm

π1x1 π2

, Ml =



lT
2 R2l̂1 lT

2 T2

lT
3 R3l̂1 lT

3 T3

...
...

lT
m Rm l̂1 lT

m Tm

π1l̂1 π2


.

(44)

Then the rank condition rank(Mp) ≤ 1 implies not only
the multilinear constraints as before, but also the fol-
lowing equations (by considering the sub-matrix con-
sisting of the i th group of three rows of Mp and its last
row)

x̂i Tiπ
1x1 − x̂i Ri x1π

2 = 0, i = 2, . . . , m. (45)

When the plane P does not cross the camera center
o1, i.e., π2 �= 0, these equations give exactly the well-
known homography constraints for planar image fea-
ture points

x̂i

(
Ri − 1

π2
Tiπ

1

)
x1 = 0 (46)

between the 1st and the i th views. The matrix Hi =
(Ri − 1

π2 Tiπ
1) in the equation is the well-known homog-

raphy matrix between the two views. Similarly from
the rank condition on Ml , we can obtain homography
in terms of line features

lT
i

(
Ri − 1

π2
Tiπ

1

)
l̂1 = 0, i = 2, . . . , m (47)

We know that on a plane P , any two points determine
a line and any two lines determine a point. This dual
relationship is inherited in the following relationship
between the rank conditions on Mp and Ml :

Corollary 6 (Duality between coplanar points and
lines). If the matrices Mp of two distinct points on
a plane are of rank less than or equal to 1, then the
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Figure 5. Duality between a set of three points and three lines in
a plane P: the rank conditions associated to p1, p2, p3 are exactly
equivalent those associated to L1, L2, L3.

matrix Ml associated to the line determined by the two
points is of rank less than or equal to 1. On the other
hand, if the matrices Ml of two distinct lines on a plane
are of rank less than or equal to 1, then the matrix Mp

associated to the intersection of the two lines is of rank
less than or equal to 1.

The proof is omitted for simplicity (for details, see Ma
et al., 2001). An immediate implication of this corollary
is that given a set of feature points sharing the same 3-
D plane, it really does not matter too much whether
one uses the matrices Mp for points, or the matrices
Ml for lines determined by pairwise points (in all the
views). They essentially give exactly the same set of
constraints. This is illustrated in Fig. 5.

The above approach for expressing a planar restric-
tion relies explicitly on the parameters π of the under-
lying plane P (which leads to the homography). There
is however another intrinsic (but equivalent) way to ex-
press the planar restriction, by using combinations of
the rank conditions that we have so far on point and line
features. Since three points are always coplanar, at least
four points are needed to make any planar restriction
nontrivial. Suppose four feature points p1, p2, p3, p4

are coplanar as shown in Fig. 6, and their images are
denoted as x1, x2, x3, x4. The (virtual) coimages l1, l2

of the two lines L1, L2 and the (virtual) image x5 of
their intersection p5 can be uniquely determined by
x1, x2, x3, x4:

l1 = x̂1x2, l2 = x̂3x4, x5 = l̂1l2. (48)

Then the coplanar constraint for p1, p2, p3, p4 can be
expressed in terms of the intersection relation between
L1, L2 and p5. If we use l j

i to denote the i th image
of the line j , for j = 1, 2, and i = 1, 2, . . . , m,

Figure 6. p1, p2, p3, p4 are four points on the same plane P , if
and only if the two associated (virtual) lines L1 and L2 intersect at a
(virtual) point p5.

and x j
i is defined similarly. According to the preceding

Section 3.3.2, the coplanar constraint is equivalent to
the following matrix:

M̃pl =



l1T
2 R2x5

1 l1T
2 T2

l2T
2 R2x5

1 l2T
2 T2

...
...

l1T
m Rmx5

1 l1T
m Tm

l2T
m Rmx5

1 l2T
m Tm


∈ R

[2(m−1)]×2 (49)

satisfying rank(M̃pl) ≤ 1 condition. Note that, unlike
(45), this condition does not explicitly depends on the
parameters π . But it is essentially equivalent to the
homography Eq. (45) (with π eliminated using the im-
ages of all four coplanar points). Algebraic equations
that one may get from this rank condition, again, will
not be multilinear in the given x j

i , j = 1, 2, 3, 4, i =
1, 2, . . . , m. Instead, these equations are typically
quadratic in each x j

i , j = 1, 2, 3, 4, i = 1, 2, . . . , m.
Despite that, we here see again the effectiveness of
using rank conditions for intrinsically expressing inci-
dence relations.

4. Rank Condition on the Universal
Multiple-View Matrix

In preceding sections, we have seen that incidence con-
ditions among multiple images of multiple features can
usually be concisely expressed in terms of certain rank
conditions on various types of the so-called multiple-
view matrix. In this section, we will demonstrate that
all these conditions are simply special instantiations of
a unified rank condition on a universal multiple-view
matrix.



Rank Conditions on the Multiple-View Matrix 127

For m images x1, x2, . . . , xm of a point p on a line
L with its m coimages l1, l2, . . . , lm , we define the fol-
lowing set of matrices:

Di
.= xi ∈ R

3 or l̂ i ∈ R
3×3,

D⊥
i

.= x̂i ∈ R
3×3 or lT

i ∈ R
3.

Then, depending on whether the available (or chosen)
measurement from the i th image is the point feature xi

or the line feature l i , the Di (or D⊥
i ) matrix is assigned

its corresponding value. That choice is completely in-
dependent of the other D j (or D⊥

j ) for j �= i . The “dual”
matrix D⊥

i can be viewed as the orthogonal supplement
to Di and it always represents a coimage (of a point or
a line).12 Using the above definition of Di and D⊥

i , we
now formally define a universal multiple-view matrix:

M
.=


D⊥

2 R2 D1 D⊥
2 T2

D⊥
3 R3 D1 D⊥

3 T3

...
...

D⊥
m Rm D1 D⊥

m Tm

 . (50)

Depending on the particular choice for each D⊥
i or

D1, the dimension of the matrix M may vary. But no
matter what the choice for each individual D⊥

i or D1 is,
M will always be a valid matrix of certain dimension.
Then after elimination of the unknowns λi ’s, X, Xo and
v in the system of equations in (8) and (9), we obtain:

Theorem 1 (Multiple-view rank conditions). Con-
sider a point p lying on a line L and its images
x1, x2, . . . , xm ∈ R

3 and coimages l1, l2, . . . , lm ∈ R
3

relative to m camera frames whose relative configu-
ration is given by (Ri , Ti ) for i = 2, 3, . . . , m. Then
for any choice of D⊥

i and D1 in the definition of the
multiple-view matrix M, the rank of the resulting M
belongs to and only to one of the following two cases:

1. If D1 = l̂1 and D⊥
i = x̂i for some i ≥ 2, then:

1 ≤ rank(M) ≤ 2. (51)

2. Otherwise:

0 ≤ rank(M) ≤ 1. (52)

A complete proof of this theorem is a straight-forward
combination and extension of Lemmas 1–4. Essen-

tially, the above theorem gives a universal descrip-
tion of the incidence relation between a point and
line in terms of their m images seen from m vantage
points.

As a result of Theorem 1, all previously known and
some additional unknown constraints among multiple
images of point or line features are simply certain in-
stantiations of the rank conditions of Theorem 1. The
instantiations corresponding to case 2 are exactly the
ones that give rise to the multilinear constraints in the
literature. The instantiations corresponding to case 1,
as we have seen before, give rise to constraints that
are not necessarily multilinear. The completeness of
Theorem 1 also implies that there would be no multi-
linear relationship among quadruple-wise views, even
in the mixed feature scenario.13 Therefore, quadrilinear
constraints and quadrilinear tensors are clearly redun-
dant for multiple-view analysis. However, as we men-
tioned before (in Section 3.3.1), nontrivial constraints
may still exist up to four views.

As we have demonstrated in the previous sections,
other incidence conditions such as all features belong-
ing to a plane in E

3 can also be expressed in terms of
the same set of rank conditions:

Corollary 7 (Planar features and homography). Sup-
pose that all features are in a plane and coordinates
X of any point on it satisfy the equation π X = 0
for some vector πT ∈ R

4. Denote π = [π1, π2]
with π1T ∈ R

3, π2 ∈ R. Then simply append the
matrix [

π1 D1 π2
]

(53)

to the matrix M in its formal definition (50). The rank
condition on the new M remains exactly the same as in
Theorem 1.

The rank condition on the new matrix M then implies
all constraints among multiple images of these planar
features, as well as the special constraint previously
known as homography. Of course, the above represen-
tation is not intrinsic – it depends on parameters π that
describe the 3-D location of the plane. Following the
process in Section 3.3.3, the above corollary reduces to
rank conditions on matrices of the type in (49), which
in turn, give multi-quadratic constraints on the images
involved.

Remark 1 (Features at infinity). In Theorem 1, if the
point p and the line L are in the plane at infinity P

3\R
3,
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the rank condition on the multiple-view matrix M is just
the same. Hence the rank condition extends to multiple-
view geometry of the entire projective space P

3, and
it does not discriminate between Euclidean, affine or
projective space. In fact, the rank conditions are in-
variant under a much larger group of transformations:
It allows any transformation that preserves all the in-
cidence relations among a given set of features, these
transformations do not even have to be linear. For in-
stance, one can fold a piece of paper along its diagonal,
which is not a rigid body transformation. Nevertheless,
rank conditions associated to images of its vertices and
edges remain the same.

Remark 2 (Occlusion). If any feature is occluded in
a particular view, the corresponding row (or a group of
rows) is simply omitted from M ; or if only the point is
occluded but not the entire line(s) on which the point
lies, then simply replace the missing image of the point
by the corresponding image(s) of the line(s). In either
case, the overall rank condition on M remains unaf-
fected. In fact, the rank condition on M gives a very
effective criterion to tell whether or not a set of (mixed)
features indeed corresponds one to another. If the fea-
tures are miss-matched, either due to occlusion or to er-
rors while establishing correspondences, the rank con-
dition will be violated.

5. Geometric Interpretation
of the Multiple-View Matrix

Since there are practically infinitely many instantia-
tions for the multiple-view matrix, it is impossible to
provide a geometric description for each one of them.
Instead, we will discuss a few essential cases that will
give the reader a clear idea about how the rank condi-
tion of the multiple-view matrix works geometrically.
In particular, we will demonstrate that a further drop of
rank in the multiple-view matrix M , can be clearly in-
terpreted in terms of a corresponding geometric degen-
eracy. Understanding these representative cases would
be sufficient for the reader to carry out a similar analysis
to any other instantiations.

5.1. Case 2: 0 ≤ Rank(M) ≤ 1

Let us first consider the more general case, i.e., case 2
in Theorem 1, when rank(M) ≤ 1. We will discuss case
1 afterwards. For case 2, there are only two interesting

Figure 7. Generic configuration for the case rank(M) = 1. Planes
extended from the (co-)images l1, l2, l3 intersect at one line L in
3-D. Lines extended from the images x1, x2, x3 intersect at one point
p. p must lie on L .

sub-cases, depending on the value of the rank of M ,
are:

(a) rank(M) = 1, and (b) rank(M) = 0. (54)

Case (a), when rank of M is 1, corresponds to the
generic case for which, regardless of the particular
choice of features in M , all these features satisfy the
incidence condition. More explicitly, all the point fea-
tures (if at least 2 are present in M) come from a unique
3-D point p, all the lines features (if at least 3 are
present in M) come from a unique 3-D line L , and
if both point and line features are present, the point p
then must lie on the line L in 3-D. This is illustrated in
Fig. 7.

What happens if there are not enough point or line
features present in M? If, for example, there is only one
point feature x1 present in Mpl , then the rank of Mpl

being 1 implies that the line L is uniquely determined
by l2, . . . , lm . Hence, the point p is determined by L
and x1. On the other hand, if there is only one line
feature present in some M , but more than two point
features, L is then a family of lines lying on a plane
and passing through the point p determined by the rest
of point features in M .

Case (b), when the rank of M is 0, implies that all
the entries of M are zero. It is easy to verify that this
corresponds to a set of degenerate cases in which the
3-D location of the point or the line cannot be uniquely
determined from their multiple images (no matter how
many), and the incidence condition between the point
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p and the line L no longer holds. In these cases, the
best we can do is:

– When there are more than two point features present
in M , the 3-D location of the point p can be deter-
mined up to a line which connects all camera centers
(related to these point features);

– When there are more than three line features present
in M , the 3-D location of the line L can be deter-
mined up to the plane on which all related camera
centers must lie;

– When both point and line features are present in M ,
we can usually determine the point p up to a line
(connecting all camera centers related to the point
features) which lies on the same plane on which
the rest of the camera centers (related to the line
features) and the line L must lie.

Let us demonstrate this last case on a concrete ex-
ample. Suppose the number of views is m = 6 and we
choose the matrix M to be:

M =


lT
2 R2x1 lT

2 T2

lT
3 R3x1 lT

3 T3

lT
4 R4x1 lT

4 T4

x̂5 R5x1 x̂5T5

x̂6 R6x1 x̂6T6

 ∈ R
9×2. (55)

The geometric configuration of the point and line fea-
tures corresponding to the condition rank(M) = 0 is
illustrated in Fig. 8. But notice that, among all the pos-
sible solutions for L and p, if they both happen to be
at infinity, the incidence condition then would hold for
all the images involved.

Figure 8. A degenerate configuration for the case rank(M) = 0: a
point-line-line-line-point-point scenario. From the given rank condi-
tion, the line L could be any where on the plane spanned by all the
camera centers; the point p could be any where on the line through
o1, o5, o6.

5.2. Case 1: 1 ≤ Rank(M) ≤ 2

We now discuss case 1 in Theorem 1, when rank(M) ≤
2. In this case, the matrix M must contain at least one
sub-matrix of the type:

[x̂i Ri l̂1 x̂i Ti ] ∈ R
3×4, (56)

for some i ≥ 2. It is easy to verify that such a sub-matrix
can never be zero, hence the only possible values for
the rank of M are:

(a) rank(M) = 2, and (b) rank(M) = 1. (57)

Case (a), when the rank of M is 2, corresponds to the
generic cases for which the incidence condition among
the features is effective. The essential example here is
the matrix Mlp given in (33):

Mlp =


x̂2 R2l̂1 x̂2T2

...
...

x̂m Rm l̂1 x̂m Tm

 ∈ R
[3(m−1)]×4. (58)

If rank(Mlp) = 2, it can be shown that the point p is
only determined up to the plane specified by o1 and
l1 but all the point features x2, . . . , xm correspond to
the same point p. The line L is only determined up to
this plane, but the point p does not have to be on this
line. This is illustrated in Fig. 9. Beyond Mlp, if there
are more than two line features present in some M , the
point p then must lie on every plane associated to ev-
ery line feature. Hence p must be on the intersection

Figure 9. Generic configuration for the case rank(Mlp) = 2.
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of these planes. Notice that, even in this case, adding
more rows of line features to M will not be enough to
uniquely determine L in 3-D. This is because the inci-
dence condition for multiple line features requires that
the rank of the associated matrix Ml be 1.14 If we only
require rank 2 for the overall matrix M , the line can be
determined only up to a family of lines—intersections
of the planes associated to all the line features—which
all should intersect at the same point p.

Case (b), when the rank of M is 1, corresponds to a set
of degenerate cases for which the incidence relation-
ship between the point p and the line L will be violated.
For example, it is direct to show that Mlp is of rank 1 if
and only if all the vectors R−1

i xi , i = 2, . . . , m are par-
allel to each other and they are all orthogonal to l1, and
R−1

i Ti , i = 2, . . . , m are also orthogonal to l1. That
means all the camera centers lie on the same plane
specified by o1 and l1 and all the images x2, . . . , xm

(transformed to the reference camera frame) lie on the
same plane and are parallel to each other. For example,
suppose that m = 5 and choose M to be:

M =


x̂2 R2l̂1 x̂2T2

x̂3 R3l̂1 x̂3T3

x̂4 R4l̂1 x̂4T4

lT
5 R5l̂1 lT

5 T5

 ∈ R
10×4. (59)

The geometric configuration of the point and line fea-
tures corresponding to the condition rank(M) = 1 is
illustrated in Fig. 10.

Figure 10. A degenerate configuration for the case rank(M) = 1:
a line-point-point-point-line scenario.

Notice that in this case, we no longer have an inci-
dence condition for the point features. However, one
can view them as if they intersected at a point p at
infinity. In general, we no longer have the incidence
condition between the point p and the line L , unless
both the point p and line L are in the plane at infinity in
the first place. But since the rank condition is effective
for line features, the incidence condition for all the line
features still holds.

To summarize the above discussion, we see that the
rank conditions indeed allow us to carry out meaning-
ful global geometric analysis on the relationship among
multiple point and line features for arbitrarily many
views. There is no doubt that this extends existing meth-
ods based on multifocal tensors that can only be used
for analyzing up to three views at a time. Since there
is yet no systematic way to extend triple-wise analy-
sis to multiple views, the multiple-view matrix seems
to be a more natural tool for multiple-view analysis.
Notice that the rank conditions imply all previously
known multilinear constraints, but multilinear con-
straints do not necessarily imply the rank conditions.
This is because the use of algebraic equations may
introduce certain artificial degeneracies that make a
global analysis much more complicated and sometimes
even intractable. On the other hand, the rank conditions
have no problem characterizing all the geometrically
meaningful degeneracies in a multiple-view mixed-
feature scenario. All the degenerate cases simply cor-
respond to a further drop of rank for the multiple-view
matrix.

6. Multiple-View Factorization

The unified formulation of the constraints among mul-
tiple images in terms of the rank conditions, allows
us to tackle many problems in multiple-view geome-
try globally. More specifically, one can use these rank
conditions to test whether or not a given set of features
(points or lines) indeed satisfy certain incidence rela-
tions in E

3. For example, whether a given set of point
and line features indeed correspond one to another de-
pends on whether all associated rank conditions are sat-
isfied. The rank values can be used not only to detect
outliers but also degenerate configurations. The rank
conditions also allow us to transfer multiple features
to a new view by using all features and incidence con-
ditions among them simultaneously, without resorting
to the 3-D structure of the scene. Hence the multiple-
view matrix provides the geometric basis for any view
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synthesis or image based rendering techniques. We
have already carried out some initial experiments ex-
ploring the utility of the rank constraints (Kosecka
and Ma, 2002) and more thorough experiments and
comparison with existing techniques is currently
underway.

Due to the space limitations, here we only demon-
strate the use of the rank condition on the structure and
motion recovery problem from multiple views.15 The
proposed algorithm belongs to a class of global fac-
torization based techniques for structure and motion
recovery and enables simultaneous recovery of cam-
era configurations (Ri , Ti )’s and structure of the scene.
In case of perspective projection alternative projec-
tive factorization technique proposed by Triggs (1996).
Since that algorithm is based on the less compact rank
condition of matrix Np (Eq. (11)), the problem is over-
parameterized and also requires nonunique initializa-
tion of projective scales. Due to the nature of the rank
conditions presented here, we not only obtain minimal
parameterization of the problem but can also simulta-
neously incorporate additional features. The incidence
relations among given points and lines can now be ex-
plicitly taken into account when a global and consis-
tent recovery of motion and structure takes place. In
the following section, in addition to the presentation
of the factorization based algorithm for the mixed fea-
ture case, we chose to examine the usefulness of the
incidence relations in the multiple-view structure and
motion recovery.

In order to outline the conceptual algorithm for
mixed feature case, let us consider image of a cube
as shown in Fig. 11. Let the j th corner p j be the in-
tersection of the three edges L1 j , L2 j and L3 j , j =
1, 2, . . . , 8. Given m images of the cube, we have the

Figure 11. A standard cube. The three edges L1, L2, L3 intersect
at the corner p. The coordinate frames indicate that m images are
taken at these vantage points.

multiple-view matrix M j associated to p j :

M j =



x̂ j
2 R2x j

1 x̂ j
2T2

l1 jT
2 R2x j

1 l1 jT
2 T2

l2 jT
2 R2x j

1 l2 jT
2 T2

l3 jT
2 R2x j

1 l3 jT
2 T2

...
...

x̂ j
m Rmx j

1 x̂ j
m Tm

l1 jT
m Rmx j

1 l1 jT
m Tm

l2 jT
m Rmx j

1 l2 jT
m Tm

l3 jT
m Rmx j

1 l3 jT
m Tm



∈ R
[6(m−1)]×2, (60)

where x j
i ∈ R

3 means the image of the j th corner in
the i th view and lk j

i ∈ R
3 means the image of the kth

edge incident to the j th corner in the i th view. Lets
see how can we use the rank condition rank(M j ) = 1
stated in Theorem 1 towards the structure and motion
recovery. First note that α j = [λ j

1, 1]T ∈ R
2 is in the

kernel of M j , where λ
j
1 is the depth of p j with respect

to the reference frame. Hence in case the matrix M j is
known the depth of the point can be recovered. In addi-
tion to the multiple images x j

1, x j
2, x j

3 of the j th corner
p j itself, the extra rows associated to the line features
lk j
i , k = 1, 2, 3, i = 1, 2, . . . , m also contribute to-

wards determination of the depth scale λ
j
1.

We can already see one advantage of the rank condi-
tion: It can simultaneously handle multiple incidence
conditions associated to the same feature. In principle,
by using (49) or Corollary 7, one can further take into
account that the four vertices and edges on each face
are coplanar. Since such incidence conditions and rela-
tions among points and lines occur frequently in prac-
tice, especially for man-made objects, such as buildings
and houses, the use of multiple-view matrix for mixed
features is going to improve the quality of the over-
all reconstruction by explicitly taking into account all
incidence relations among features of various types.

In order to estimate α j we need to know the ma-
trix M j , i.e., we need to know the motion (R2, T2),
. . . , (Rm, Tm). From the geometric meaning of α j =
[λ j

1, 1]T , α j can be solved if we know only the motion
(R2, T2) between the first two views, which can be ini-
tially estimated using the standard 8-point algorithm.
Consider now that we have initial estimates of α j ’s.
Notice now that each row of M j now becomes linear
equation in (Ri , Ti ) for i = 2, . . . , m; e.g., first row
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will become λ
j
1 x̂ j

2 R2x j
1 + x̂ j

2T2 = 0. Hence we can use
the equations:

M jα j = 0, j = 1, 2, . . . , 8 (61)

to solve for the motions (again). Define the vectors:

�Ri = [r11, r12, r13, r21, r22, r23, r31, r32, r33]T ∈ R
9

and �Ti = Ti ∈ R
3, i = 2, 3, . . . , m. Solving (61) for

(Ri , Ti ) is then equivalent to finding the solution to the
following equations for i = 2, 3, . . . , m:

Pi

[ �Ri

�Ti

]
=



λ1
1x̂1

i ∗ x1
1

T x̂1
i

λ1
1l11T

i ∗ x1
1

T l11T
i

λ1
1l21T

i ∗ x1
1

T l21T
i

λ1
1l31T

i ∗ x1
1

T l31T
i

...
...

λ8
1x̂8

i ∗ x8
1

T x̂8
i

λ8
1l18T

i ∗ x8
1

T l18T
i

λ8
1l28T

i ∗ x8
1

T l28T
i

λ8
1l38T

i ∗ x8
1

T l38T
i



[ �Ri

�Ti

]
= 0 ∈ R

48,

(62)

where A ∗ B is the Kronecker product of A and B. In
general, if we have more than 6 feature points (here
we have 8) or equivalently 12 feature lines, the rank
of the matrix Pi is 11 and there is a unique solution to
( �Ri , �Ti ).

Let T̃i ∈ R
3 and R̃i ∈ R

3×3 be the (unique) solution
of (62) in matrix form. Such a solution can be obtained
numerically as the eigenvector of Pi associated to the
smallest singular value. Let R̃i = Ui Si V T

i be the SVD
of R̃i . Then the solution of (62) in R

3 × SO(3) is given
by:

Ti = sign
(

det
(
Ui V T

i

))
3
√

det(Si )
T̃i ∈ R

3, (63)

Ri = sign
(

det
(
Ui V

T
i

))
Ui V

T
i ∈ SO(3). (64)

In case the camera is not calibrated the scales with
respect to the first frame λ

j
1 can be initialized via pro-

jective reconstruction from two views and the rotation
matrix constraints on (R̃i , T̃i ) will not be enforced. Ad-
ditional normalization step of image coordinate is also

recommended, so as to ensure better performance in
the presence of noise.

We then have the following linear algorithm for mo-
tion and structure estimation from three views of a
cube:

Algorithm 1 (Motion and structure from mixed
features). Given m(=3) images x j

1, . . . , x j
m of n(=8)

points p j , j = 1, 2, . . . , n (as the corners of a cube),
and the images lk j

i , k = 1, 2, 3 of the three edges in-
tersecting at p j , estimate the motions (Ri , Ti ), i =
2, 3, . . . , m as follows:

1. Initialization: s = 0

(a) Compute (R2, T2) using the 8-point algorithm
for the first two views, using for example
(Longuet-Higgins, 1981).

(b) Compute α
j
s = [λ j

1/λ
1
1, 1]T where λ

j
1 is the

depth of the j th point relative to the first camera
frame.

2. Compute (R̃i , T̃i ) as the eigenvector associated to
the smallest singular value of Pi , i = 2, 3, . . . , m.

3. Compute (Ri , Ti ) from (63) and (64) for i =
2, 3, . . . , m.

4. Compute new α
j
s+1 = α j from (61). Normalize so

that λ1
1,s+1 = 1.

5. If ‖αs − αs+1‖ > ε, for a pre-specified ε > 0, then
s = s + 1 and goto 2. Else stop.

The camera motion is then the converged (Ri , Ti ), i =
2, 3, . . . , m and the structure of the points (with respect
to the first camera frame) is the converged depth scalar
λ

j
1, j = 1, 2, . . . , n.
We have a few comments on the proposed algorithm:

1. Global scale. The reason to set λ1
1,s+1 = 1 is to

fix the global scale. It is equivalent to putting the
first point at a relative distance of 1 to the first cam-
era center. The above algorithm is a straightforward
modification of the algorithm proposed for the pure
point case (Ma et al., 2001). All measurements of
line features directly contribute to the estimation of
the camera motion and the structure of the points.
Throughout the algorithm, there is no need to ini-
tialize or estimate the 3-D parameters of lines.

2. Line and planar cases. Although the algorithm is
based on the cube, considers only three views, and
utilizes only one type of multiple-view matrix, it can
be easily generalized to any other objects and arbi-
trarily many views whenever incidence conditions
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among a set of point features and line features are
present. One may also use it for rank conditions on
different types of multiple-view matrices provided
by Theorem 1. The reader may refer to (Ma et al.,
2001) for the case when D1 is chosen to be l̂1, or
the features are all coplanar. The same factorization
works for these cases with only minor changes.

3. Uncalibrated case. Although the algorithm is pro-
posed for the calibrated case, in the uncalibrated
case, one may take any projective reconstruction to
initialize α and factor. A detailed study on the un-
calibrated case can be found in Ma et al. (2003).

The reader must be aware that the above algorithm
is only conceptual (and naive in many ways). It by
no means suggests that the resulting algorithm would
work better in practice than some existing algorithms in
every situation. The reason is, there are many possible
ways to impose the rank conditions and each of them,
although maybe algebraically equivalent, can have dra-
matically different numerical stability and sensitivity.
To make the situation even worse, under different con-
ditions (e.g., long baseline or short baseline), correctly
imposing these rank conditions does require differ-
ent numerical recipes.16 A systematic characterization
of numerical stability of the rank conditions remains
largely open at this point. It is certainly the next logical
step for future research.

7. Simulation Results

Given the above conceptual algorithm the following
section presents simulation results in order to justify
our intuition behind the suggested global approach to
structure from motion recovery. While at this stage we
do not make any optimality claims, due to the linear
nature of the proposed algorithms, we will demonstrate
the performance and dependency of the algorithm on
types of features in the presence of noise.

7.1. Reconstruction With or Without
Incidence Relations

The simulation parameters are as follows: the camera’s
field of view is 90◦, image size is 500×500, everything
is measured in units of the focal length of the camera,
and features typically are suited with a depth variation
is from 100 to 400 units of focal length away from the
camera center, i.e., they are located in the truncated

Figure 12. Simulation setup.

pyramid specified by the given field of view and depth
variation (see Fig. 12). Camera motions are specified
by their translation and rotation axes. For example, be-
tween a pair of frames, the symbol XY means that the
translation is along the X -axis and rotation is along the
Y -axis. If we have a sequence of such symbols con-
nected by hyphens, it specifies a sequence of consec-
utive motions. We always choose the amount of total
motion, so that all feature points will stay in the field
of view for all frames. In all simulations, independent
Gaussian noise with a standard deviation (std) given in
pixels is added to each image point, and each image line
is perturbed in a random direction of a random angle
with a corresponding standard deviation given in de-
grees.17 Error measure for rotation is arccos( tr(R R̃T )−1

2 )
in degrees where R̃ is an estimate of the true R. Error
measure for translation is the angle between T and T̃
in degrees where T̃ is an estimate of the true T . Er-
ror measure for the scene structure is the percentage of
‖α − α̃‖/‖α‖ where α̃ is an estimate of the true α.

We apply the algorithm to a scene which consists
of (four) cubes. Cubes are good objects to test the al-
gorithm since the relationships between their corners
and edges are easily defined and they represent a fun-
damental structure of many objects in real-life. It is
certainly a first step to see how the multiple-view ma-
trix based approach is able to take into account point
and line features as well as their inter-relationships to
facilitate the overall recovery. The length of the four
cube edges are 30, 40, 60 and 80 units of focal length,
respectively. The cubes are arranged so that the depth
of their corners ranges from 75 to 350 units of focal
length. The three motions (relative to the first view) are
an XX-motion with −10 degrees rotation and 20 units
translation, a YY-motion with 10 degrees rotation and
20 units translation and another YY-motion with −10
degrees rotation and 20 units translation, as shown in
Fig. 13.
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Figure 13. Four views of four 3-D cubes in (normalized) image coordinates. The circle and the dotted lines are the original images, the dots
and the solid lines are the noisy observations under 5 pixels noise on point features and 0.5 degrees noise on line features.

Figure 14. Motion estimates error versus level of noises. “Motion x-y” means the estimate for the motion between image frames x and y.
Since the results are very much similar, we only plotted “Motion 1–2” and “Motion 1–4.”

We run the algorithm for 1000 trials with the noise
level on the point features from 0 pixel to 5 pixels and
a corresponding noise level on the line features from
0 degree to 1 degrees. Relative to the given amount

of translation, 5 pixels noise is rather high because we
do want to compare how all the algorithms perform
over a large range of noise levels. The results of the
motion estimate error and structure estimate error are
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Figure 15. Structure estimates error versus level of noises. Here α0 represents the true structure and α the estimated.

given in Figs. 14 and 15 respectively. The “Point fea-
ture only” algorithm essentially uses the multiple-view
matrix M in (61) without all the rows associated to
the line features; and the “Mixed features” algorithm
uses essentially the same M as in (61). Both algo-
rithms are initialized by the standard 8-point algorithm.
The “Mixed features” algorithm gives a significant im-
provement in all the estimates as a result of the use of
both point and line features in the recovery. Also notice
that, at a high noise levels, even though the 8-point algo-
rithm gives rather off initialization values, the two itera-
tive algorithms manage to converge back to reasonable
estimates.

8. Conclusions and Future Work

This paper has proposed a unified paradigm which
synthesizes results and experiences in the study of
multiple-view geometry of mixed features. It is shown
that all incidence relations among multiple images of a
point or a line are captured through certain rank condi-
tions on a so-called multiple-view matrix. It is proven
that the rank conditions are a super set of all previ-
ously known multiple-view constraints. Relationships
among these constraints become rather simple conse-
quences from the rank conditions. To a large extent,

the theory developed in this paper simplifies and uni-
fies the study of multiple-view geometry and enables
us to carry out meaningful geometric analysis for arbi-
trarily many images, without going through a pairwise,
triple-wise or quadruple-wise analysis. Compared to
conventional multiple-view analysis based on trifo-
cal tensors, the multiple-view matrix based approach
clearly separates meaningful geometric degeneracies
from algebraic degeneracies which may be artificially
introduced by the use of algebraic equations or tensors.
In particular, as shown in this paper, any configuration
which causes a further drop of rank in the multiple-
view matrix exactly corresponds to certain global ge-
ometric degeneracy. Combined with generalized rank
conditions for a space of arbitrary dimension, i.e. rank
conditions for projections from R

n to R
k with k < n

(see Fossum et al., 2001), results in this paper give rise
to a coherent but simple geometric theory that is gen-
uine for multiple images, for both static and dynamical
scenes.

The approach proposed in this paper aims to study
multiple-view geometry from a new perspective. It in-
tends to provide a clear theoretical basis for any fur-
ther development of algorithms, so that a systematic
evaluation of algorithms will be possible. Most impor-
tantly, we hope to identify difficulties in multiple-view
geometry that are caused by geometric configurations
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of the given data or by numerical methods adopted in
a particular algorithm. The linear algorithms given in
this paper and others (Ma et al., 2001) only show a
straight-forward (hence naive) way of using these rank
conditions. There are many possible ways to improve
them: 1. One can use better error measures in the 2-D
image to recover the motion and structure optimally
subject to the rank condition; 2. Slight change of the
algorithm may handle occlusions; 3. Better numerical
methods should be investigated on how to impose the
rank condition; and so on. Currently, we are developing
practical algorithms based on the multiple-view matrix
for various purposes: feature matching, feature trans-
fer (or view synthesis), and image-based modeling and
rendering. Readers who are interested in more recent
development along this line of work may refer to the
recent book (Ma et al., 2003). While we are still in
the process of investigating the full potential of this
new approach and developing practical algorithms for
real applications, there are plenty of reasons for us to
believe that we are still at a very early stage of un-
derstanding the full extent of multiple-view geometry:
either its theory or its practice.

Notes

1. SL(3) is the special linear group, i.e., the group of all 3 × 3 ma-
trices with determinant 1. In computer vision literature, K (t) is
typically chosen to be an upper triangular matrix. That assump-
tion does not make the problem at hand any easier.

2. SE(3) is the group of all special Euclidean transformations,
which preserve the Euclidean metric of E

3.
3. SO(3) is special orthogonal group, i.e., the group of all 3 × 3

rotation matrices.
4. In fact, there is some redundancy using l̂ to describe the plane: the

three column (or row) vectors in l̂ are not linearly independent.
They only span a two-dimensional space. However, we here use
it anyway to simplify the notation.

5. Depending on the context, the reference frame could be either
an Euclidean, Affine or Projective reference frame. In all cases
the projection matrix for the first image becomes [I, 0] ∈ R

3×4.
6. According to Eq. (3), they are in fact (KR, KT). We here use

(R, T ) to simplify the notation.
7. That is any other polynomials that the images satisfy must contain

these polynomials as factors.
8. However, we will show that quadrilinear constraints are actually

useful (only) in the case in which a family of lines intersects at
a point.

9. Again, here this statement is regarding multiple corresponding
images of a line. As we will soon see, however, new constraints
may arise when the images do not have to correspond to the same
line in 3-D space.

10. This is due to the redundancy of using û for the orthogonal
supplement of u ∈ R

3.

11. Hence it is a constraint that is not in any of the multilinear (or
multifocal) constraint lists previously studied in the computer
vision literature. For a list of these multilinear constraints (see
Hartley and Zisserman, 2000).

12. In fact, there are many equivalent matrix representations for Di

and D⊥
i . We choose x̂i and l̂i here because they are the simplest

forms representing the orthogonal subspaces of xi and li and also
linear in xi and li respectively.

13. In fact, this is quite expected: While the rank condition geomet-
rically corresponds to the incidence condition that lines intersect
at a point and that planes intersect at a line, incidence condition
that three-dimensional subspaces intersect at a plane is a void
condition in E

3.
14. Matrix Ml is obtained from M by extracting the line measure-

ments only.
15. The reader is referred to Ma et al. (2001) for details about appli-

cations to other problems in multiple-view geometry.
16. This is true even for the standard 8-point algorithm in the two

view case.
17. Since line features can be measured more reliably than point

features, lower noise level is added to them in simulations.
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