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Motivation and Problem Statement

Motivation: 3D pose estimation is a key component of challenging vision problems like scene

understanding and autonomous navigation

Problem statement: Given a 2D image and a bounding box around an object in the image,

estimate the 3D rotation R between the object and the camera

Introduction and Related Work

Prior work discretizes the pose space into key poses and treats the pose estimation problem as

a classification problem
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Contribution: Instead of breaking up pose space into discrete key poses, we propose a regression

formulation using representations (Axis-angle and Quaternion), loss functions (Geodesic loss

between rotation matrices) and data augmentation techniques (3D pose jittering) that respect

and exploit the non-Euclidean structure of the space of rotations.

Network Architecture
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Representing 3D Rotations

Rotation matrices lie in the Special Orthogonal group:

SO(3) := {R ∈ R3×3 : RTR = I3, det(R) = 1} (1)

Geodesic loss function on the space of rotation matrices:
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‖ logR1R

T
2 ‖F√

2
(2)

Axis-angle

Geodesic loss between ground-truth and predicted rotations:
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[
1

2
(trace(RTR̂)− 1)

]
| (3)

Quaternion

Geodesic loss between ground-truth and predicted quaternions:

L(q, q̂) = cos−1 |〈q, q̂〉| (4)

3D Pose Jittering

For every image, 3D pose annotations of azimuth az, elevation el and camera-

tilt ct, give 3D rotation R(az, el, ct) = RZ(ct)RX(el)R(az). We perturb around

ground-truth 3D pose using these transformations:

•Flips: R(−az, el,−ct)
• In-plane rotations: R(az, el, ct± δct)
•Out-of-plane rotations: R(az ± δaz, el, ct)

Original Flipped δct = +10◦ δaz = +10◦
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Experiments

•Dataset: Pascal3D+[3] consists of ImageNet and Pascal VOC2012 images with 3D

pose annotations. ImageNet trainval, VOC2012-train, and VOC2012-val images are

used as training, validation, and testing data respectively.

•Training: Two step learning procedure: (i) Train the pose networks (with feature

network fixed) using augmented and rendered data, and (ii) Finetune the overall

network using original and flipped images

Expt. aero bike boat bottle bus car chair dtable mbike sofa train tv Mean

V&K [2] 13.80 17.70 21.30 12.90 5.80 9.10 14.80 15.20 14.70 13.70 8.70 15.40 13.59

Render [1] 15.40 14.80 25.60 9.30 3.60 6.00 9.70 10.80 16.70 9.50 6.10 12.60 11.67

Axis-angle 13.97 21.07 35.52 8.99 4.08 7.56 21.18 17.74 17.87 12.70 8.22 15.68 15.38

Quaternion 14.53 22.55 35.78 9.29 4.28 8.06 19.11 30.62 18.80 13.22 7.32 16.01 16.63

Detected 14.71 21.31 45.07 9.47 4.20 8.93 26.36 20.70 19.16 18.80 8.72 15.65 17.76

Median geodesic viewpoint error (in degrees) using ground-truth bounding boxes for

un-occluded and un-truncated objects

Expt. aero bike boat bottle bus car chair dtable mbike sofa train tv Mean

[2]-ARP 64.0 53.2 21.0 - 69.3 55.1 24.6 16.9 54.0 42.5 59.4 51.2 46.5

Ours-ARP 61.95 49.07 20.02 35.18 66.24 49.89 19.78 15.36 49.38 40.92 56.68 49.87 42.86

Average Rotation Precision (∆(R, R̂) < 30◦ and I/U > 0.5)

Ablation Analysis

Choice of Feature Network: VGGM- FC6 vs

FC7 vs POOL5

Choice of Feature Network: VGGM-FC6 vs

VGG16-FC6

Optimization for Pose Networks: MSE(20) vs

GVE(20) vs MSE(10) + GVE(10). MSE
.
= ‖y − ŷ‖22

Data Augmentation: With and without ren-

dered images

Optimization: With and without finetuning With detected bounding boxes
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