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Motivation and Problem Statement

Motivation: 3D pose estimation is a key component of challenging vision problems like scene
understanding and autonomous navigation
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Problem statement: Given a 2D 1mage and a bounding box around an object in the image,
estimate the 3D rotation R between the object and the camera

Introduction and Related Work

Prior work discretizes the pose space into key poses and treats the pose estimation problem as
a classification problem
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Contribution: Instead of breaking up pose space into discrete key poses, we propose a regression
formulation using representations (Axis-angle and Quaternion), loss functions (Geodesic loss
between rotation matrices) and data augmentation techniques (3D pose jittering) that respect
and exploit the non-Euclidean structure of the space of rotations.
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Representing 3D Rotations

Rotation matrices lie in the Special Orthogonal group:

SOB3) ={R e R”: R'R=1I5,det(R) = 1} (1)

Geodesic loss function on the space of rotation matrices:

log R RT F
Axis-angle
_ 0 —ys
Image — CNN - ™ tanh y =0 - exp | Vs 0 —m;m|] —R
~Y2 N 0

Geodesic loss between ground-truth and predicted rotations:

L(R,R) =|cos™ %(trace(RTl?{) — 1) | (3)
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Geodesic loss between ground-truth and predicted quaternions:

L(q,q) = cos ' [{g, Q) (4)

3D Pose Jittering

For every image, 3D pose annotations of azimuth az, elevation el and camera-
tilt ct, give 3D rotation R(az,el,ct) = Rz(ct)Rx(el)R(az). We perturb around
oround-truth 3D pose using these transformations:

o Flips: R(—az,el, —ct)

e In-plane rotations: R(az,el,ct + dct)

e Out-of-plane rotations: - daz, el ct)
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Experiments

e Dataset: Pascal3D+[3] consists of ImageNet and Pascal VOC2012 images with 3D
pose annotations. ImageNet trainval, VOC2012-train, and VOC2012-val images are
used as training, validation, and testing data respectively.

e Training: Two step learning procedure: (i) Train the pose networks (with feature
network fixed) using augmented and rendered data, and (ii) Finetune the overall
network using original and flipped images

Expt. aero bike boat bottle bus car chair dtable mbike sofa train tv | Mean
V&K 2] 113.80 17.70 21.30 12.90 5.80 9.10 14.80 15.20 14.70 13.70 8.70 15.40 | 13.59
Render (1] | 15.40 14.80 25.60 9.30 3.60 6.00 9.70 10.80 16.70 9.50 6.10 12.60 11.67
Axis-angle | 13.97 21.07 35.52 8.99 4.08 7.56 21.18 17.74 17.87 12.70 8.22 15.68 | 15.38
Quaternion| 14.53 22.55 35.78 9.29 4.28 8.06 19.11 30.62 18.80 13.22 7.32 16.01 | 16.63

Detected | 14.71 21.31 45.07 947 420 893 26.36 20.70 19.16 18.80 8.72 15.65 | 17.76

Median geodesic viewpoint error (in degrees) using ground-truth bounding boxes for
un-occluded and un-truncated objects

Expt. aero bike boat bottle bus car chair dtable mbike sofa train tv |Mean
2]-ARP | 64.0 532 21.0 - 693 551 246 169 540 425 594 512 46.5
Ours-ARP [61.95 49.07 20.02 35.18 66.24 49.89 19.78 15.36 49.38 40.92 56.68 49.87 | 42.86

Average Rotation Precision (A(R, R) < 30°and I/U > 0.5)

Ablation Analysis
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Optimization: With and without finetuning With detected bounding boxes



