3D Pose Regression using Convolutional Neural Networks

Siddharth Mahendran Haider Ali René Vidal
Center for Imaging Science, Johns Hopkins University

Motivation and Problem Statement
Motivation: 3D pose estimation is a key component of challenging vision problems like scene understanding and autonomous navigation

Problem statement: Given a 2D image and a bounding box around an object in the image, estimate the 3D rotation \(R \) between the object and the camera

Introduction and Related Work
Prior work discretizes the pose space into key poses and treats the pose estimation problem as a classification problem

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>Discretized angles (21 bins)</td>
<td>Discretized angles (360 bins)</td>
<td>Axis-angle</td>
</tr>
<tr>
<td>Loss function</td>
<td>Cross-entropy</td>
<td>Weighted cross-entropy</td>
<td>Geodesic loss</td>
</tr>
<tr>
<td>Data augmentation</td>
<td>2D jittering</td>
<td>Rendered images</td>
<td>3D pose jittering</td>
</tr>
<tr>
<td>Network architecture</td>
<td>VGG-Net (FC7)</td>
<td>AlexNet (FC7)</td>
<td>VGG-M (FC6)</td>
</tr>
</tbody>
</table>

Contribution: Instead of breaking up pose space into discrete key poses, we propose a regression formulation using representations (Axis-angle and Quaternion), loss functions (Geodesic loss between rotation matrices) and data augmentation techniques (3D pose jittering) that respect and exploit the non-Euclidean structure of the space of rotations.

Representing 3D Rotations
Rotation matrices lie in the Special Orthogonal group:
\[
SO(3) = \{ R \in \mathbb{R}^{3 \times 3} : R^T R = I_3, \det(R) = 1 \} \quad (1)
\]

Geodesic loss function on the space of rotation matrices:
\[
\mathcal{L}(R, R_i) = \frac{|| \log R_i R_i^T ||}{\sqrt{2}} \quad (2)
\]

Geodesic loss between ground-truth and predicted rotations:
\[
\mathcal{L}(R, \hat{R}) = | \cos^{-1} \left(\frac{1}{2} \text{trace}(R \hat{R}^T) - 1 \right) | \quad (3)
\]

Geodesic loss between ground-truth and predicted quaternions:
\[
\mathcal{L}(q, \hat{q}) = \cos^{-1} \left(\langle \hat{q}, q \rangle \right) \quad (4)
\]

3D Pose Jittering
For every image, 3D pose annotations of azimuth \(\text{az} \), elevation \(\text{el} \) and camera-tilt \(\text{ct} \) give 3D rotation \(R(\text{az}, \text{el}, \text{ct}) \). We perturb around ground-truth 3D pose using these transformations:

- Flips:
 \(R(\text{-az}, \text{el}, \text{-ct}) \)
- In-plane rotations:
 \(R(\text{az}, \text{el}, \text{ct} \pm \delta) \)
- Out-of-plane rotations:
 \(R(\text{az} \pm 2\text{az}, \text{el}, \text{ct}) \)

Network Architecture

Ablation Analysis

Experiments
- Dataset: Pascal3D+ [2] consists of ImageNet and Pascal VOC2012 images with 3D pose annotations. ImageNet trainval, VOC2012 train, and VOC2012-val images are used as training, validation, and testing data respectively.
- Training: Two step learning procedure: (i) Train the pose networks (with feature network fixed) using augmented and rendered data, and (ii) Finetune the overall network using original and flipped images

Contributions
- Representing 3D Rotations
- Geodesic loss
- Axis-angle
- Quaternion
- Network architectures
- Ablation analysis
- Experiments

This work was supported by NSF grant 1527340.