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Abstract

We propose a new approach to action classification in
video, which uses deep appearance and motion features ex-
tracted from spatio-temporal volumes defined along body
part trajectories to learn mid-level classifiers called deep
moving poselets. A deep moving poselet is a classifier that
captures a characteristic body part configuration, with a
specific appearance and undergoing a specific movement.
By having this mid-level representation of a body part be
shared across action classes and by learning it jointly with
action classifiers, we obtain a representation that is inter-
pretable, shared and discriminative. In addition, by using
sparsity-inducing norms to regularize action classifiers, we
can reduce the number of deep moving poselets used by
each class without hurting performance. Experiments show
that the proposed method achieves state-of-the-art perfor-
mance on the popular and challenging sub-JHMDB and
MSR Daily Activity datasets.

1. Introduction
Human action recognition is an active research field with

a plethora of applications, such as surveillance and human-

robot interaction. Despite continuous efforts from the re-

search community, it still remains a challenging task due to

variations in the execution of actions, variations in scale and

viewpoint as well as occlusions. Even deep learning meth-

ods [8, 20, 3] have not yielded significant advances over

hand-crafted descriptors such as improved dense trajecto-

ries (iDT) [25]. This could be attributed to limited train-

ing data, since video collection and annotation are expen-

sive and time-consuming tasks. Another possible explana-

tion is that many of the popular deep learning frameworks

for action recognition operate on whole frames or cropped

patches, which might not be sufficiently discriminative of

where and when the action occurs. One solution could be to

focus on salient spatio-temporal regions [30, 36]. Video

sub-volumes along human body parts would be ideal for it,

since intuitively an action can be thought as a composition

of action primitives, i.e., characteristic configurations and

movements of body parts. This was confirmed by Cheron et

al. [1], who proposed to use P-CNN features extracted along

body part tracks. Still the straightforward approach of ex-

tracting deep features around body parts at each frame, tem-

porally pooling these features using max or average pool-

ing, and then classifying the video using a linear SVM, is

not always able to outperform results obtained by iDT [1].

The success of iDT relies on not only an effective de-

scription of appearance and motion, but also mid-level rep-

resentations such as the Fisher Vector (FV) [17], which cap-

ture higher order statistics about features. Indeed, the work

of [31] recently showed that combining deep features with

high dimensional encodings such as FV can further boost

performance in action detection. However, one shortcom-

ing of such mid-level features is their lack of interpretabil-

ity as they do not shed light into the spatial configurations,

movements and hand-object interactions that are most dis-

criminative for each action. To address this issue, another

line of research focuses on training mid-level part classi-

fiers/templates [5, 34, 23, 11] which, besides their inter-

pretability, perform very well, and are computationally ef-

ficient as their responses lead to a much lower-dimensional

representation of a video in comparison to high dimensional

encodings such as FV. However, these methods have not

yet explored the approach of learning mid-level classifiers

based on deep features, which was recently shown to out-

perform mid-level classifiers learned with hand-crafted fea-

tures for the task of human pose retrieval [6].

In this paper we propose a new approach to action classi-

fication in video, which combines the strengths of deep fea-

tures, part-based features, and discriminative mid-level rep-

resentations. Specifically, we propose to extract deep fea-

tures from short spatio-temporal volumes extracted around

the 2D trajectories of a hierarchy of body parts ranging from

small rigid parts, like arms, to the whole body. These fea-

tures are then fed to mid-level spatio-temporal part classi-

fiers that are designed to be sensitive to specific body part

pose configurations (e.g., hands above head) and movement

patterns (e.g., hand moving forward), hence they are nat-

urally defined to be interpretable. By having a common

dictionary of mid-level classifiers for each body part, our
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mid-level representation is naturally shared among differ-

ent action classes, e.g., a mid-level classifier for a hand-

to-mouth movement and pose configuration can be shared

between actions drink and eat. Moreover, by jointly learn-

ing mid-level and action classifiers, and properly regular-

izing the action classifier weights, our mid-level classifiers

are designed to be discriminative in the sense that not all

of them are needed to classify an action. For instance, the

appearance of arms when playing the guitar or the motion

of a leg when kicking a ball are examples of mid-level parts

that are discriminative.

In summary, the contributions of this work are three-fold.

First, we learn interpretable, shared and discriminative mid-

level classifiers that capture spatio-temporal configurations

of body parts during different phases of an action. We call

our mid-level classifiers deep moving poselets, as they are

a natural extension of the moving poselet representation of

skeletal data proposed in [22]. One difference is that 3D

joint positions are typically measured in the case of skele-

tal data, while in the case of video data, 2D joint positions

are in general unknown and need to be annotated or esti-

mated. Furthermore, local features around joints are not

sufficient for capturing the rich information conveyed by the

appearance and the motion of whole body parts. Our sec-

ond contribution is a method for constructing short tubelets

around a hierarchy of body parts using 2D joint positions

and a sliding window. Deep features extracted from such

tubelets provide a powerful descriptor for the appearance

and motion of body parts. Finally, we evaluate our method

on two challenging datasets and show that it achieves state-

of-the-art performance on both of them. We also show that

sparsity-inducing norms can be integrated in our framework

to reduce the number of deep moving poselets used by each

class without hurting performance.

2. Related Work
The most popular action recognition methods are based

on holistic features extracted from whole videos, which are

typically fed directly to a classifier, such as a linear SVM,

or are first encoded by a a high dimensional feature en-

coder, such as FV. Typical features are either hand-crafted,

such as iDT [26], or deep, like the two-stream convolutional

network [20] and other networks [8, 30]. While such fea-

tures yield state-of-the-art results, most of them lack inter-

pretability in terms of body parts involved and their char-

acteristic movements. Instead, we focus on body parts by

building short spatio-temporal volumes along their trajecto-

ries and extracting features from such volumes.

Many works are based on pooling features extracted

from local spatio-temporal volumes, such as densely se-

lected video sub-volumes [16, 19], volumes from a spatio-

temporal pyramid [35], randomly selected volumes [5, 33],

volumes enclosing the action of interest [23] or the ac-

tor [21] and volumes around objects by linking object pro-

posals [34]. In this work, we focus on the appearance and

motion of both individual body parts as well as the whole

human body. There are many ways of describing a body

part in video data: for instance, one can use the position and

velocity of joints, as in pose-based methods, e.g., [24, 9], or

can exploit appearance information by describing a spatio-

temporal neighborhood around each joint belonging to the

body part [11] or inferring a coarse tubelet that encloses

the body part using 2D joint position information [1]. We

adopt the latter strategy and place our volumes of interest

around body part trajectories, with the difference that our

tubelets span short temporal windows rather than the whole

video as in [1]. This allows us to learn action primitives that

are compact in space (capturing the appearance of a certain

body part) and in time (capturing short movement patterns

of a certain body part). We also build a two-layer model

on top of these features, which aims at jointly training dis-

criminative part classifiers (deep moving poselets) and ac-

tion classifiers, while in [1] they used a simple linear SVM.

Learning mid-level feature representations for action

recognition is also an active research field. Some ap-

proaches learn linear classifiers based on image patches [14,

18, 4], while others, including ours, learn them based on

spatio-temporal volumes [35, 5, 34, 23, 11]. A common step

among many of these approaches is to learn a separate set

of discriminative linear classifiers/poselets for each action,

employing methods such as seeding, expansion and selec-

tion [29, 34], multiple instance learning [35, 19] or clus-

tering and hard mining [33]. In contrast, we jointly train

deep moving poselets and action classifiers, without hav-

ing to resort to clustering and hard-mining, which yields a

set of discriminative part classifiers per action class. More-

over, as we will show, our method encourages deep moving

poselets to be shared among action classes and is therefore

more scalable. Joint learning of mid-level linear classifiers

and action classifiers for video action recognition has been

also exploited by [18, 11]. Our approach differs from these

two works not only in the volumes selected and features

extracted from them, but also in the model used. Instead

of using a (latent) Structural SVM, we prefer the two-layer

model proposed in [22] for finding moving poselets from

skeleton data, because it can be trained in an efficient way

using stochastic gradient descent.

3. Deep Moving Poselets: A Mid-Level Feature
Representation for Action Recognition

In this section we describe our approach to extracting

deep features from spatio-temporal volumes defined along

human body part trajectories as well as the proposed model

for learning mid-level spatio-temporal part detectors (deep

moving poselets). Our approach is illustrated in Fig. 1.

112



Optical Flow

RGB

xapp
1,1

Body part 1

Body part 2

KM × 1

2

2

3

1
4 5

1

=

M × S

S × T

DM Poselets

t = 1 t = 2

xapp
1,2

xmot
1,1 xmot

1,2

RGB

xapp
2,1

3=

M × S

S × T

DM Poselets

t = 1 t = 2

xapp
2,2

xmot
2,1 xmot

2,2

Input

Figure 1. Our framework consists of 5 main steps: 1) extract spatio-temporal volumes (tubelets) along the trajectories of human body parts

in a sliding window fashion and compute CNN features for the description of the appearance (xapp
k,t ) and motion (xmot

k,t ) of each one of

these tubelets, 2) compute responses of all deep moving poselets for each tubelet, i.e., each body part and temporal window, 3) max-pool

the responses for each deep moving poselet and body part temporally, 4) concatenate these responses and 5) apply a linear SVM action

classifier. Deep moving poselets and action classifiers are trained jointly. For illustration purposes, we assume K = 2 body parts, T = 2
temporal windows and M = 4 poselets per body part. (Best viewed in colour).

3.1. Low-level Features from Body Part Tubelets

Let the input be a video of a person performing an ac-

tion. Assume that the 2D image positions of all joints, for

all frames are either annotated or estimated using pose esti-

mation methods, such as [32]. Assume also that the human

body is divided in K body parts, such as arms, legs, upper

body, lower body, full body, etc., where each part is defined

as a collection of joints (see Fig. 2a).

Tubelets. For each body part, we define a 2D bounding

box containing all the joints for that body part. By tracking

the motion of this bounding box throughout the video, we

obtain a spatio-temporal tube, which we subdivide into T
(possibly overlapping) tubelets of L consecutive frames, as

illustrated in step 1 of Fig. 1. More specifically, to form

a tubelet surrounding body part k, e.g., the right arm, we

find the tightest bounding box that encloses all the joints

belonging to body part k. Since joint positions do not spec-

ify the spatial extent of each body part, which depends on

its scale, we enlarge the bounding box of body part k by

m
(k)
x and m

(k)
y pixels in the horizontal and vertical direc-

tion, respectively, to include both the body part as well as

the context around it. Including context is very important

since contextual cues, such as the place where the action

takes place or the objects used, are highly discriminative of

the action. For large body parts, such as the full body, up-

per body and lower body, bounding boxes can be coarse so

that they contain more background, while for small body

parts, such as left and right leg, bounding boxes should ide-

ally be tight enough so that they focus on the corresponding

body part. Also note that, unlike in the case of skeleton data

where body parts such as right and left arm have a unique

set of features defined by the positions and velocities of the

joints belonging to each one of them, in the case of video

data, regardless of the way that a bounding box surrounding

a body part is constructed, it can also partially or fully sur-

round other body parts, as shown in Fig. 2b. This is caused

by the high complexity of human poses and the variety of

camera viewpoints, and constitutes an additional challenge

for learning mid-level part classifiers from video.

Deep features. From each tubelet, we extract appearance

and motion features and encode them into a representa-

tion of fixed size S. Although our framework can make

use of any features extracted from a spatio-temporal vol-

ume, we choose to use CNN features. Specifically, we ex-

tract deep features from each body part tubelet using the

deep network architecture in [1], which consists of a spa-

tial CNN operating on RGB patches and a motion CNN

operating on optical flow patches. Since the size of a

tubelet patch changes with time, the inputs to both CNNs

are resized to 224 × 224. Using these networks we com-

pute for each frame a 4096-dimensional appearance vector

and a 4096-dimensional motion vector (fc7 layer outputs).

We then compute a representation for each tubelet by ap-

113



Body part Joint Set

Torso neck, r hip, l hip

Right arm r shoulder, r elbow, r wrist

Left arm l shoulder, l elbow, l wrist

Right leg r hip, r knee, r ankle

Left leg l hip, l knee, l ankle

Torso & head head, neck. belly, head, l shoulder, r shoulder

Upper body head, {Right arm}, {Left arm}
Lower body hip, {Right leg}, {Left leg}
Full upper body head, {Right arm}, {Left arm}, r hip, l hip

Full body all joints
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Figure 2. Body part tubelets. (a) Body parts defined in terms of joints forming their boundaries. (b) Example of two tubelets along body

part right arm for two temporal windows of a video belonging to action golf. Each tubelet is represented by a sampled sequence of frames

(first, middle and last) and a bounding box. (c) Zooming into a tubelet along body part right arm.

plying temporal max-pooling to both appearance and mo-

tion descriptors, i.e., by computing the maximum value of

each entry of these descriptors over all frames inside the

tubelet. The tubelet descriptors for appearance and mo-

tion are then separately normalized by dividing them by the

average L2-norm of the CNN features computed from the

training set and are concatenated into the final feature vector

xk,t =
[
xapp
k,t ,x

mot
k,t

]
∈ R

S for the tubelet corresponding to

the kth body part and the tth temporal window.

3.2. Deep Moving Poselets: An Interpretable and
Discriminative Mid-Level Representation for
Action Classification

Given spatio-temporal features extracted from multiple

tubelets in a video, which correspond to a collection of K
body parts, our goal is to learn an interpretable, shared, and

discriminative mid-level representation for action classifica-

tion. Following the moving poselet representation of skele-

tal data proposed in [22], our mid-level representation for

video data consists of a set of dictionaries Dk ∈ R
S×M ,

one per body part k ∈ {1, . . . ,K}, where each column

of Dk represents a linear classifier. In the case of skeletal

data, these classifiers were tuned to be sensitive to specific

3D pose configurations and motion patterns of the corre-

sponding body part. In the case of video data, these clas-

sifiers are tuned to be sensitive to specific 2D pose con-

figurations and motion patterns of a body part as well as

specific appearance patterns obtained from deep features,

hence the name deep moving poselets. Formally, let Xk =
[xk,1, . . . ,xk,t, . . . ,xk,T ] ∈ R

S×T be the time-series of

features from the kth body part. Assuming that Dk is a

dictionary of M linear classifiers with biases dk ∈ R
M , the

response map obtained after applying (Dk,dk) to the tth
data point of the time series for the kth body part is given

by hk,t = D�k xk,t +dk. Intuitively, the response map cap-

tures the similarity between each one of the patterns repre-

sented by the mid-level classifiers and the pattern described

by feature xk,t. Specifically, a high response indicates high

similarity, while a low response indicates low similarity.

To obtain a single descriptor for the time series Xk from

the kth body part, we apply temporal max-pooling to the

response map hk,t for the M mid-level classifiers in Dk.

Formally, we compute an M -dimensional vector f , which

we call the moving poselet activation vector, whose jth en-

try is given by f(Xk;Dk,dk)
(j) = max

t=1,...,T
h
(j)
t,k . The final

representation F for all K time series X = {Xk}Kk=1 ex-

tracted from the video is obtained as the concatenation of

the representations of the K time series, i.e.,

F(X;D,d)=[f(X1;D1,d1), . . . , f(XK ;DK ,dK)] , (1)

where D = {Dk}Kk=1 and d = {dk}Kk=1.

To classify a video, we first apply a rectified linear unit

φ(x) = max(x, 0) to each entry of its representation F ∈
R

KM , and then give it as the input to linear action classifiers

{(Wc, bc)}Cc=1, where C is the number of classes and W,b
are the weight and bias matrices. This gives the class acti-
vation scores gc = W�

c φ(F(X,D,d)) + bc, from which

the class of the video is obtained as c∗ = argmaxc gc.

3.3. Joint Learning of Deep Moving Poselet Classi-
fiers and Action Classifiers

Given N training examples, {X(n), Y (n)}Nn=1, where

X(n) is a set of K time series of length Tn extracted from

the nth video sequence and Y (n) ∈ {1, . . . , C} is the action

class associated with that video, the moving poselet classi-

fiers D and d are learned jointly with the action classifiers

W and b by solving the following optimization problem:

min
D,d,
W,b

C∑
c=1

N∑
n=1

max(0, 1− Ycn(W
�
c φ(F(X

(n),D,d)) + bc))

+ λ(RW (W) +RD(D)). (2)

Here Ycn is equal to 1 if sample n has label c and −1 oth-

erwise, while RW and RD are the regularizers for action

classifiers and deep moving poselets, respectively, and λ is
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a regularization parameter. We can use the �2-norm regu-

larizer for both deep moving poselet classifiers and action

classifiers, i.e., RD(D) = ‖D‖2F and RW (W) = ‖W‖2F ,

respectively, as suggested in [22]. Since we use a single

dictionary of poselets per body part, which is shared for

all actions, and the �2 regularizer penalizes all entries in W
equally so that all action classifiers can select as many pose-

lets as needed, the �2 regularizer encourages sharing of deep

moving poselets among action classifiers. This captures the

intuition that different actions can be obtained as a combi-

nation of the same motion primitives. At the same time,

this makes our action recognition framework more scalable

with respect to the number of classes than other approaches

which learn a separate set of discriminative mid-level clas-

sifiers for each action. On the other hand, we can encour-

age each action classifier to select a small subset of deep

moving poselets depending on the complexity of the ac-

tion (e.g., a complex action may need more poselets than

a simple action) by using a sparsity-inducing norm to reg-

ularize W, such as the �1-norm ‖W‖1. As suggested in

[13] for applications in object recognition, we can balance

sharing and sparsity by using a convex combination of the

�2 and �1 norms, such as the elastic net regularizer [37],

RW (W) = α‖W‖2F + (1 − α)‖W‖1, where the first

term promotes sharing, while the second one promotes spar-

sity. In addition, it is also possible to use sparsity-inducing

norms with respect to the number of body parts involved

in an action, which facilitates interpreting which body parts

and body movements are most discriminative for an action,

though we do not explore such regularizers in this paper.

In summary, by using proper regularization, our frame-

work can learn a compact, shared, discriminative and inter-

pretable mid-level representation of actions from video.

4. Experimental Evaluation
We evaluate our method on two challenging datasets for

action recognition: sub-JHDMB [7] and MSR Daily Ac-

tivity 3D [27]. These datasets provide both RGB videos

in which the whole human body is visible and 2D joint

positions, which we need for constructing bounding boxes

enclosing body parts. First, we report our results on each

dataset and compare them with the state of the art. Next, we

examine the effect of different model components and show

qualitative results suggesting that the learned deep moving

poselets are discriminative, shared and interpretable.

4.1. Implementation Details

We implemented our model in Keras [2] and trained it

using backpropagation with a batch size of 10 samples, a

learning rate of 0.01, a momentum of 0.9, 200 epochs and a

regularization parameter λ = 10−4. The learning rate was

reduced in half every 20 and 50 epochs for sub-JHMDB and

MSR Daily Activity 3D, respectively.

4.2. Experiments on sub-JHMDB

The sub-JHMDB dataset consists of 316 realistic videos

belonging to 12 full body action classes, such as catch, golf,

swing baseball, run and walk. This dataset is challenging

due to variations in position, scale, viewpoint of human ac-

tors, as well as varying video quality and camera motion.

For our experiments on sub-JHMDB, we form tubelets

around body parts: torso, right arm, left arm, right leg, left
leg, torso and head, upper body, lower body, full body. We

enlarge tight bounding boxes by mx = εw and my = εh,

where h,w are the height and width of the bounding box

and ε is chosen as 0.5 for body parts upper body, lower
body, full body and 0.25 for the remaining body parts. We

set the number of deep moving poselets per body part to

M = 50 after 5-fold cross-validation. Besides, we use the

�2-norm regularizer for both mid-level classifiers and ac-

tion classifiers. We use a sliding window of length L = 15
frames and a step of 5 frames.

Table 1 shows the average classification accuracy over

the three standard train/test splits suggested by the au-

thors [7] on the sub-JHMDB dataset using either the human

annotated 2D joint positions provided with this dataset or

the pose estimated joint annotations provided by [1]. Our

method obtains state-of-the-art results for both configura-

tions. Note that we do not use the joint positions as features,

but only to coarsely localize bounding boxes around body

parts, so there is no fair comparison between our results

and methods that explicitly use pose features. Specifically,

when using pose-estimated positions, we observe from the

last column of Table 1 that our method outperforms all state-

of-the-art methods, even those using explicit pose features,

such as joint positions, velocities and angles. Note that

our method is more robust to inaccurate pose estimation

results than pose-based methods, such as [7]. In particu-

lar, although our action classification performance drops by

9% when moving from joint annotations to pose estimated

joints, this drop is smaller than the one reported by Jhuang

et al. [7], who use explicit pose features. In their case, per-

formance drops from 75.5% to 52.9%. Our method also

outperforms P-CNN [1], which is another work based on

body parts, by using tubelets which are compact in space

and time and learning discriminative mid-level classifiers.

4.3. Experiments on MSR Daily Activity 3D

The MSR Daily Activity 3D dataset consists of 320

videos of 10 subjects performing 16 different daily activities

in two different settings: “sitting on sofa” and “standing”.

Although these videos are captured in a controlled setting

resembling a living room and there are no significant view-

point and scale changes as in the sub-JHMDB dataset, this

dataset is also very challenging because joint positions are

captured by a Kinect device and are hence very noisy, espe-

cially when subjects sit or walk behind the sofa.
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Method Features Accuracy (%)

GT Joints PE Joints

DT [7] RGB 46.0

NTraj [7] 2D Pose 75.1 54.1

DT + NTraj [7] RGB + 2D Pose 75.5 52.9

MST-AOG [28] [15] RGB + 2D Pose - 45.3

AOG [15] RGB + 2D Pose - 61.2

[11] RGB + 3D Pose 77.5 -

P-CNN [1] RGB + Bps 72.5 66.8

Ours RGB + Bps 79.2 70.2
Table 1. Recognition accuracy in the sub-JHMDB dataset. (RGB

features: any features extracted from RGB videos, including op-

tical flow features, GT joints: annotated joints, PE joints: pose

estimated joints, Bps: body parts.)

For our experiments on MSR Daily Activity 3D, we form

tubelets only around body parts: upper body, lower body
and full body, because joint positions from Kinect are very

noisy, and it is hard to center tubelets around fine-grained

body parts such as arms. Since human scale in this dataset

is almost the same for all subjects and actions, we enlarge

tight bounding boxes by a fixed number of pixels, mx =
my = 40. We set the number of deep moving poselets per

body part to M = 333 after 5-fold cross-validation. We

use �2-norm regularizer for both deep moving poselet and

action classifiers. We also use a sliding window of length

L = 15 frames and a step of 5 frames.

Table 2 compares our method to state-of-the-art meth-

ods based on RGB and/or 2D joint information on the MSR

Daily Activity 3D dataset. We do not compare against

methods that rely on 3D skeleton and/or depth cues, since

our method does not use these information streams. We

use the cross-subject evaluation method proposed in [27],

namely we use subjects 1, 3, 5, 7 and 9 for training, and

the rest for testing. Our method obtains results compara-

ble to the state of the art. The best performing method on

this dataset, IPM [34], also finds discriminative mid-level

part classifiers, which are however centered around object

proposals. These mid-level classifiers are beneficial in this

case, since 10 out of the 16 action classes of this dataset in-

volve some kind of human-object interaction. Nevertheless,

our method is more general, since it does not restrict itself

in actions that involve hand-object interaction. Also note

that our method outperforms IPM when no extra informa-

tion about the 2D joint locations is used.

4.4. Ablation Analysis

In Table 3 we analyze the contribution of the key com-

ponents of our proposed method, namely the contribution of

a) combining appearance and motion information streams,

1MST-AOG [28] is trained using both RGB videos and 3D joint posi-

tions for training, but is applied on RGB videos for testing

Method Accuracy (%)

RGB
STIP [10] [28] 54.5

DT [25] [34] 71.7

MST-AOG [28]1 73.1

IPM [34] 83.3
RGB + Pose

IPM+Joints [34] 89.3
RGB + Body parts

Ours 84.4
Table 2. Recognition accuracy in the MSR Daily Activity 3D

dataset using 2D joint positions captured by a Kinect device.

Method Accuracy (%)

app, full body, no sliding window 60.3

mot, full body, no sliding window 66.1

app+mot, full body, no sliding window 74.3

app+mot, all bps, no sliding window 77.7

app+mot, all bps, with sliding window 79.2

Table 3. Contribution of each component to recognition accuracy

on sub-JHMDB using annotated joints. (app: appearance features,

mot: motion features, bps: body parts)

b) forming short tubelets in a sliding window fashion and

c) using body parts. To accomplish this analysis, we start

by using just the full body tubelet that spans the whole

video and using either appearance or motion features to

learn 500 deep moving poselets. As expected, motion infor-

mation alone is more important than appearance informa-

tion. The difference in performance can also be attributed

to the CNNs used, since the spatial CNN was trained on

ImageNet for image classification, while the optical flow

CNN was trained on UCF101 for the task of action classifi-

cation [1]. Combining both information streams we get an

increase of 8%. Considering all 10 body parts and still us-

ing tubelets spanning the whole length of the video, we get

an average action classification accuracy of 77.7% for 50
deep moving poselets per body part. Finally, by introducing

a sliding window of 15 frames and forming spatio-temporal

tubes that are compact in space and time, we get an addi-

tional increase of 2%.

In the next experiment, we showcase the superiority of

our two-layer model in comparison to single layer mod-

els. Specifically, we show how our two-layer model can

improve the result obtained by Cheron et al. [1] on sub-

JHMDB with annotated joints using SVM classifiers. Us-

ing their code and parameters we extract P-CNN features

from the 5 body parts they use (full image, full body, upper

body and hands) and aggregate them in time using tempo-

ral max-pooling. P-CNN with SVM obtains an accuracy

of 72.5%. Using our model with 50 poselets per body part

(250 in total) and without using a sliding window, to allow
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Figure 3. (a) Percentage of used deep moving poselets and classification accuracy in sub-JHMDB for varying values of the elastic net

regularizer parameter α (results averaged over 3 splits). (b) Average number of deep moving poselets used per body part for the 12 classes

in sub-JHMDB. (c) Distribution of absolute action classifier weights per body part for actions golf and run (α = 0.5, split = 2).

Method Accuracy (%)

P-CNN + SVM [1] 72.5

P-CNN + DMPs (no sliding window) 74.3

P-CNN + DMPs (with sliding window) 76.9

Table 4. Effect of mid-level representation on action recognition

accuracy on sub-JHMDB with manually annotated joints (DMPs:

deep moving poselets).

for a fair comparison with [1], we get 74.3%, as shown in

Table 4. Adding the sliding window, we reach 76.9% ac-

curacy. This justifies the use of deep moving poselets as a

mid-level representation.

This final experiment examines the effect of the regu-

larizer used on the action classifier weights RW (W). In

the previous experiments we used an �2-norm regularizer,

RW (W) = ‖W‖2F , which encourages the utilization of all

deep moving poselts belonging to all body parts by all ac-

tions. Here, we use the elastic net regularizer, RW (W) =
α‖W‖2F + (1 − α)‖W‖1, which promotes selecting a

smaller number of poselets for each action class.

Fig. 3 shows the number of deep moving poselets used

by at least one action class together with the action clas-

sification accuracy for various values of α (α = 0 cor-

responds to �1-norm regularization, while α = 1 corre-

sponds to �2-norm regularization). It can be observed that

increasing sparsity, and therefore reducing the number of

used poselets, does not hurt performance. We also com-

pare the number of discarded poselets between an easy and

a hard to classify action , where difficulty in classifying an

action is measured in terms of the average recognition ac-

curacy. For instance, golf is an easy to classify action with

recognition accuracy 90%, while run is a hard to classify

action with recognition accuracy 30%. Indeed, our method

chooses to use more poselets to discriminate run from other

similar classes, e.g., walk than to classify golf.

4.5. Qualitative results

To begin with, we visualize some of the learned deep

moving poselets for the sub-JHMDB dataset with annotated

joints. First, for each action class, we find the 5 deep mov-

ing poselets with the highest action classification weights

for that action. Then, for each chosen deep moving poselet,

we find the body part tubelet in the training data that gives

the highest activation score. In Fig. 4 we show examples

of deep moving poselets that are highly discriminative for

actions catch, swing baseball and pullup. For instance, for

the action catch, our framework utilizes poselets that cap-

ture discriminative spatio-temporal configurations, such as

the configuration of the whole body at two phases of the ac-

tion, namely waiting for the ball and catching the ball, the

configuration of the upper body when catching the ball and

finally the characteristic pose and movement of the lower

body. Note that the tubelet that gives the highest activation

score for each one of these poselets chosen by each class

does not necessarily belong to the same class, but still it

captures a salient movement of the class.

Our next experiment delves deeper into this desirable

property of some of our deep moving poselets, which cap-

ture poses/movements that are shared among action classes.

For each deep moving poselet we find from training data the

tubelet from each action that has the highest response to the

poselet and sort them in descending order based on their re-

sponse. Fig 5 shows 5 deep moving poselets that capture

spatio-temporal configurations that are shared by at least

3 actions. For example, the first row shows a poselet that

captures the “left hand crossing torso” movement in actions

golf, kick ball and swing baseball. The second row shows

a poselet that is sensitive to the upwards motion of the up-

per body, shared by pull up, catch and a specific instance of

kick ball. Another deep moving poselet captures the “torso

parallel to ground” configuration, present in actions such as

pick, push and some instances of jump.
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Figure 4. From left to right: each column shows the 5 most significant deep moving poselets for action classes catch, swing baseball,
pullup. Each deep moving poselet is represented by the body part tubelet with the highest activation from training data of sub-JHMDB

with annotated joints. Each tubelet is illustrated by a sampled sequence of frames (first, middle and last) and a bounding box.

Figure 5. Examples of deep moving poselets shared among action classes in the sub-JHMDB dataset (split 2). Each row shows 3 tubelets

from different classes with high activations for a specific poselet. Each tubelet is represented by a sampled sequence of frames (first, middle

and last) and a bounding box.

5. Conclusion

We have presented a new method for video-based action

classification, which constructs tubelets around body parts,

describes them using CNN features and efficiently learns

a set of mid-level classifiers called deep moving poselets,

which capture characteristic spatio-temporal configurations

of body parts in different phases of actions. Joint learning of

mid-level and action classifiers leads to state-of-the-art per-

formance in two challenging datasets, as well as shared and

discriminative deep moving poselets. Although our method

constructs tubelets based on 2D joint positions, our exper-

iments showed that it can be successfully combined with a

pose estimation algorithm and it is robust to pose estimation

errors. Promising future directions include the use of spatio-

temporal regions obtained by action proposal networks as

well as extending our framework to action detection.
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