

Motivation and Problem Statement

Motivation: 3D pose estimation is a key component of challenging vision problems like scene understanding and autonomous navigation

Problem statement: Given a 2D image and a bounding box around an object in the image, estimate the 3D rotation R between the object and the camera

Introduction and Related Work

Prior work discretizes the pose space into key poses and treats the pose estimation problem as a classification problem

	V&K [2]	Render-for-CNN [1]					
Problem	Classification	Fine-grained					
formulation	Classification	classification					
Representation	Discretized angles	Discretized angles					
Representation	(21 bins)	(360 bins)					
Loss function	Cross-entropy	Weighted cross-entropy					
Data augmentation	2D jittering	Rendered images					
Network architecture	VGG-Net (FC7)	AlexNet $(FC7)$					

Contribution: Instead of breaking up pose space into discrete key poses, we propose a regression formulation using representations (Axis-angle and Quaternion), loss functions (Geodesic loss between rotation matrices) and data augmentation techniques (3D pose jittering) that respect and exploit the non-Euclidean structure of the space of rotations.

This work was supported by NSF grant 1527340.

3D Pose Regression using Convolutional Neural Networks

Siddharth Mahendran Haider Ali Center for Imaging Science, Johns Hopkins University

Representing 3D Rotations

Rotation matrices lie in the Special Orthogonal group:

 $SO(3) \coloneqq \{R \in \mathbb{R}^{3 \times 3} : R^T R =$

Geodesic loss function on the space of rotation matrices:

$$\mathcal{L}(R_1, R_2) = \frac{\|\log F\|}{\|\log F\|}$$

Axis-angle

Geodesic loss between ground-truth and predicted rotations:

$$\mathcal{L}(R,\hat{R}) = |\cos^{-1}\left[\frac{1}{2}(\operatorname{trace}(R^T\hat{R}) - 1)\right]|$$
(3)

Quaternion

Image CNN normalize

Geodesic loss between ground-truth and predicted quaternions:

$$\mathcal{L}(q,\hat{q}) = \cos^{-1} |\langle q \rangle|$$

3D Pose Jittering

For every image, 3D pose annotations of azimuth az, elevation el and cameratilt ct, give 3D rotation $R(az, el, ct) = R_Z(ct)R_X(el)R(az)$. We perturb around ground-truth 3D pose using these transformations:

- Flips:
- In-plane rotations:
- Out-of-plane rotations:

- [1] H. Su, C. Qi, Y. Li, and L. Guibas. Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views. ICCV, 2015.
- [2] S. Tulsiani and J. Malik. Viewpoints and keypoints. CVPR, 2015. [3] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond PASCAL: A benchmark for 3d object detection in the wild. WACV 2014.

Ours

Regression

Axis-angle

Geodesic loss BD pose jittering

rendered images

VGG-M (FC6)

René Vidal

$$= I_3, \det(R) = 1\}$$
 (1)

 $\frac{R_1 R_2^T \|_F}{\sqrt{2}}$ (2)

$$\xrightarrow{\theta v} \exp \begin{pmatrix} 0 & -y_3 & y_2 \\ y_3 & 0 & -y_1 \\ -y_2 & y_1 & 0 \end{pmatrix} \longrightarrow \mathsf{R}$$

$$\xrightarrow{u = \left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}v\right)} \exp\left(\theta[v]_{\times}\right) \longrightarrow \mathbb{R}$$

$$q, \hat{q}
angle|$$

(4)

R(-az, el, -ct) $R(az, el, ct \pm \delta ct)$ $R(az \pm \delta az, el, ct)$

Experiments

- used as training, validation, and testing data respectively.
- network using original and flipped images

Expt.	aero	bike	boat	bottle	bus	car	chair	dtable	mbike	sofa	train	tv	Mean
V&K [2]													
Render [1]	15.40	14.80	25.60	9.30	3.60	6.00	9.70	10.80	16.70	9.50	6.10	12.60	11.67
Axis-angle	13.97	21.07	35.52	8.99	4.08	7.56	21.18	17.74	17.87	12.70	8.22	15.68	15.38
Quaternion	14.53	22.55	35.78	9.29	4.28	8.06	19.11	30.62	18.80	13.22	7.32	16.01	16.63
Detected	14.71	21.31	45.07	9.47	4.20	8.93	26.36	20.70	19.16	18.80	8.72	15.65	17.76

Median geodesic viewpoint error (in degrees) using ground-truth bounding boxes for un-occluded and un-truncated objects

	Expt.	aero	bike	boat	bottle	bus	car	chair	dtable	mbike	sofa	train	tv	Mean
	[2]-ARP	64.0	53.2	21.0	_	69.3	55.1	24.6	16.9	54.0	42.5	59.4	51.2	46.5
(Ours-ARP	61.95	49.07	20.02	35.18	66.24	49.89	19.78	15.36	49.38	40.92	56.68	49.87	42.86

• Dataset: Pascal3D+[3] consists of ImageNet and Pascal VOC2012 images with 3D pose annotations. ImageNet trainval, VOC2012-train, and VOC2012-val images are

• Training: Two step learning procedure: (i) Train the pose networks (with feature network fixed) using augmented and rendered data, and (ii) Finetune the overall

Average Rotation Precision ($\Delta(R, \hat{R}) < 30^{\circ}$ and I/U > 0.5)