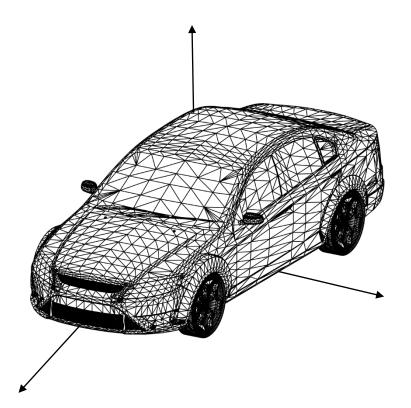
JHU vision lab

3D Pose Regression using Convolutional Neural Networks

Siddharth Mahendran, Haider Ali, and René Vidal Center for Imaging Science Johns Hopkins University



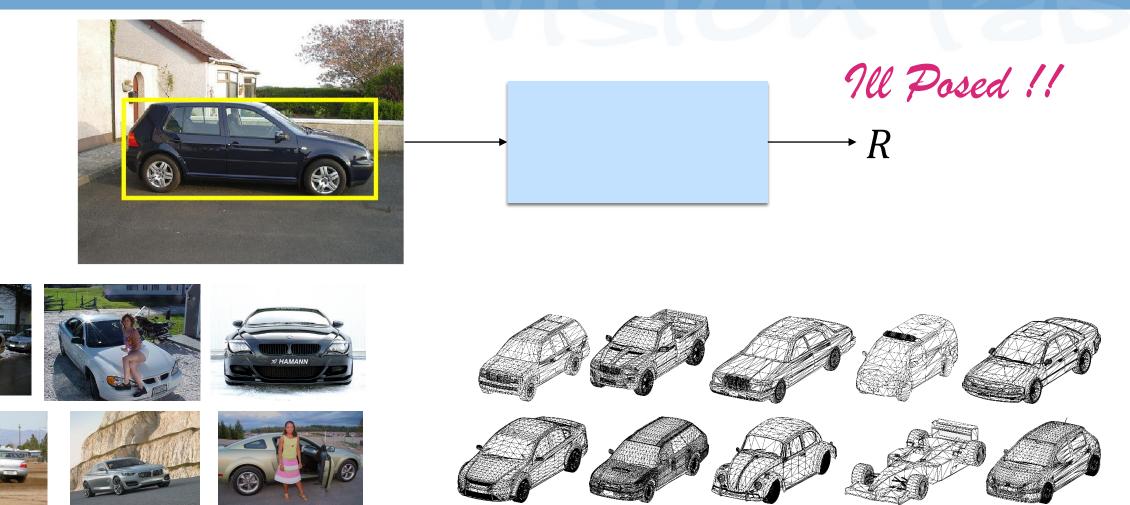
The Whitaker Institute at Johns Hopkins

Problem Statement

6D Task: given a single 2D image, estimate 6D object pose

Problem Statement

6D Task: given a single 2D image, estimate 6D object pose


2D detection has experienced significant progress over the past few years

Assume a 2D bounding box returned by an oracle or an object detector

3D Task: Given a 2D image and a 2D bounding box around an object in the image, predict the 3D orientation of the object

Problem Formulation

Learn from training examples

Pose annotations with aligned models

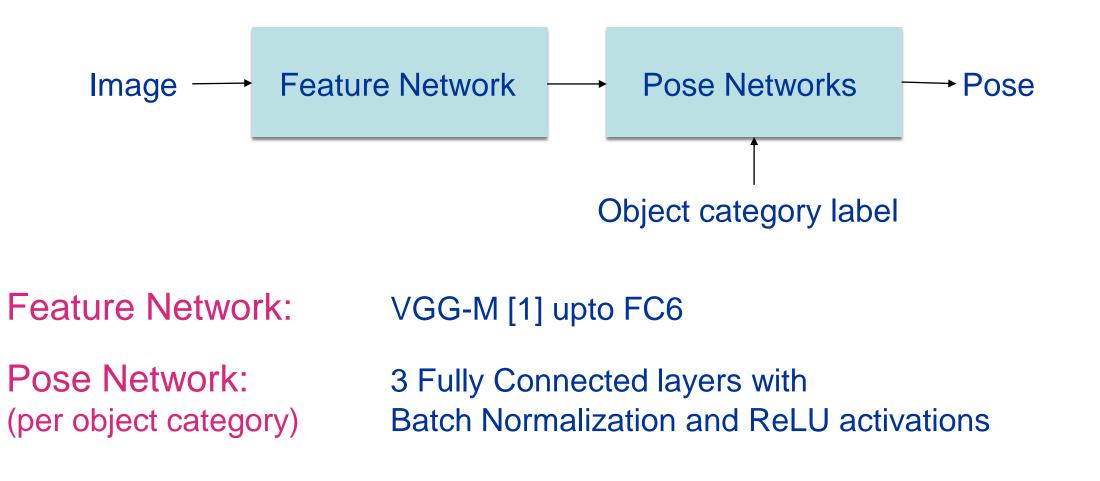
Problem Formulation

R

What is the network architecture ?

What representation and loss function to use ?

CNN


	Prior work	This work				
Problem formulation	Pose classification	Pose regression				
Representation	Discretized angle bins	Axis-angle / Quaternion				
Loss function	Cross-entropy loss	Geodesic loss				
Data augmentation	2D jittering [1] Rendered images [2]	3D pose jittering + Rendered images				

[1] S. Tulsiani and J. Malik, Viewpoints and Keypoints, CVPR 2015

[2] H. Su, C. Qi, Y. Li, and L. Guibas, Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views, ICCV 2015

Network Architecture for 3D Pose Task

Representations and Loss Functions for 3D Pose Task

Exploit underlying structure of rotation matrices !

$$R \in SO(3) \doteq \{X \in \mathbb{R}^{3 \times 3} | X^T X = I_3, \det(X) = 1\}$$

Rotation by an angle about an axis

 $R = \exp(\theta[v]_{\times})$

Axis-angle

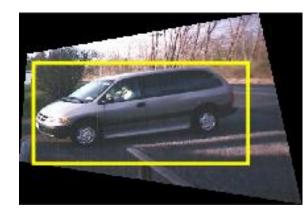
$$R \leftrightarrow y = \theta v$$
$$\mathcal{L}(y_1, y_2) = \cos^{-1} \left[\frac{\operatorname{trace}(R_1^T R_2) - 1}{2} \right]$$

Quaternion

$$R \leftrightarrow q = \left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}v\right)$$

$$\mathcal{L}(q_1, q_2) = 2\cos^{-1} |\langle q_1, q_2 \rangle|$$

Data Augmentation for 3D Pose Task



Perturbation around Z-axis: $R(az, el, ct \pm \delta ct)$

2D Pose jittering

Unknown perturbations in 3D pose !!

Perturbation around X-axis: $R(az \pm \delta az, el, ct)$

3D Pose jittering

Experimental Setup

- Dataset: Pascal3D+ (release 1.1)
 - ImageNet and Pascal VOC2012 images for 12 object categories
 - Training set: Imagenet-trainval images,
 - Validation set: Pascal-train images
 - Testing set: Pascal-val images
- Data augmentation:
 - 3D pose jittering 162 samples per image
 - Perturbations around X-axis (x9) : -2:0.5:2
 - Perturbations around Z-axis (x9) : -4:1:4
 - Flips (x2)
 - Rendered images [1]
- Training:
 - Adam optimizer with learning rate schedule
 - Implemented in Keras with TensorFlow backend

Evaluation metric:

$$\mathcal{L}(R_1, R_2) = \frac{\|\log(R_1 R_2^T)\|}{\sqrt{2}}$$

Median angle error between predicted and ground-truth rotation matrices

	aero	bike	boat	bottle	bus	car	chair	dtable	mbike	sofa	train	tv	mean
Ours: axis- angle	13.97	21.07	35.52	8.99	4.08	7.56	21.18	17.74	17.87	12.70	8.22	15.68	15.38
Ours: quaternion	14.53	22.55	35.78	9.29	4.28	8.06	19.11	30.62	18.80	13.22	7.32	16.01	16.63

Performance on ground-truth bounding boxes for un-occluded and un-truncated objects

Ours: axis-angle detected	14.71	21.31	45.07	9.47	4.20	8.93	26.36	20.70	19.16	18.80	8.72	15.65	17.76
---------------------------------	-------	-------	-------	------	------	------	-------	-------	-------	-------	------	-------	-------

Performance on bounding boxes returned by Faster R-CNN [3]

[1] S. Tulsiani and J. Malik, *Viewpoints and Keypoints*, CVPR 2015
[2] H. Su, C. Qi, Y. Li, and L. Guibas, *Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views*, ICCV 2015
[3] S. Ren, K. He, R. Girshick, and J. Sun. Faster RCNN: Towards real-time object detection with region proposal networks. Arxiv 2015

We designed a Convolutional Neural Network framework for the task of 3D Pose regression with :

- Suitable representation of the space of 3D rotation matrices: axis-angle and quaternion
- Appropriate geodesic loss on the space of rotation matrices
- Relevant data augmentation strategy, 3D pose jittering based on applying homographies to the images

Acknowledgements

Collaborators

Siddharth Mahendran

Haider Ali

Funding

 NSF 1527340

Vision Lab @ Johns Hopkins University http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University <u>http://www.cis.jhu.edu</u>

Thank You!

