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Abstract. Current CNN-based algorithms for recovering the 3D pose of
an object in an image assume knowledge about both the object category
and its 2D localization in the image. In this paper, we relax one of these
constraints and propose to solve the task of joint object category and
3D pose estimation from an image assuming known 2D localization. We
design a new architecture for this task composed of a feature network
that is shared between subtasks, an object categorization network built
on top of the feature network, and a collection of category dependent
pose regression networks. We also introduce suitable loss functions and a
training method for the new architecture. Experiments on the challeng-
ing PASCAL3D+ dataset show state-of-the-art performance in the joint
categorization and pose estimation task. Moreover, our performance on
the joint task is comparable to the performance of state-of-the-art meth-
ods on the simpler 3D pose estimation with known object category task.

Keywords: 3D Pose estimation, Category-dependent pose networks,
multi-task networks, ResNet architecture

1 Introduction

Object pose estimation is the task of estimating the relative rigid transformation
between the camera and the object in an image. This is an old and fundamental
problem in computer vision and a stepping stone for many other problems such as
3D scene understanding and reconstruction. Recently, this problem has enjoyed
renewed interest due to the emergence of applications in autonomous driving
and augmented reality, where the ability to reason about objects in 3D is key.

Fig. 1: Overview of our problem

As with many computer vision
tasks, methods based on convolu-
tional neural networks (CNNs) have
been shown to work really well for ob-
ject pose estimation [1–6]. However,
these methods often assume knowledge about the object category and its 2D
localization in the image. In this paper, we relax one of these constraints and
propose to solve the problem of joint object category and 3D pose estimation
from 2D images assuming known localization of the object in the image. More
specifically, we assume that the bounding box around an object in the image
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is provided to us by an oracle and we learn a deep network that predicts the
category label and 3D pose of the object, as illustrated in Fig. 1.

Fig. 2: Different network architectures for joint object
category and 3D pose estimation

One approach to ob-
ject category and 3D
pose estimation is to
learn independent net-
works for each task, as
illustrated in Fig. 2a.
However, this approach
does not exploit the fact
that some parts of the
representation could be
shared across multiple
tasks [7]. To address this
issue, [8] designs inde-
pendent pose and category networks, but each one is built on top of a feature
network that is shared by both tasks, as shown in Fig. 2b. However, one issue
with both independent and shared networks is that they predict pose in a cate-
gory agnostic manner, which may not always be possible because in some cases
it may be difficult to define a universal reference frame (or characteristic pose)
for all object categories.1 To address this issue, we could train a category depen-
dent pose network, i.e., a collection of pose networks (one per object category),
each of which takes as input the 2D image and predicts a 3D pose, as shown
in Fig. 2c. The final 3D pose predicted by this sequential network is the pose
predicted by the network corresponding to the predicted category label. How-
ever, as is the case for independent networks, sequential networks do not take
advantage of shared representations.

Paper contributions. We propose an integrated architecture that provides the
best of both worlds by integrating (1) a shared feature representation for both
tasks and (2) a category dependent pose network. The proposed architecture
consists of a shared feature network, whose output is used as an input to both a
category network and a category dependent pose network, as shown in Fig. 2d.
The feature network is a residual network learned so that it captures properties
of the image that are relevant to both categorization and pose estimation. The
category network is also a residual network applied to the output of the feature
network. Finally, the category dependent pose network is a collection of fully
connected networks (one per object category) that receives the outputs of both
the feature and categorization networks as inputs. Since the latter is a class
probability vector, it can be used to predict the final pose by fusing pose from
individual categories, thereby being potentially more robust to errors in the
estimation of the object category. We also devise a new training algorithm for
our proposed architecture. Our experiments show that the proposed approach
achieves state-of-the-art performance on the challenging Pascal3D+ [9] dataset

1 A natural choice is the center of gravity of the object and the three principal direc-
tions (PDs), but even PDs cannot be consistently defined across object categories.
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for the joint categorization and pose estimation task; which is comparable to the
performance of state-of-the-art methods on the simpler 3D pose estimation with
known object category task. We also present an ablative analysis that provides
empirical justification for our design choices such as (i) network architecture, (ii)
feature representations, (iii) training method, etc. To the best of our knowledge,
our work is the first to use residual networks [10] –that have worked very well
for the task of image classification– for 3D pose estimation. We do note that [11]
also use residual networks but for azimuth or orientation estimation.

Paper outline. We first review related work in §2. We then describe our model
for joint object category and 3D pose estimation in §3, including the proposed
architecture in §3.1, loss functions in §3.2, and training procedure in §3.3. Finally,
we describe our experimental evaluation and analysis in §4.
2 Related Work
There are two main lines of research that are relevant to our work: (i) 3D pose
estimation given object category label and (ii) joint object category and pose
estimation. There are many non-deep learning based approaches such as [12–19],
which have designed systems to solve these two tasks. However, due to space
constraints, we restrict our discussion to deep learning based approaches.

3D Pose estimation given object category label. Current literature for this
task can be grouped into two categories: (1) predict 2D keypoints from images
and then align 3D models with these keypoints to recover 3D pose and (2)
predict 3D pose directly from 2D images. The first category includes methods
like Pavlakos et al. [4] and Wu et al. [5], which recover a full 6-dimensional
pose (azimuth, elevation, camera-tilt, depth, image-translation). Both methods
train on images that have been annotated with 2D keypoints that correspond to
semantic keypoints on 3D object models. Given a 2D image, they first generate
a probabilistic heatmap of 2D keypoints and then recover 3D pose by aligning
these 2D keypoints with the 3D keypoints. The second category includes methods
like Tulsiani and Malik [1], Su et al. [2], Mahendran et al. [6], Mousavian et

al. [3] and Wang et al. [20], where they recover the 3D rotation between the
object and the camera which corresponds to a 3-dimensional pose (azimuth,
elevation, camera-tilt). We also aim to predict a 3-dof pose output in this work.
[1] and [2] setup a pose-classification problem by discretizing the euler angles
into pose-labels and minimize the cross-entropy loss during training. [3] solves
a mixed classification-regression problem by returning both pose-label and a
residual angle associated with every pose-label, such that the predicted angle
is the sum of the center of pose-bin and the corresponding residual angle with
the highest confidence. [6] and [20] on the other hand, solve a pose regression
problem. While [20] directly regresses the three angles with mean squared loss,
[6] uses axis-angle or quaternion representations of 3D rotations and minimizes
a geodesic loss during training. Our work is closest to [6] in that we also use
an axis-angle representation and geodesic loss function while solving a 3D pose
regression problem. However, there are three key differences between our work
and [6]: (i) we solve the harder task of joint category and pose estimation, (ii)
we design a new integrated architecture for the joint task, and (iii) our feature
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network architecture is based on residual networks [10, 21] whereas the feature
network of [6] uses VGG-M [22]. We refer the reader to [23] for a more detailed
review of the current literature on 3D pose estimation using deep networks.

Joint object category and pose estimation. Braun et al. [24], Massa et al.

[25, 26] and Oñoro-Rubio et al. [27] work on the problem of joint object detection
and pose estimation, while Elhoseiny et al. [8] and Afifi et al. [28] work on the
problem of joint object category and pose estimation. However in all these works,
the pose is restricted to just the azimuth or yaw angle. We, on the other hand,
recover the full 3D rotation matrix which is a much harder problem. Also, these
works all consider pose to be independent of category, i.e. they set up a multi-
task network that has separate branches for pose and category label, which are
then treated independently. While [27] proposes various network architectures,
all of them are variations of shared networks (Fig. 2b) or independent networks
(Fig. 2a). We, on the other hand, design an integrated network architecture
(Fig. 2d) with a category-dependent pose network.

3 Joint object category and pose estimation

In this section, we describe the proposed integrated architecture for joint object
category and 3D pose estimation, which consists of a feature network, a category
network and a category dependent pose network, as shown in Fig. 2d. In addition,
we describe our loss functions and proposed training algorithm.

3.1 Integrated network architecture

Feature and category networks. Observe that the combination of our feature
network and our categorization network resembles a standard categorization net-
work in the image classification literature. Therefore, when designing our feature
and categorization networks, we consider existing categorization architectures as
our starting point. The recently introduced residual networks [10, 21] have been
shown to work remarkably well for image classification as well as object detec-
tion. Taking inspiration from their success and good optimization properties [29],
we use residual networks (specifically the ResNet-50 network) in our work.

In image classification works, the last linear layer is considered a ‘categoriza-
tion’ network and everything before that is considered the ‘feature’ network. In
our case though, we are also interested in the 3D pose and such a splitting is not
feasible because the image representations learned by such a feature network is
highly specialized for categorization. We need to look at intermediate layers to
find a suitable splitting point for our feature network and categorization network
such that the image representations contain some pose information. Our exper-
iments (in §4.2) show that stage-4 is an appropriate splitting point and hence,
we choose the ResNet-50 network upto stage-4 as our feature network and the
stage-5 block of the ResNet-50 network as our categorization network.

Category dependent pose network. The proposed category dependent pose
network is a collection of 3-layer fully connected (FC) pose networks (one per
object category) that take in as input the output of the feature network and
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the probability vector output by the category network. An example is shown in
Fig. 3a, where the output of the feature network φ(I) for image I is input to K
FC pose networks. Each individual pose network (shown in Fig. 3b) consists of
3 FC layers (FC1, FC2 and FC3) with batch normalization (BN) and rectified
linear units (ReLU) interspersed between them and a nonlinearity at the output.
The outputs of these pose networks {yi}Ki=1 correspond to some representation
of the object pose (see below for details). The category probability vector is
denoted by p where pi = P (c = i | I) is the probability of assigning the i-th
category label to the image I. The K category-dependent pose representations
are fused together with the category probability vector p to predict the final 3D
pose using either a weighted or top-1 fusion strategy (see below for details).

(a) Overview with weighted fusion
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(b) 3-layer FC pose network per
object category (adapted from [6])

Fig. 3: Category dependent pose network

Representation of 3D pose. Each pose network predicts a 3D pose (a rotation
matrix R) for a given object category label c. We use the axis-angle represen-
tation, R = expm(θ[v]×), where v corresponds to the axis of rotation and θ is
the angle of rotation. [v]× is the skew-symmetric matrix generated from vector

v = [v1, v2, v3]
T , i.e. [v]× =





0 −v3 v2
v3 0 −v1
−v2 v1 0



. By restricting θ ∈ [0, π), we cre-

ate a one-to-one correspondence between a rotation R and its axis-angle vector
y = θv. Let yi be the output of the i-th pose network. When the object category
is known, we can choose the output yc∗ corresponding to the true category c∗

and apply the exponential map Rc∗ = expm([yc∗ ]×) to obtain a rotation. Since
in our case we do not know the category, the outputs of theK pose networks need
to be fused. Because the space of rotations is non-Euclidean, fusion is more easily
done in the axis-angle space. Therefore, to obtain the final rotation, we first fuse
the outputs of the K pose networks and then apply the exponential map.

Pose fusion. Given K category-dependent pose predictions {yi}Ki=1 obtained
by the K pose networks and a category probability vector p obtained from the
category network, we propose two simple fusion strategies.

– Weighted fusion: The fused pose output is a weighted sum of the individual
pose predictions, with the weights determined by the category probability vector:

ywgt =
∑

i

yipi. (1)

This kind of fusion of pose outputs has some interesting properties:
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1. In the special case of know object category label, the category probability
vector p = δ(c∗) and Eqn. 1 naturally simplifies to ywgt = yc∗

2. It is valid to define ywgt =
∑

i yipi because a weighted sum of axis-angle
vectors is still an axis-angle vector (axis-angle vectors are elements of the
convex set {x ∈ R

3|‖x‖2 < π} and the weighted sum is a convex combination
of elements of this convex set). On the other hand, a weighted sum of rotation
matrices is not guaranteed to be a rotation matrix.

– Top1 fusion: Instead of marginalizing out the category label, we can choose the
final pose as the output corresponding to the mode of the category probability
distribution. Effectively in this fusion, we are first estimating the object category
label ĉ = argmaxi pi and predicting pose accordingly

ytop1 = yĉ. (2)
3.2 Loss functions

In general, a loss function between ground-truth pose R∗, ground-truth category
label c∗ and our network output (R, c), can be expressed as L(R, c,R∗, c∗). A
simple choice of the overall loss is to define it as a sum of a pose loss and a
category loss, i.e. L(R, c,R∗, c∗) = Lpose(R(c), R∗)+λLcategory(c, c

∗), where the
notation R(c) explicitly encodes the fact that our pose output depends on the
estimated category. We use the categorical cross-entropy loss as our category
loss, and the geodesic distance between two rotation matrices R1 and R2,

Lpose(R1, R2) =
‖ log(R1R

T
2 )‖F√

2
, (3)

as our pose loss. The pose loss between two axis-angle vectors y1 and y2 is
now defined as Lp(y1,y2) ≡ L(R1, R2) where R1 and R2 are the corresponding
rotation matrices. Pose loss for the weighted fusion and top1 fusion pose outputs
is now given by Lp(y

∗, ywgt) and Lp(y
∗, ytop1) respectively.

In this paper, for our choice of representation and loss function, we do not
observe a significant difference between the weighted and top1 fusion of pose
outputs and report performance on both for all our experiments. However, for a
different choice of representation, one might be better than the other.

3.3 Network training

The overall network architecture has three sub-networks: the feature network
(FN), the category network (CN) and the category dependent pose network
(PN) consisting of one FC pose network per object category. A natural way to
train this integrated network is to fix the feature network using weights from
a pre-trained ResNet-50, train the category network & each pose network in-
dependently and then finetune the overall network using our joint loss. This is
called the “balanced” training approach where category and pose are treated in a
balanced way. The fundamental problem with the balanced approach is that the
feature network initialized with pre-trained weights is biased to categorization.
And since we are solving a joint task with competing objectives where initializa-
tion is important, we end up with good categorization performance at the cost
of pose estimation performance. Therefore, we propose a different approach to
training the overall network called “pose-first” training.
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Fig. 4: Training feature network + pose
networks with oracle category network

In this approach, we try to bias the
feature network towards 3D pose esti-
mation. We do this by first training
our proposed network with an oracle
category network i.e. train the feature
network and category dependent pose
network, by minimizing the pose loss, with ground-truth object category labels
(as shown in Fig. 4). For every training image, the oracle category network re-
turns a probability vector p = δ(c∗) that selects the pose network corresponding
to its category label and updates only that pose network. In the process, we are
also updating the feature network for the task of 3D pose estimation. With this
updated feature network and category dependent pose network fixed, we now
train the category network by minimizing the category loss. Then the overall net-
work is finetuned end-to-end with both category and pose losses jointly. We also
manually balance our training batch so that every batch has roughly the same
number of training images per object category, which is an alternative imple-
mentation of the recommendation in [7] where they recommend asynchronous
gradient updates to balance the variability of data across various tasks and
datasets. We show in our experiments in §4.4 that “pose-first” training achieves
significantly better results for pose estimation compared to “balanced” training
while achieving the marginally better results for category estimation. The “pose-
first” training encodes what we set out to do, learn a 3D pose estimation system
with known object category labels and then relax that constraint by replacing
the oracle with a category estimation network.

Table 1: Table outlining the steps to train the overall network in two ways
Step Balanced Pose-first

1 Fix FN using weights from the pre-trained ResNet-50
2 Learn PN per object category independent of each other

3 Learn CN Finetune FN+PN jointly with oracle CN
4 Finetune FN+CN+PN jointly Learn CN with updated FN fixed
5 - Finetune FN+CN+PN jointly

As mentioned earlier, we use the categorical cross-entropy loss for our cate-
gory loss and the geodesic distance between rotation matrices for our pose loss.
For evaluation, we use two metrics, (i) cat-acc: the average accuracy in estimat-
ing the object category label (higher is better) and (ii) pose-err : the median
viewpoint error in degrees between the ground-truth and estimated rotations
(lower is better). The viewpoint error between rotation matrices, Eqn. 3, can be
simplified using the Rodrigues’ rotation formula to get viewpoint angle error (in
degrees) between ground-truth rotation R∗ and predicted rotation R,

∆(R,R∗) = | cos−1

[

trace(RTR∗)− 1

2

]

|. (4)

We use Adam optimizer [30] in all our experiments and our code was written in
Keras [31] with TensorFlow backend [32].
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4 Results and Discussion

We first present the dataset we use for our experimental evaluation in §4.1.
Then, in §4.2, we produce an investigation of features learned by a pre-trained
ResNet-50 network for the task of 3D pose estimation. In §4.3 we empirically
verify a key assumption we make, that category dependent networks work better
than category independent networks. Then, in §4.4 we report our experiments on
the joint object category and pose estimation task. We demonstrate significant
improvement upon state-of-the-art on the joint task and achieve performance
comparable to methods that solve for 3D pose with known object category.
Finally, we also present an extensive ablative analysis of many decisions choices
like network architecture, feature representations, training protocol and relative
weighting parameter.

4.1 Datasets

For our experiments, we use the challenging Pascal3D+ dataset (release version
1.1) [9] which consists of images of 12 common rigid object categories of in-
terest: aeroplane (aero), bicycle (bike), boat, bottle, bus, car, chair, diningtable
(dtable), motorbike (mbike), sofa, train and tvmonitor (tv). The dataset includes
Pascal VOC 2012 images [33] and ImageNet images [34] annotated with 3D pose
annotations that describe the position of the camera with respect to the ob-
ject in terms of azimuth, elevation, camera-tilt, distance, image-translation and
focal-length. We use the ImageNet-training+validation images as our training
data, Pascal-training images as our validation data and Pascal-validation images
as our testing data. Like we mentioned earlier, we concentrate on the problem of
joint object category and 3D pose estimation assuming we have bounding boxes
around objects returned by an oracle. We use images that contain un-occluded
and un-truncated objects that have been annotated with ground-truth bounding
boxes. There are a total of 20,843 images that satisfy this criteria across these 12
categories of interest, with the number of images across the train-val-test splits
detailed in Table 2. We use the 3D pose jittering data augmentation proposed
in [6] and the rendered images 2 provided in [2] to augment our training data.

Table 2: Number of images in Pascal3D+ v1.1 [9] across various splits as well as
rendered images provided by Su et al. [2].
Category aero bike boat bottle bus car chair dtable mbike sofa train tv Total

Train 1765 794 1979 1303 1024 5287 967 737 634 601 1016 1195 17302
Val 242 108 177 201 149 294 161 26 119 38 100 167 1782
Test 244 112 163 177 144 262 180 17 127 37 105 191 1759

Rendered 198k 200k 199k 200k 199k 195k 197k 196k 200k 200k 200k 199k 2.381m

2 https://shapenet.cs.stanford.edu/media/syn_images_cropped_bkg_overlaid.

tar
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4.2 Residual networks for 3D pose estimation

One of our contributions in this work is the use of the very popular residual
networks designed by He et al. [10, 21] for the task of 3D pose estimation. As
described in §3.3, we initialize our overall network with pre-trained ResNet-
50 networks. Before we present our experimental results though, we would like
to answer the question: Can we adapt residual networks trained for the task of
image classification to the task of pose estimation? Networks learned for the task
of image classification are trained to be invariant to pose. However, previous
works like [8] (for AlexNet [35]) and [6] (for VGG-M [22]) have shown that
features extracted from intermediate layers retain information relevant to pose
estimation. For our specific case, we are also interested in knowing at what
intermediate stage does a pre-trained ResNet-50 have relevant pose information.

Fig. 5: Median viewpoint error (in de-
grees) with features extracted from dif-
ferent stage of the pre-trained ResNet-50.
Lower is better. Best seen in color.

We extract features at different
stages of the ResNet-50 architecture
with pre-trained weights. We then
learn 3-layer FC networks per ob-
ject category of size d-1000-500-3 us-
ing these features. As can be seen in
Fig. 5 and Table 3, we find that fea-
tures extracted at the end of stage-
4 are better than the features ex-
tracted at the end of stages-3 and
5. This is consistent with previous
findings that show that (i) features
become more specialized for the task
they were trained for (image classi-
fication in this case) the deeper they are in the network, which explains why
stage-4 features are better than stage-5, and (ii) deeper layers capture more
complex information compared to simple edge detectors at the first few layers,
which explains why stage-4 features are better than stage-3.

Table 3: Median viewpoint error (in degrees) after learning pose networks us-
ing features extracted from pre-trained networks. Pose networks are of size
512/1024/2048-1000-500-3 for ResNet-50 Stages-3/4/5 respectively. Lower is
better and best results in bold.
Network Feats. aero bike boat bottle bus car chair dtable mbike sofa train tv mean

ResNet-50
Stage-3 25.3 38.6 58.6 10.5 6.4 17.0 44.1 32.6 36.7 21.6 7.1 19.7 26.51
Stage-4 18.4 32.3 40.9 9.6 5.0 10.4 26.8 27.8 28.7 14.6 7.3 16.9 19.91

Stage-5 27.1 54.3 62.4 9.2 7.6 13.3 47.8 36.7 43.1 26.0 9.8 18.8 29.67

4.3 Category-dependent pose networks

An implicit assumption we have made in our work is that our choice of category-
dependent pose network architecture (with per-category pose networks) is better
than the choice of a category-independent pose network (the choice of [8, 24]).
In our architecture, the feature network is shared between all object categories
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and the pose networks are specific to each category. [8] discusses where the
branching between category and pose estimation tasks should occur in their early
branching (EBM) and late branching (LBM) models, but they do not discuss why
they choose a category-independent pose network. We now validate our decision
choice of category-dependent pose networks empirically. For this experiment, we
use the features extracted from ResNet-50 stage-4. We then learn twelve 3-layer
pose networks, one for each object category, of size 1024-1000-500-3 (Row 1 of
Table 4). To compare with a category independent pose network, we use these
same features to learn a single pose network of size 1024-12000-500-3 (Row 2
of Table 4). Note that the intermediate layer is of size 12000 to have roughly
the same number of total parameters as the 12 independent pose networks. We
also show performance on two smaller intermediate sizes and as can be seen in
Table 4, solving for the pose in a per-category manner is better.

Table 4: Median viewpoint error (in degrees) for category-dependent and
category-independent pose networks. For the category-dependent network, there
are 12 networks of size 1024-1000-500-3. We evaluate three sizes of category-
independent networks: 1024-12000-500-3 (12k), 1024-5000-500-3 (5k) and 1024-
1000-500-3 (1k). Lower is better and best results in bold.

Type aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
Cat-dep. 18.4 32.3 40.9 9.6 5.0 10.4 26.8 27.8 28.7 14.6 7.3 16.9 19.91

Cat-ind.(12k) 23.9 40.9 54.7 12.1 5.8 11.6 41.8 26.9 31.0 20.3 10.0 18.9 24.83
Cat-ind.(5k) 22.3 39.6 52.6 12.4 5.5 12.2 44.1 27.4 32.4 14.6 10.2 18.7 24.3
Cat-ind.(1k) 22.9 36.6 55.4 10.8 5.5 10.6 36.9 26.3 32.4 18.5 9.4 18.8 23.69

4.4 Joint object category and pose estimation

We now present the results of our experiments on the task of joint object category
and pose estimation. As mentioned earlier in Sec.3.3 we train the overall network
using the “pose-first” approach with both weighted and top1 fusion strategies of
Sec. 3.1. To evaluate our performance we report the object category estimation
accuracy (cat-acc) and the median viewpoint error (pose-err), across all object
categories. As can be seen in Table 5, we achieve close to 90% category esti-
mation accuracy and slightly more than 16◦ median viewpoint error averaged
across object categories in both models when training on only real images. Using
rendered images to augment training data leads to significant improvement in
pose estimation performance, with pose viewpoint error decreasing by ∼ 2.4◦ in
the Weighted model and ∼ 2.7◦ in the Top1 model, and an improvement of ∼ 2%
in the category estimation accuracy for both models. Note that rendered images
are valid only for the pose estimation part of our problem and not the category
estimation part. In the “pose-first” training method, we use these rendered im-
ages in steps 2&3 of Table 1. This is used to initialize the joint network which
is subsequently trained using only real (original + flipped) images from PAS-
CAL3D+. Our results are consistent with those of [2] and [6] who also observed
improved performance by using rendered images for data augmentation.

Comparison with State-of-the-art. To the best of our knowledge, Elhoseiny
et al. [8] are the current state-of-the-art on the PASCAL3D+ dataset for the task
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Table 5: Object category estimation accuracy (percentage, higher is better) and
pose viewpoint error (degress, lower is better) for experiments with joint net-
works using real and rendered images. Best results are in bold.

Metric Data Model aero bike boat bottle bus car chair dtable mbike sofa train tv mean

pose-err

Only real
images

Weighted 13.6 21.3 34.8 9.0 3.4 7.8 26.6 20.8 17.6 15.8 6.9 15.2 16.07
Top1 13.4 22.2 33.5 9.2 3.3 7.7 26.2 24.0 17.8 16.5 6.6 15.2 16.29

Real and
rendered

Weighted 11.5 15.7 30.5 9.0 2.9 6.8 16.2 22.5 14.4 13.8 7.3 13.4 13.67
Top1 10.2 17.1 29.2 8.1 2.6 6.0 13.8 26.7 14.1 14.3 7.1 13.5 13.56

cat-acc

Only real
images

Weighted 0.94 0.89 0.95 0.98 0.96 0.94 0.83 0.67 0.93 0.78 0.94 0.93 0.8944
Top1 0.97 0.87 0.94 0.96 0.96 0.95 0.84 0.62 0.96 0.78 0.94 0.93 0.8930

Real and
rendered

Weighted 0.96 0.94 0.97 1.00 0.95 0.96 0.87 0.71 0.96 0.77 0.95 0.95 0.9150
Top1 0.96 0.92 0.98 0.98 0.97 0.96 0.89 0.76 0.93 0.82 0.88 0.95 0.9181

of joint object category and azimuth estimation given ground-truth bounding
boxes. We do not use any rendered images in these experiments to ensure a fair
comparison. They report the performance of their models using the following
metrics: (i) P%(< 22.5◦/45◦): percentage of images that have pose error less than
22.5◦/45◦ and (ii) AAAI: 1− [min(|err|, 2π− |err|)/π]. We evaluate our models
using these metrics for both azimuth error |az−az∗| and 3D pose error∆(R,R∗).
For azimuth estimation, we predict 3D rotation matrix and then retrieve the
azimuth angle. For a fair comparison between their method and ours, we re-
implemented their algorithm with our network architecture i.e. feature network
is ResNet-50 upto Stage-4, category network is ResNet-50 Stage-5 and pose
network is a 3-layer FC network of size 1024-1000-500-3. This size of the pose
network was chosen based on Table 4. As can be seen in Tables 6 and 7, we
perform significantly better than [8] in pose estimation accuracy under different
metrics while performing marginally worse (0.3− 0.6%) in category accuracy.

Table 6: Comparing our joint networks with weighted (wgt) and top1 pose output
with [8]* (our re-implementation of [8], see text for details). Higher is better for
the cat-acc, lower is better for pose-err metric. Best results in bold.

Metric Model aero bike boat bottle bus car chair dtable mbike sofa train tv Mean

pose-err
[8]* 17.7 24.7 41.6 9.9 3.6 12.2 31.9 20.8 20.2 26.7 6.9 16.0 19.35

Ours-Wgt 11.5 15.7 30.5 9.0 2.9 6.8 16.2 22.5 14.4 13.8 7.3 13.4 13.67
Ours-Top1 10.2 17.1 29.2 8.1 2.6 6.0 13.8 26.7 14.1 14.3 7.1 13.5 13.56

cat-acc
[8]* 0.95 0.94 0.98 0.98 0.99 0.96 0.89 0.57 0.96 0.90 0.97 0.96 0.9215

Ours-Wgt 0.96 0.94 0.97 1.00 0.95 0.96 0.87 0.71 0.96 0.77 0.95 0.95 0.9150
Ours-Top1 0.96 0.92 0.98 0.98 0.97 0.96 0.89 0.76 0.93 0.82 0.88 0.95 0.9181

Table 7: Comparing our joint networks with weighted (wgt) and top1 pose output
with [8]* under their metrics. Higher is better, Best results in bold.

Error Model cat-acc P%(< 22.5◦) P%(< 45◦) AAAI

∆(R,R∗)
[8]* 0.9215 0.5759 0.7647 0.8128

Ours-Weighted 0.9150 0.6853 0.8370 0.8495
Ours-Top1 0.9181 0.7054 0.8436 0.8526

∆(az, az∗)

[8]* 0.9215 0.5009 0.6939 0.7692
Ours-Weighted 0.9150 0.6627 0.7797 0.8130

Ours-Top1 0.9181 0.7287 0.8170 0.8333

[8] 0.8379 0.5189 0.6074 0.7539

In Table 8, we compare with state-of-the-art methods on pose estimation with
known object category and observe that we achieve competitive performance
even though we are solving a harder problem of joint object category and pose
estimation. We would like to explicitly mention that, by solving the joint task,
we are not trying to achieve improved performance relative to pose estimation
with known object category. As we shall show later, the fine-tuning step where
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we jointly minimize pose and category losses shows a trade-off between pose
estimation and category estimation performance, further proving our intuition
that pose estimation and categorization are competing (not synergistic) tasks.
Our motivation is to relax the known object category label constraint and still
achieve comparable results.

Table 8: Median viewpoint error (in degrees, lower is better) across 12 object
categories on Pascal3D+ dataset. First four rows are 3D pose estimation meth-
ods with known object category and the last two rows (Ours) are joint object
category and 3D pose estimation methods. Best results are highlighted in bold
and second best are in red. Best seen in color.

Methods aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
Viepoints&Keypoints [1] 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.59

Render-for-CNN [2] 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.67
3D-pose-regression [6] 13.97 21.07 35.52 8.99 4.08 7.56 21.18 17.74 17.87 12.70 8.22 15.68 15.38

Multibin [3] 13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.1

Ours-Weighted 11.5 15.7 30.5 9.0 2.9 6.8 16.2 22.5 14.4 13.8 7.3 13.4 13.67
Ours-Top1 10.2 17.1 29.2 8.1 2.6 6.0 13.8 26.7 14.1 14.3 7.1 13.5 13.56

Choice of Network Architecture. In §1, we introduced four possible net-
work architectures to solve a joint task and advocated for Integrated network
over other choices. We experimentally validate that choice by comparing it with
a Sequential network and Shared network. Like we mention earlier, [8] is a Shared
network. For a Sequential network, we use a second ResNet-50 network and fine-
tune different parts of the network for categorization on the Pascal3D+ dataset.

Table 9: Comparison between Sequential, Shared and Integrated networks.
Metric Network Model aero bike boat bottle bus car chair dtable mbike sofa train tv Mean

pose-err

Sequential
Everything 11.7 17.5 27.4 8.4 3.3 5.9 14.5 24.8 15.0 11.1 6.3 13.2 13.25

FC 11.7 17.7 27.1 8.5 3.2 6.4 16.7 24.8 15.0 11.1 6.9 13.2 13.54
FC+Stage5 11.7 17.6 27.3 8.2 3.2 5.9 14.5 24.8 14.3 12.7 6.3 13.2 13.30

Integrated
Ours-Wgt 11.5 15.7 30.5 9.0 2.9 6.8 16.2 22.5 14.4 13.8 7.3 13.4 13.67
Ours-Top1 10.2 17.1 29.2 8.1 2.6 6.0 13.8 26.7 14.1 14.3 7.1 13.5 13.56

Shared [8]* 17.7 24.7 41.6 9.9 3.6 12.2 31.9 20.8 20.2 26.7 6.9 16.0 19.35

cat-acc

Sequential
Everything 0.96 0.92 0.98 0.98 0.95 0.97 0.88 0.76 0.93 0.85 0.97 0.97 0.9275

FC 0.94 0.92 0.96 0.97 0.97 0.88 0.81 0.62 0.93 0.95 0.95 0.95 0.9033
FC+Stage5 0.98 0.92 0.98 0.99 0.97 0.97 0.90 0.67 0.96 0.92 0.99 0.96 0.9348

Integrated
Ours-Wgt 0.96 0.94 0.97 1.00 0.95 0.96 0.87 0.71 0.96 0.77 0.95 0.95 0.9150
Ours-Top1 0.96 0.92 0.98 0.98 0.97 0.96 0.89 0.76 0.93 0.82 0.88 0.95 0.9181

Shared [8]* 0.95 0.94 0.98 0.98 0.99 0.96 0.89 0.57 0.96 0.90 0.97 0.96 0.9215

As can be seen in Table 9, our Integrate networks are clearly better than
the Shared network. They are comparable to Sequential networks in pose esti-
mation performance and slightly worse in categorization accuracy while being
significantly cheaper computationally. The Sequential network has to maintain
two ResNet-50 networks compared to a single one for our Integrated networks.

Choice of training protocol. In Sec. 3.3, we proposed two approaches to
train the overall network. As can be seen in Table 10, averaged across all object
categories, the joint models trained using the “pose-first” approach are better
than those trained using the “balanced” one. This means that learning the best
possible feature + pose models for the task of 3D pose estimation first and
then relaxing them to solve the joint category and pose estimation task is better
than solving category and pose estimation tasks independently with fixed feature
network and then training everything jointly.
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Table 10: Object category estimation accuracy (percentage, higher is better) and
pose viewpoint error (degrees, lower is better) using the two training approaches
described in Sec. 3.3 for Real Images. Best results in bold.

Metric Expt. Type aero bike boat bottle bus car chair dtable mbike sofa train tv mean

pose-err
Balance

Weighted 13.9 24.1 35.4 9.6 4.1 8.8 33.5 24.1 19.5 17.7 7.6 15.9 17.86
Top1 13.7 23.9 32.4 10.6 3.8 8.0 32.5 26.3 17.8 18.0 7.6 15.4 17.51

Pose-first
Weighted 13.6 21.3 34.8 9.0 3.4 7.8 26.6 20.8 17.6 15.8 6.9 15.2 16.07

Top1 13.4 22.2 33.5 9.2 3.3 7.7 26.2 24.0 17.8 16.5 6.6 15.2 16.29

cat-acc
Balance

Weighted 0.92 0.89 0.96 0.96 0.95 0.81 0.73 0.71 0.94 0.87 0.96 0.96 0.8889
Top1 0.90 0.89 0.97 0.88 0.94 0.79 0.70 0.73 0.95 0.87 0.95 0.95 0.8760

Pose-first
Weighted 0.94 0.89 0.95 0.98 0.96 0.94 0.83 0.67 0.93 0.78 0.94 0.93 0.8944

Top1 0.97 0.87 0.94 0.96 0.96 0.95 0.84 0.62 0.96 0.78 0.94 0.93 0.8930

Effect of finetuning the overall network with the joint losses. The tasks
of object category estimation (which requires the network to be invariant to
pose) and 3D pose estimation (which is invariant to object sub-category) are
competing with each other and during joint training, the feature network tries to
learn a representation that is suitable for both tasks. In doing so, we expect a the
trade-off between cat-acc and pose-err performance. This trade-off is observed
explicitly when trying to learn the overall model using the “balanced” approach.
We first do steps 1-3, where we fix the feature network to the pre-trained weights
and train the pose and category networks independently. Rows 1-3 of Table 11
show that the original feature network with pre-trained weights has features that
are very good for category estimation but not for pose estimation. We then do
step 4, where we finetune the overall network with our joint loss. As can be
seen in Table 11, there is a trade-off between the two tasks of object category
estimation & 3D pose estimation and we lose some category estimation accuracy
while improving the pose estimation performance.

Table 11: Object category estimation accuracy (percentage, higher is better) and
pose viewpoint error (degrees, lower is better) before (Steps 1-3) and after (Step
4) finetuning the overall network in “balanced” training. Best results in bold.

Metric Expt. Type aero bike boat bottle bus car chair dtable mbike sofa train tv mean

pose-err
Before

Weighted 25.5 39.0 47.6 13.4 9.7 15.2 34.6 38.2 37.5 21.5 9.6 16.6 25.70
Top1 25.5 38.9 49.5 13.4 9.4 14.5 35.8 38.2 37.2 21.5 8.9 16.7 25.79

After
Weighted 13.9 24.1 35.4 9.6 4.1 8.8 33.5 24.1 19.5 17.7 7.6 15.9 17.86

Top1 13.7 23.9 32.4 10.6 3.8 8.0 32.5 26.3 17.8 18.0 7.6 15.4 17.51

cat-acc
Before Both 0.97 0.91 0.97 0.98 0.95 0.92 0.90 0.71 0.97 0.85 0.95 0.99 0.9226

After
Weighted 0.92 0.89 0.96 0.96 0.95 0.81 0.73 0.71 0.94 0.87 0.96 0.96 0.8889

Top1 0.90 0.89 0.97 0.88 0.94 0.79 0.70 0.73 0.95 0.87 0.95 0.95 0.8760

Choice of λ. In Table 12, we compare the performance of models learned with
different choices of λ. The λ parameter controls the relative importance of the
category loss (categorical cross-entropy) w.r.t. the pose loss (geodesic loss). Re-
call that L(R, c,R∗, c∗) = Lpose(R(c), R∗) + λLcategory(c, c

∗). The smaller value
of λ = 0.1 lead to better joint models and unless mentioned otherwise all the
models were trained with that choice of λ.

Top-k category labels:. We also analyze performance when instead of the
most-likely (top1) category label, the category network returns multiple labels
(top2/3). To compute the pose error with multiple predicted category labels, we
compute the viewpoint error with the pose output of every predicted category
and take the minimum value. For example, the pose error for the top3 category
labels (c1, c2, c3) using the notation of Sec. 3.2 is given by Lp(y

∗, y(c1, c2, c3)) =
mini=1..3 Lp(y

∗, yci).
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Table 12: Object category estimation accuracy (percentage, higher is better)
and pose viewpoint error (degrees, lower is better) under the two joint losses for
different λ trained using the pose-first approach. Best results in bold.

Metric Expt. Type aero bike boat bottle bus car chair dtable mbike sofa train tv mean

pose-err
λ = 0.1

Weighted 13.6 21.3 34.8 9.0 3.4 7.8 26.6 20.8 17.6 15.8 6.9 15.2 16.07

Top1 13.4 22.2 33.5 9.2 3.3 7.7 26.2 24.0 17.8 16.5 6.6 15.2 16.29

λ = 1
Weighted 14.5 23.8 38.4 9.5 3.4 8.4 28.4 18.6 17.6 17.4 7.3 15.4 16.89

Top1 13.4 22.8 36.8 10.2 3.4 8.5 30.2 19.2 18.7 15.8 6.7 15.4 16.74

cat-acc
λ = 0.1

Weighted 0.94 0.89 0.95 0.98 0.96 0.94 0.83 0.67 0.93 0.78 0.94 0.93 0.8944

Top1 0.97 0.87 0.94 0.96 0.96 0.95 0.84 0.62 0.96 0.78 0.94 0.93 0.8930

λ = 1
Weighted 0.92 0.91 0.96 0.91 0.94 0.82 0.80 0.70 0.85 0.75 0.91 0.93 0.8678

Top1 0.92 0.90 0.93 0.88 0.95 0.85 0.73 0.71 0.91 0.87 0.95 0.94 0.8775

As can be seen in Table 13, increasing the number of possible category la-
bels leads to an increase in both category estimation accuracy and reduction
in pose estimation error. However, it must also be noted that this reduction of
pose error is very likely an artifact of the above metric (mini=1..3 Lp(y

∗, yci) ≤
mini=1,2 Lp(y

∗, yci) ≤ Lp(y
∗, yc1)) because when we use an oracle for cate-

gory estimation (GT), the viewpoint error is higher than top-2/3 error. At the
same time, improving category estimation accuracy (comparing top1 and GT,
89.30 → 100) leads to better performance in pose estimation (16.29 → 15.28).

Table 13: Object category estimation accuracy and median viewpoint error when
Top1/2/3 predicted labels are returned by the category network.

Top1 Top-2 Top-3 GT
cat-acc pose-err cat-acc pose-err cat-acc pose-err cat-acc pose-err

0.8930 16.29 0.9455 14.08 0.9595 13.15 100 15.28

5 Conclusion and Future Work

We have designed a new integrated network architecture consisting of a shared
feature network, a categorization network and a new category dependent pose
network (per-category collection of fully connected pose networks) for the task
of joint object category and 3D pose estimation. We have developed two ways
of fusing the outputs of individual pose networks and the output of the category
network to predict 3D pose of an object in the image when its category label is
not known. We have proposed a training algorithm to solve our joint network
with suitable pose and category loss functions. Finally, we have shown state-of-
the-art results on the PASCAL3D+ dataset for the joint task and have shown
pose estimation performance comparable to state-of-the-art methods that solve
the simpler task of 3D pose with known object category.

Future work. We are exploring two avenues of future research. (1) We have
used a pose regression formulation for our fusion techniques but they can be
extended to pose classification problems and a natural question is to ask how
well our proposed network architecture performs for the joint task of pose label
and category label estimation. (2) An extension of this work to the joint object
detection and pose estimation task by incorporating the category dependent pose
network into existing architectures.
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