
3D Pose Regression using Convolutional Neural Networks

Siddharth Mahendran
siddharthm@jhu.edu

Haider Ali
hali@jhu.edu

René Vidal
rvidal@cis.jhu.edu

Center for Imaging Science, Johns Hopkins University

Introduction 3D pose estimation is vital to scene under-
standing and a key component of many modern vision tasks
like autonomous navigation. It is also a very old and well-
studied problem and many different approaches have been
proposed for this very challenging task. Due to space con-
straints, we focus our discussion on two recent state-of-the-
art approaches based on Convolutional Neural Networks
(CNNs): Viewpoints&Keypoints (V&K) [9] and Render-
for-CNN (Render) [8]. In both these works, the 3D pose
space is discretized into bins and a pose-classification prob-
lem is solved using standard architectures, VGG-net [7] for
[9] and Alexnet [5] for [8], with an additional fully con-
nected (FC) layer that predicts the pose label. V&K [9] aug-
ments training data using jittered bounding boxes with some
overlap whereas Render [8] uses millions of images ren-
dered from 3D models for training and real images for fine-
tuning. Both train all classes jointly with weights shared
across all layers except the output layer.

Contributions We argue that 3D pose is continuous and
can be solved in a regression framework instead. The chal-
lenge is that 3D pose space is non-Euclidean, hence CNN
algorithms need to be modified to account for the nonlinear
structure of the output space. Our contributions are three-
fold: (i) a suitable representation for 3D pose that also al-
lows us to use a natural non-linearity at the output layer
and an appropriate geodesic loss, (ii) data augmentation that
is relevant for the task of 3D pose regression and (iii) an
algorithm to train and finetune a modified VGG network
that shows competitive performance on the PASCAL3D+
dataset. In this work, like in [9, 8], we assume that we have
a bounding box in the image around an object of interest,
like the output of a 2D detector, and find the 3D pose of the
object inside the bounding box. More specifically, we are
interested in estimating the rotation transformation between
object and camera. We note that pose regression is common
practice in human pose estimation and that other non-CNN
based approaches do object pose regression. For instance,
[4] regresses camera pose with a quaternion representation
but uses euclidean loss instead of a geodesic loss.

Representing 3D Rotations A rotation of angle θ
about axis v, ‖v‖2 = 1, can be represented as

R = exp(θv̂), where v̂ is the skew-symmetric operator
[[0,−v3, v2], [v3, 0,−v1], [−v2, v1, 0]] of the vector v =
(v1, v2, v3)

T and exp is the matrix exponential which can
be simplified to R = I3 + sin θv̂ + (1− cos θ)v̂2 using the
Rodrigues’ rotation formula. So, any rotation matrix R has
a corresponding 3D representation y = θv and vice-versa.
We also restrict θ ∈ [0, π) which ensures a one-to-one cor-
respondence between the rotation matrix R and its repre-
sentation. We refer the reader to [6] for more details.

In
pu

tD
at

a:
40

96
-D

FC
:4

0
9
6
×

4
0
9
6

B
at

ch
N

or
m

R
eL

U

FC
:4

0
9
6
×

5
0
0

B
at

ch
N

or
m

R
eL

U

FC
:4

0
9
6
×

3

π
ta
n
h

Figure 1: Pose Network

Network Architecture and Loss function Our network is a
modification of the VGG-M network [3] and has two parts,
a feature network and a pose network. The feature network
is identical to the VGG-M upto layer FC6 and is initial-
ized using pre-trained weights. The pose network takes as
input the 4096-dim output of the feature network and has
3 additional fully connected layers as outlined in Fig. 1.
The feature network is shared across all object categories
but each category has its own pose network. Note that
this is similar to [9, 8] except that we branch out at FC6
whereas they branch at FC7. The output of the pose net-
work is θv and we model the constraints θ ∈ [0, π] and
vi ∈ [−1, 1] using a π tanh non-linearity. An additional
advantage of modeling pose in the continuous domain is
that we can now use the more appropriate geodesic loss
instead of the cross entropy loss for pose-classification or
the mean squared error for standard regression. We op-
timize the geodesic error between the ground-truth rota-
tion R and the estimated rotation R̂, given by L(R, R̂) =
‖ logRT R̂‖F√

2
. Here the matrix logarithm, can be simplified

to get L(R, R̂) = | cos−1
[
1
2 (trace(RT R̂)− 1)

]
|.

1



Data Augmentation For every image, we have 3D pose
annotated in the form of azimuth, elevation and camera-
tilt angles. The corresponding 3D rotation is given by
R(az, el, ct) = RZ(ct)RX(el)RZ(az) where RZ and RX

denote rotations around the z- and x-axis respectively. Jit-
tered bounding boxes, like in [9], introduce small unknown
shifts in the correspondingR. Instead, we augment our data
by generating new samples corresponding to known small
shifts in camera-tilt and azimuth (see Fig 2). Small shifts in
camera-tilt lead to in-plane rotations which are easily cap-
tured by rotating the image. Small shifts in azimuth lead to
out-of-plane rotations which are captured by homographies
estimated from 2D projections of 3D point clouds corre-
sponding to the object. We generate a dense grid of samples
corresponding to R(az ± δaz, el, ct± δct). We also flip all
samples, which corresponds to R(−az, el,−ct).

(a) original (b) δct : +4◦ (c) δct : −4◦

(d) flipped (e) δaz : +2.5◦ (f) δaz : −2.5◦

Figure 2: Augmented training samples from a car image

Experiments We train and test our algorithm on the PAS-
CAL3D+ dataset [10] which has annotations for PASCAL
2012 trainval and Imagenet trainval images for 12 com-
mon categories. Like V&K [9], we train on the augmented
data from Imagenet trainval and PASCAL train images, and
test on PASCAL validation images. For every training im-
age, we generate roughly 162 new augmented samples with
shifts in the camera-tilt −4 : 1 : 4 (x9), shifts in azimuth
−2.5 : 0.5 : 2.5 (x9) and flips (x2). In this abstract, we
present the results of some preliminary experiments where
we estimate the pose given ground-truth bounding boxes of
objects that are not truncated or occluded (same protocol
as [9]). We train our network in two steps: (i) we train
the pose network (keeping the feature network fixed) us-
ing augmented Imagenet trainval images with 5-fold cross
validation, and (ii) use this as the initialization to fine-tune
the network with all classes jointly in an end-to-end man-
ner using PASCAL-train and Imagenet-trainval images with
only flipped augmentation. We present our results in Table
1 where we report the median geodesic viewpoint error be-
tween the estimated rotation and ground-truth rotation. As
can be seen in the table, we get competitive results com-
pared to the current state-of-the-art. Code was written using

Keras [1] with TensorFlow [2] backend.

Class [9] [8] ours-no tune ours-with tune
aero 13.8 15.4 18.30 15.11
bike 17.7 14.8 24.27 20.87
boat 21.3 25.6 47.48 37.32

bottle 12.9 9.3 8.93 8.79
bus 5.8 3.6 4.31 4.14
car 9.1 6.0 9.00 7.86

chair 14.8 9.7 35.24 20.10
table 15.2 10.8 32.66 21.81

mbike 14.7 16.7 21.69 19.99
sofa 13.7 9.5 21.07 18.88
train 8.7 6.1 7.28 7.85

tv 15.4 12.6 17.44 16.68

Table 1: Median angle error for the different categories on
PASCAL-val images. ours-no tune refers to the experiment
where we use the pose network learnt from Imagenet data
to test. ours-with tune is after the end-to-end fine-tuning
across all categories

Conclusions and Future Work We have shown that with
a suitable representation, loss function and data augmenta-
tion, we get competitive performance with respect to state-
of-the-art pose-classification methods while solving a pose-
regression task. We will continue this investigation into
what is the most appropriate representation of 3D object
pose while estimating it from a 2D image. In the future, we
will extend our work to include performance using bound-
ing boxes returned by 2D detection systems. We also find
that our method doesn’t work as well under the accuracy
metric (percentage of images that have error < 30◦) and we
are investigating this behaviour. We have also made a lot of
decision choices that we hope to extensively test, for exam-
ple: network choice (VGG-M v/s VGG16), branching point
(Pool5 v/s FC6 v/s FC7), and augmentations.
Acknowledgements This work was supported by NSF
grant 1527340
[1] Keras. https://github.com/fchollet/keras, 2015.
[2] TensorFlow: Large-scale machine learning on heterogeneous sys-

tems. http://tensorflow.org/, 2015.
[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of

the devil in the details: Delving deep into convolutional nets. BMVC,
2014.

[4] A. Kendall, M. Grimes, and R. Cippolla. Posenet: A convolutional
network for real-time 6-dof camera relocalization. ICCV, 2015.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. NIPS, 2012.

[6] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to 3-D
Vision: From Images to Geometric Models. SpringerVerlag, 2003.

[7] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[8] H. Su, C. Qi, Y. Li, and L. Guibas. Render for cnn: Viewpoint esti-
mation in images using cnns trained with rendered 3d model views.
ICCV, 2015.

[9] S. Tulsiani and J. Malik. Viewpoints and keypoints. CVPR, 2015.
[10] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A bench-

mark for 3d object detection in the wild. WACV, 2014.

https://github.com/fchollet/keras
http://tensorflow.org/

