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Abstract

Fine-grained action segmentation and recognition is an
important yet challenging task. Given a long, untrimmed
sequence of kinematic data, the task is to classify the action
at each time frame and segment the time series into the cor-
rect sequence of actions. In this paper, we propose a novel
framework that combines a temporal Conditional Random
Field (CRF) model with a powerful frame-level representa-
tion based on discriminative sparse coding. We introduce
an end-to-end algorithm for jointly learning the weights of
the CRF model, which include action classification and ac-
tion transition costs, as well as an overcomplete dictionary
of mid-level action primitives. This results in a CRF model
that is driven by sparse coding features obtained using a
discriminative dictionary that is shared among different ac-
tions and adapted to the task of structured output learning.
We evaluate our method on three surgical tasks using kine-
matic data from the JIGSAWS dataset, as well as on a food
preparation task using accelerometer data from the 50 Sal-
ads dataset. Our results show that the proposed method
performs on par or better than state-of-the-art methods.

1. Introduction

Temporal segmentation and recognition of complex ac-
tivities in long continuous recordings is a useful, yet chal-
lenging task. Examples of complex activities comprised of
fine-grained goal-driven actions that follow a grammar are
surgical procedures [9], food preparation [31] and assembly
tasks [35]. For instance, in the medical field there is a need
to better train surgeons in performing surgical procedures
using new technologies such as the daVinci robot. One pos-
sible approach is to use machine learning and computer vi-
sion techniques to automatically determine the skill level
of the surgeon from kinematic data of the surgeon’s perfor-
mance recorded by the robot [9]. Such an approach typi-
cally requires an accurate classification of the surgical ges-
ture at each time frame [3] and a segmentation of the surgi-
cal task into the correct sequence of gestures [34]. Another

example of a complex activity with goal-driven fine-grained
actions following a grammar is cooking. Although the ac-
tions performed while preparing a recipe and their relative
ordering can vary, there are still temporal relations among
them. For instance, the action stir milk usually happens af-
ter pour milk, or the action fry egg usually follows the action
crack egg. Robots equipped with the ability to automati-
cally recognize actions during food preparation could assist
individuals with cognitive impairments in their daily activ-
ities by providing prompts and instructions. However, the
task of fine-grained action segmentation and recognition is
challenging due to the subtle differences between actions,
the variability in the duration and style of execution among
users and the variability in the relative ordering of actions.

Existing approaches to fine-grained action segmenta-
tion and recognition use a temporal model to capture the
temporal evolution and ordering of actions, such as Hid-
den Markov Models (HMMs) [13, 32], Conditional Ran-
dom Fields (CRF) [16, 17], Markov semi-Markov Condi-
tional Random Fields (MsM-CRF) [34], Recurrent Neural
Networks [8, 28] and Temporal Convolutional Networks
(TCNs) [15]. However, such models cannot capture subtle
differences between actions without a powerful, discrimi-
native and robust representation of frames or short temporal
segments. Sparse coding has emerged as a powerful signal
representation in which the raw data in a certain time frame
is represented as a linear combination of a small number of
basis elements from an overcomplete dictionary. The coef-
ficients of this linear combination are called sparse codes
and are used as a new representation for temporal model-
ing. However, since the dictionary is typically learned in an
unsupervised manner by minimizing a regularized recon-
struction error [1], the resulting representation may not be
discriminative for a given learning task. Task-driven dis-
criminative dictionary learning addresses this issue by cou-
pling dictionary and classifier learning [24]. For example,
Sefati et al. [30] propose an approach to fine-grained action
recognition called Shared Discriminative Sparse Dictionary
Learning (SDSDL), where sparse codes are extracted at
each time frame and a frame feature is computed by aver-
age pooling the sparse codes over a short temporal window
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surrounding the frame. The dictionary is jointly learned
with the per-frame classifier parameters, resulting in a dis-
criminative mid-level representation that is shared across all
actions/gestures. However, their approach lacks a tempo-
ral model, which is crucial for modeling temporal depen-
dencies. Although prior work [38] has combined discrim-
inative dictionary learning with CRFs for the purpose of
saliency detection, such work is not directly applicable to
fine-grained action recognition.

In this work we propose a joint model for fine-grained
action recognition and segmentation that integrates a CRF
for temporal modeling and discriminative sparse coding for
frame-wise action representation. The proposed CRF mod-
els the temporal structure of long untrimmed activities via
unary potentials that represent the cost of assigning an ac-
tion label to a frame-wise representation of an action ob-
tained via discriminative sparse coding, and pairwise po-
tentials that capture the transitions between actions and en-
courage smoothness of the predicted label sequence. The
parameters of the combined model are trained jointly in
an end-to-end manner using a max-margin approach. Our
experiments show competitive performance in the task of
fine-grained action recognition, especially in the regime of
limited training data. In summary, the contributions of this
paper are three-fold:

1. We propose a novel framework for fine-grained action
segmentation and recognition which uses a CRF model
whose target variables (action labels per time step) are
conditioned on sparse codes.

2. We introduce an algorithm for training our model in
an end-to-end fashion. In particular, we jointly learn
a task-specific discriminative dictionary and the CRF
unary and pairwise weights by using Stochastic Gradi-
ent Descent (SGD).

3. We evaluate our model on two public datasets fo-
cused on goal-driven complex activities comprised of
fine-grained actions. In particular, we use robot kine-
matic data from the JHU-ISI Gesture and Skill Assess-
ment Working Set (JIGSAWS) [9] dataset and evaluate
our method on three surgical tasks. We also experi-
ment with accelerometer data from the 50 Salads [31]
dataset for recognizing actions that are labeled at two
levels of granularity. Results show that our method
performs on par with most state-of-the-art methods.

2. Related Work
The task of fine-grained action segmentation and recog-

nition has recently received increased attention due to
the release of datasets such as MPII Cooking [29], JIG-
SAWS [9] and 50 Salads [31]. In this section, we briefly re-
view some of the main existing approaches for tackling this

problem. Besides, we briefly discuss existing work on dis-
criminative dictionary learning. Note that since the focus of
this paper is fine-grained action recognition from kinematic
data, we do not discuss approaches for feature extraction or
object parsing from video data.

Fine-grained action recognition from kinematic data. A
straightforward approach to action segmentation and clas-
sification is the use of overlapping temporal windows in
conjunction with temporal segment classifiers and non-
maximum suppression (e.g., [29, 25]). However this ap-
proach does not exploit long-range temporal dependencies.

Recently, deep learning approaches have started to
emerge in the field. For instance, in [8] a recurrent neu-
ral network (Long Short Term Memory network - LSTM)
is applied to kinematic data, while in [15] a Temporal Con-
volutional Network composed of 1D convolutions, non-
linearities and pooling/upsampling layers is introduced. Al-
though these models yield promising results, they do not
explicitly model correlations and dependencies among ac-
tion labels.

Another line of work, including our proposed method,
takes into account the fact that the action segmentation
and classification problem is a structured output prediction
problem due to the temporal structure of the sequence of
action labels and thus employs structured temporal models
such as HMMs and their extensions [32, 13, 14]. Among
them, the work that is most related to this work is Sparse-
HMMs [32], which combines dictionary learning with
HMMs. However, a Sparse-HMM is a generative model in
which a separate dictionary is learned for each action class.
In this work we use a CRF, which is a discriminative model,
and we learn a dictionary that is shared among all action
classes. Discriminative models like CRFs [16, 17], semi-
Markov CRFs [34] have gained popularity since they allow
for flexible energy functions. Other types of temporal mod-
els include a duration model and language model recently
proposed in [27] for modeling action durations and context.
The input to these temporal models are either the kinematic
data themselves or features extracted from them. For in-
stance, in the Latent Convolutional Skip Chain CRF (LC-
SC-CRF) [17] the responses to convolutional filters, which
capture latent action primitives, are used as features.

Discriminative Dictionary Learning. Task-driven dis-
criminative dictionary learning was introduced in the sem-
inal work of Mairal et al. [24] and couples the process
of dictionary learning and classifier training, thus incor-
porating supervised learning to sparse coding. Since then
discriminative dictionary learning has enjoyed many suc-
cesses in diverse areas such as handwritten digit classifica-
tion [22, 39], face recognition [10, 39, 26], object category
recognition [10, 26, 5], scene classification [5, 19, 26], and
action classification [26].

The closest work to ours is the Shared Discriminative



Sparse Dictionary Learning (SDSDL) proposed by Sefati
et al. [30], where sparse codes are used as frame features
and a discriminative dictionary is jointly learned with per
frame action classifiers for the task of surgical task segmen-
tation. Our work builds on top of this model by replacing
the per-frame classifiers, which compute independent pre-
dictions per frame, with a structured output temporal model
(CRF), which takes into account the temporal dependencies
between actions. While prior work has considered joint dic-
tionary and CRF learning [33, 37, 38] for the tasks of se-
mantic segmentation and saliency estimation, our work dif-
fers from these previous approaches in three key aspects.
First, to the best of our knowledge, we are the first to apply
joint dictionary and CRF learning to the task of action seg-
mentation and classification. Second, we are learning unary
CRF classifiers and pairwise transition scores, while in [33]
only two scalar variables encoding the relative weight be-
tween the unary and pairwise potentials are learned. Third,
we use local temporal average-pooling of sparse codes as a
feature extraction process for capturing local temporal con-
text instead of the raw sparse codes used in [37, 38].

3. Technical Approach

In this section, we introduce our temporal CRF model
and frame-wise representation based on sparse coding and
describe our algorithm for training our model. Figure 1 il-
lustrates the key components of our model.

3.1. Model

Frame-wise representation. Let X = {xt}Tt=1 be a se-
quence of length T , with xt ∈ Rp being the input at time t
(e.g., the robot’s joint positions and velocities). Our goal is
to compactly represent each xt as a linear combination of a
small number of atomic motions using an overcomplete dic-
tionary of representative atomic motions Ψ ∈ Rp×m, i.e.,
xt ≈ Ψut, where ut ∈ Rm is the vector of sparse coeffi-
cients obtained for frame t. Such sparse codes can be ob-
tained by considering the following optimization problem:

min
{ut}Tt=1

1

T

T∑
t=1

||xt −Ψut||22 + λu ||ut||1 , (1)

where λu is a regularization parameter controlling the trade-
off between reconstruction error and sparsity of the coef-
ficients. Problem (1) is a standard Lasso regression and
can be efficiently solved using existing sparse coding al-
gorithms [23]. After computing sparse codes ut for each
time step of the input sequence, we follow the approach pro-
posed in [30] to compute feature vectors {zt}Tt=1. Namely,
we initially split the positive and negative components of
the sparse codes and stack them on top of each other. This

xt

Ψ

ut

zt

yt

Figure 1: Overview of our framework. Given an input time
series X, we first extract sparse codes U for each timestep
using a dictionary Ψ. Sparse codes are then average pooled
in short temporal windows yielding feature vectors Z per
timestep. These feature vectors are then given as inputs to a
Linear Chain CRF with weights W. Trainable parameters
Ψ and W are shown in light pink boxes.

step yields a vector at ∈ RD, D = 2m, which is given by:

at =

[
max(0,ut)
min(0,ut)

]
. (2)

This is a common practice [6, 4], which allows the clas-
sification layer to assign different weights to positive and
negative responses. Second, we compute a feature vector
zt ∈ RD for each frame by average-pooling vectors at in a
temporal window Tt surrounding frame t, i.e.:

zt =
1

L

∑
j∈Tt

aj , Tt
.
=

{
t−
⌊
L

2

⌋
, t+

⌊
L

2

⌋}
, (3)

where L is the length of the temporal window centered at
frame t. This feature vector captures local temporal context.
Temporal model. Let Z = {zt}Tt=1 be a sequence of length
T with zt being the feature vector representing the input at
time t, and Y = {yt}Tt=1 be the corresponding sequence of
action labels per frame, yt ∈ {1, . . . , Nc}, with Nc being
the number of action classes. Let G = {V, E} be the graph



whose nodes correspond to different frames (|V| = T ) and
whose edges connect every d frames (with d = 1 corre-
sponding to consecutive frames). Our CRF models the con-
ditional distribution of labels given the input features with a
Gibbs distribution of the form P (Y | Z) ∝ expE(Z,Y),
where the energyE(Z,Y) is factorized into a sum of poten-
tial functions defined on cliques of order less than or equal
to two. Formally, the energy function can be written as:

E(Z,Y) =

T∑
t=1

U>yt
zt +

T−d∑
t=1

Pyt,yt+d
, (4)

where the first term is the unary potential which models the
score of assigning label yt to frame t described by feature
zt, while the second term is called pairwise potential and
models the score of assigning labels yt and yt+d to frames
t and t + d respectively (d is a parameter called the skip
length and a CRF with d > 1 is called Skip-Chain CRF (SC-
CRF) [16, 17]). Uyt

∈ RD is a linear unary classifier corre-
sponding to action class yt and P ∈ RNc×Nc is the pairwise
transition matrix. Note that there exist different variants to
this model. For instance, one can use precomputed unary
and pairwise potentials and learn two scalar coefficients that
encode the relative weights of the two terms [33].

We now show how this energy can be written as a
linear function with respect to a parameter vector W ∈
RNcD+N2

c . The unary term can be rewritten as follows:

T∑
t=1

UT
yt

zt =
[
U>1 , . . . ,U

>
Nc

]


T∑
t=1

ztδ(yt = 1)

...
T∑

t=1

ztδ(yt = Nc)


= WU

>ΦU (Z,Y),

(5)

where WU and ΦU (Z,Y) ∈ RNcD are, respectively, the
unary CRF weights and the unary joint feature. Similarly
the pairwise term can be written as:

[P11, . . . ,PNcNc
]



T−d∑
t=1

δ(yt = 1)δ(yt+d = 1)

...
T−d∑
t=1

δ(yt = Nc)δ(yt+d = Nc)


= WP

>ΦP (Y),

(6)

where WP,ΦP (Y) ∈ RN2
c are the pairwise CRF weights

and pairwise joint feature. Therefore, the overall energy
function can be written as:

E(Z,Y) =

[
WU

WP

]> [
ΦU (Z,Y)
ΦP (Y)

]
= W>Φ(Z,Y), (7)

where W is the vector of CRF weights and Φ(Z,Y) the
joint feature [11]. At this point, we should emphasize that
feature vectors Z = [z1, . . . , zT ] are constructed by local
average pooling of the sparse codes and are therefore im-
plicitly dependent of the input data X and the dictionary Ψ.
For the rest of this manuscript, we will denote this depen-
dency by substituting Z with the notation Z(X,Ψ). So our
energy can be rewritten as:

E(Z(X,Ψ),Y) = W>Φ(Z(X,Ψ),Y). (8)

It should be now clear that if Ψ is fixed, then the energy is
linear with respect to the parameter vector W, like in a stan-
dard CRF model. However, if Ψ is a parameter that needs
to be learned, then the energy function is nonlinear with re-
spect to (W,Ψ) and thus training is not straightforward.
The training problem is addressed next.

3.2. Training

Let {Xn}Ns
n=1 be Ns training sequences with associated

label sequences {Yn}Ns
n=1. We formulate the training prob-

lem as one of minimizing the following regularized loss:

J(W,Ψ) =
1

2
||W||2F +

+
C

Ns

Ns∑
n=1

max
Y

[∆(Yn,Y) + 〈W,Φ(Zn(Xn,Ψ),Y)〉]

− 〈W,Φ(Zn(Xn,Ψ),Yn)〉, (9)

where C is a regularization parameter controlling the reg-

ularization of the CRF weights, ∆(Ŷ,Y) =

T∑
t=1

δ(ŷt 6=

yt) is the Hamming loss between two sequences of labels
Ŷ and Y, and Zn is the matrix of feature vectors ex-
tracted from the frames of input sequence Xn, i.e., Zn =
[zn1 , . . . , z

n
T ]. This max-margin formulation performs reg-

ularized empirical risk minimization and bounds the ham-
ming loss from above. We use a Stochastic Gradient De-
scent algorithm for minimizing the objective function in
Eq. (9). Our algorithm is based on the task-driven dictio-
nary learning approach developed by Mairal et al. [24]. No-
tice that, although the sparse coefficients are computed by
minimizing a non-differentiable objective function (Eq. 1),
J(W,Ψ) is differentiable and its gradient can be com-
puted [22]. In particular, the function relating the sparse
codes ut and the dictionary is differentiable almost every-
where, except at the points where the set of non-zero el-
ements of ut (called the support set and denoted by St)
changes. Assuming that the perturbations of the dictionary
atoms are small so that the support set stays the same, we
can compute the gradient of the non-zero coefficients with
respect to the columns of Ψ indexed by St, denoted as ΨSt

,



as follows [33]:

∂ut(k)

∂ΨSt

= (xt−ΨSt(ut)St)(A
−1
t )[k]−(ΨStA

−>
t )〈k〉(ut)

>
St

(10)
where k ∈ St, (ut)St

denotes the sub-vector of ut with
entries in St, At = Ψ>St

ΨSt
, and the subscripts [k] and

〈k〉 denote, respectively, the k-th row and column of the
corresponding matrix.

Given the dictionary and CRF weights computed at the
(i−1)-th iteration, the main steps of our iterative algorithm
at the i-th iteration are:

1. Randomly select a training sequence (Xi,Yi).

2. Compute sparse codes ut with Eq. 1 and feature vec-
tors zt with Eq. 3 using dictionary Ψ(i−1).

3. Find the sequence Ŷ that yields the most violated con-
straint by solving the loss augmented inference prob-
lem:

Ŷ = argmax
Y

∆(Yi,Y)+〈
W(i−1),Φ(Zi(Xi,Ψ(i−1)),Y)

〉
(11)

using the Viterbi algorithm (see [17] for details regard-
ing inference when using a SC-CRF (d > 1)).

4. Compute gradient with respect to the CRF parameters
W :

∂J

∂W
= W(i−1) + C(Φ(Zi(Xi,Ψ(i−1)), Ŷ)−

−Φ(Zi(Xi,Ψ(i−1)),Yi)). (12)

5. Compute gradients with respect to the dictionary Ψ us-
ing the chain rule:

∂J

∂Ψ
=

T∑
t=1

(
∂J

∂zt

)>
∂zt
∂Ψ

=

T∑
t=1

(
∂J

∂zt

)>
1

L

∑
j∈Tt

∂aj

∂Ψ
,

=
1

L

T∑
t=1

∑
j∈Tt

(xj −Ψ
(i−1)
Sj

(uj)Sj
)

(
A−1j

(
∂J

∂zt

)
S̃j

)>

−Ψ
(i−1)
Sj

A−>j (uj)Sj

(
∂J

∂zt

)>
S̃j

, (13)

where ∂J
∂zt

= Uŷt−Uyt ∈ RD, Sj is the set of indices
corresponding to the non-zero entries of the vector uj ,
S̃j is the set of indices corresponding to the non-zero
entries of the vector aj , Aj = Ψ>Sj

ΨSj
, ΨSj

denotes
the active columns of the dictionary indexed by Sj ,
(uj)Sj denotes the non-zero entries of vector uj and
( ∂J
∂zt

)S̃j
denotes the entries of the partial derivative cor-

responding to non-zero entries of vector aj .

6. Update W, Ψ using stochastic gradient descent.

7. Normalize the dictionary atoms to have unit l2 norm.
This step prevents the columns of Ψ from becoming
arbitrarily large, which would result in arbitrarily small
sparse coefficients.

4. Experiments
We evaluate our method on two public datasets for fine-

grained action segmentation and recognition: JIGSAWS [9]
and 50 Salads [31]. First, we report our results on each
dataset and compare them with the state of the art. Next, we
examine the effect of different model components.

4.1. Datasets

JHU-ISI Gesture and Skill Assessment (JIGSAWS) [9].
This dataset provides kinematic data of the right and left
manipulators of the master and slave da Vinci surgical robot
recorded at 30 Hz during the execution of three surgical
tasks (Suturing (SU), Knot-tying (KT) and Needle-passing
(NP)) by surgeons with varying skill levels. In particu-
lar, kinematic data include positions, orientations, veloci-
ties etc. (76 variables in total), and there are 8 surgeons
performing a total of 39, 36 and 26 trials for the Suturing,
Knot-tying and Needle-passing surgical tasks, respectively.
This dataset is challenging due to the significant variability
in the execution of tasks by surgeons of different skill lev-
els and the subtle differences between fine-grained actions.
There are 10, 6 and 8 different action classes for the Sutur-
ing, Knot-tying and Needle-passing tasks, respectively. Ex-
amples of action classes are orienting needle, reaching for
needle with right hand, pulling suture with left hand, and
making C loop. We evaluate our method using the standard
Leave-One-User-Out (LOUO) and Leave-One-Supertrial-
Out (LOSO) cross-validation setups [2].
50 Salads [31]. This dataset provides data recorded by
10 accelerometers attached to kitchen tools, such as knife,
peeler, oil bottle etc., during the preparation of a salad by
25 users. This dataset features annotations at four levels of
granularity, out of which we use the eval and mid granular-
ities. The former consists of 10 actions that can be reason-
ably recognized based on the utilization of accelerometer-
equipped objects, such as add oil, cut, peel etc., while the
latter consists of 18 mid-level actions, such as cut tomato,
peel cucumber. Both granularities include a background
class. We evaluate our method using the ground truth la-
bels and the 5-fold cross-validation setup proposed by the
authors of [18, 15].

In summary, these two datasets provide kinematic/sensor
data recorded during the execution of long goal-driven
complex activities, which are comprised of multiple fine-
grained action instances following a grammar. Hence, they
are suitable for evaluating our method, which was designed



Method LOSO LOUO
SU KT NP SU KT NP

GMM-HMM [2] 82.22 80.95 70.55 73.95 72.47 64.13
KSVD-SHMM [32, 2] 83.40 83.54 73.09 73.45 74.89 62.78
MsM-CRF [34, 2] 81.99 79.26 72.44 67.84 44.68 63.28
SC-CRF-SL [16, 2] 85.18 84.03 75.09 81.74 78.95 74.77
SDSDL [30] 86.32 82.54 74.88 78.68 75.11 66.01
LSTM (5Hz) [8]* - - - 80.5 - -
LSTM (30Hz) [8]* - - - 78.38 - -
BiLSTM (5Hz) [8]* - - - 83.3 - -
BiLSTM (30Hz) [8]* - - - 80.15 - -
TCN [18] - - - 79.6 - -
LC-SC-CRF [17]** - - - 83.4 - -
Ours 86.21 (0.34) 83.89 (0.08) 75.19 (0.12) 78.16 (0.42) 76.68 (1.20) 66.25 (0.06)

Table 1: Average per-frame action recognition accuracy for surgical task segmentation and recognition on the JIGSAWS
dataset [9]. The results are averaged over three random runs, with the standard deviation reported in parentheses. Best
results are shown in bold, while second best results are denoted in italics.* Our results are not directly comparable with
those of [8], since they were using data downsampled in time (5Hz). For a fair comparison, results for LSTM, BiLSTM on
non-downsampled data (30Hz) were obtained using the code and default parameters publicly available from the authors [8].
** Our results are not directly comparable with those of LC-SC-CRF [17], where authors were using both kinematic data as
well as the distance from the tools to the closest object in the scene from the video.

for kinematic data and features a temporal model that is
able to capture action transitions. Other datasets collected
for action segmentation with available skeleton data, such
as CAD-120 [12], Composable Activities [20], Watch-n-
Patch [36] and OAD [7], have a mean number of 3 to 12
action instances per sequence [21], while for example the
Suturing task in the JIGSAWS dataset features an average of
20 action instances per sequence, ranging from 17 to 37. It
is therefore more challenging for comparing temporal mod-
els. Recently, the PKU-MMD dataset [21] was proposed,
which is of larger scale and also contains around 20 action
instances per sequence. However, the actions in this dataset
are not fine-grained (e.g., hand waving, hugging etc.).

4.2. Implementation Details

Input data are normalized to have zero mean and unit
standard deviation. We apply PCA on the robot kinematic
data of the JIGSAWS dataset to reduce their dimension
from 76 to 35 following the setup of [30]. The dictionary
is initialized using the SPAMS dictionary learning tool-
box [23] and the CRF parameters are initialized to 0. We
use Stochastic Gradient Descent with a batch size of 1 and
momentum of 0.9. We also reduce the learning rate by one
half every 20 epochs and train our models for 100 epochs.
Parameters such as the regularization costC, initial learning
rate η, temporal window size for average-pooling L, Lasso
regularizer parameter λu, skip chain length d and dictio-
nary size m vary with each dataset, surgical task or gran-
ularity. The window size was fixed to 71 for JIGSAWS
and 51 for 50 Salads, the dictionary size M was chosen

via cross-validation from the values {50, 100, 150, 200}, λu
from values {0.1, 0.5},C from {0.001, 0.01, 0.1, 1}, η from
{0.0001, 0.001, 0.01} and d from {21, 51, 81}. To perform
cross-validation we generate five random splits of the avail-
able sequences of each dataset task/granularity. Note that
since both datasets have a fixed test setup, with all users
appearing in the test set exactly once, it is not clear how
to use them for hyperparameter selection without inadver-
tently training on the test set. Here we randomly crop a
temporal segment from each of the videos instead of using
the whole sequences for cross-validation, in order to avoid
using the exact same video sequences which will be used
for evaluating our method. The length of these segments is
80% of the original sequence length. Furthermore, we se-
lect m, λu and d by using the initialized dictionary Ψ0 and
learning the weights of a SC-CRF, while we chooseC and η
by jointly learning the dictionary and the SC-CRF weights.

4.3. Results

Overall performance. We first compare our method with
state-of-the-art methods on the JIGSAWS and 50 Salads
datasets. The per-frame action recognition accuracies of all
the compared methods on JIGSAWS are summarized in Ta-
ble 1. It can be seen that our method yields the best or
second best performance for all tasks on both the LOSO
and LOUO setups, except for Suturing LOUO, where LC-
SC-CRF achieves per-frame action recognition accuracies
up to 83%. However, their result is not directly comparable
to ours, since they employ additional video-based features.
Also note that in [16] they use a SC-CRF with an addi-



Method 50 Salads
eval mid

LC-SC-CRF [17] 77.8 55.05*
LSTM [18] 73.3 -
TCN [18] 82.0 -

Ours 80.04 (0.11) 56.72 (0.72)

Table 2: Results for action segmentation and recognition on
the 50 Salads dataset using granularities eval and mid. Re-
sults are averaged over three random runs, with the standard
deviation reported in parentheses. Best results are shown
in bold, while second best results are denoted in italics.*
LC-SC-CRF [17] was evaluated on the mid granularity with
smoothed out short interstitial background segments [18].

tional pairwise term (skip-length data potentials), which is
not incorporated in our model and could potentially improve
our results. However, it is worth noting that our method
achieves comparable performance to deep recurrent mod-
els such as LSTMs [8] and the newly proposed TCN [18],
which possibly captures complex temporal patterns, such
as action compositions, action durations, and long-range
temporal dependencies. Furthermore, our method consis-
tently improves over SDSDL [30], which was based on joint
sparse dictionary and linear SVM learning, as well as a tem-
poral smoothing of results using the Viterbi algorithm with
precomputed action transition probabilities.

Table 2 summarizes our results on the 50 Salads dataset
under two granularities. Although the modality used in this
dataset is different (accelerometer data), it can be seen that
our method is very competitive among all the compared
methods, even with respect to methods relying on power-
ful deep temporal models such as LSTMs.
Ablative analysis. In Tables 4, 3 we analyze the contri-
bution of the key components of our method, namely the
contribution of a) using sparse features (Eq. 3) obtained
from an unsupervised dictionary in conjunction with a Lin-
ear Chain CRF, b) substituting the Linear Chain CRF with
a Skip Chain CRF (SC-CRF) and c) jointly learning the
dictionary used in sparse coding and the CRF unary and
pairwise weights. As expected, using sparse features in-
stead of the raw kinematic features consistently boosts per-
formance across all tasks on JIGSAWS. Similarly, sparse
coding of accelerometer data improves performance on 50
Salads and notably this improvement is larger in the case of
fine-grained activities (mid granularity). Furthermore, us-
ing a SC-CRF further boosts performance as expected, since
it is more suitable for capturing action-to-action transition
probabilities in contrast to the Linear Chain CRF which cap-
tures frame-to-frame action transition probabilities.

It is however surprising that learning a discriminative
dictionary jointly with the CRF weights does not signifi-
cantly improve performance, yielding an improvement of at
most ∼ 1%. Further investigating this result, we computed

Method 50 Salads
eval mid

raw + CRF 71.81 (0.55) 44.83 (0.73)
SF + CRF 76.65 (0.19) 52.63 (0.23)
SF + SC-CRF 80.24 (0.20) 56.73 (0.08)
SDL + SC-CRF 80.54 (0.11) 56.72 (0.72)

Table 3: Analysis of contribution to recognition perfor-
mance from each model component in the 50 Salads dataset.
Results are averaged over three random runs, with the stan-
dard deviation reported in parentheses. raw+CRF: use kine-
matic data as input to a CRF, SF + CRF: use sparse features
z as input to a CRF, SF + SC-CRF: use sparse features z
as input to a SC-CRF, SDL + SC-CRF: joint dictionary and
SC-CRF learning.

additional metrics for evaluating the segmentation quality
on the JIGSAWS dataset. In particular, we report the edit
score [17], a metric measuring how well the model predic-
tions the ordering of action segments, and segmental-f1@10
score as defined in [15]. As it can be seen in Table 5, per-
formance is similar across all metrics for both unsupervised
and discriminative dictionary, except for a consistent im-
provement in Needle Passing. One possible explanation
could be that the computation of features based on aver-
age pooling of sparse codes in a temporal window might re-
duce the impact of the discriminatively trained dictionary.
However, repeating the experiment on JIGSAWS (Sutur-
ing LOSO) without average temporal pooling leads to the
same behavior, i.e. using a dictionary learned via unsuper-
vised training with a SC-CRF yields a per-frame accuracy
of 86.64%, while using a dictionary jointly trained with the
SC-CRF yields 86.11%. Our findings could be attributed
to the limited training data. They also seem to corroborate
the conclusions drawn by Coates et al. [6], who have exper-
imentally observed that the superior performance of sparse
coding, especially when training samples are limited, arises
from its non-linear encoding scheme and not from the basis
functions that it uses.
Qualitative results. In Fig. 2 we show examples of ground
truth segmentations and predictions for selected testing se-
quences from JIGSAWS Suturing. As it can be seen, the
LOUO setup is more challenging since the model is asked to
recognize actions performed by a user it has not seen before
and in addition to that there is great variability in experience
and styles between surgeons. In all cases our model outputs
smooth predictions, without significant over-segmentations.

5. Conclusion
We have presented a novel end-to-end learning frame-

work for fine-grained action segmentation and recognition,
which combines features based on sparse coding with a Lin-
ear Chain CRF model. We also proposed a max-margin



Method LOSO LOUO
SU KT NP SU KT NP

raw + CRF 79.57 (0.04) 76.39 (0.09) 66.24 (0.10) 71.77 (0.05) 69.63 (0.06) 59.47 (0.18)
SF + CRF 85.70 (0.01) 82.06 (0.03) 71.72 (0.07) 76.64 (0.05) 73.58 (0.07) 60.59 (0.19)
SF + SC-CRF 87.60 (0.03) 83.71 (0.03) 74.63 (0.02) 79.95 (0.05) 76.88 (0.14) 65.75 (0.12)
SDL + SC-CRF 86.21 (0.34) 83.89 (0.07) 75.19 (0.12) 78.16 (0.42) 76.68 (1.20) 66.25 (0.06)

Table 4: Analysis of contribution to recognition performance from each model component in the JIGSAWS dataset. Results
are averaged over three random runs, with the standard deviation reported in parentheses. raw+CRF: use kinematic data as
input to a Linear Chain CRF, SF + CRF: use sparse features z as input to a CRF, SF + SC-CRF: use sparse features z as input
to a SC-CRF, SDL + SC-CRF: joint dictionary and SC-CRF learning.

Method LOSO LOUO
SU KT NP SU KT NP

SF + SC-CRF 87.57/82.92/88.59 83.08/82.87/87.46 74.62/73.05/76.01 79.92/63.39/75.00 76.93/63.61/71.38 65.81/55.45/62.30
SDL + SC-CRF 85.90/75.45/83.47 83.97/82.82/87.94 75.33/76.63/79.85 78.42/58.02/69.22 76.39/65.55/72.87 66.29/60.85/64.43

Table 5: Comparison of unsupervised and supervised dictionary used for sparse coding on JIGSAWS dataset. Metrics
reported are: accuracy/edit score/segmental f1 score. Results are from a single random run. SF + SC-CRF: use sparse features
z obtained from unsupervised dictionary as input to a SC-CRF, SDL + SC-CRF: use sparse features z from discriminative
dictionary learned jointly with a SC-CRF.
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Figure 2: Qualitative examples of ground truth and predicted temporal segmentations (before and after median filtering) on
JIGSAWS data. Each color denotes a different action class. (Best viewed in color.)

approach for jointly learning the sparse dictionary and the
CRF weights, resulting in a dictionary adapted to the task of
action segmentation and recognition. Experimental evalua-
tion of our method on two datasets showed that our method
performs on par or outperforms most of the state-of-the-art
methods. Given the recent success of deep convolutional
networks (CNNs), future work will explore using deep fea-

tures as inputs to the temporal model and jointly learning
the CNN and CRF parameters in a unified framework.
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