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Abstract. In this paper an algorithm that performs the tracking of
points in a calibrated and noisy image sequence is presented. The can-
didate points to be tracked must satisfy certain constraints that can be
deduced from the multiple view geometry. The idea is to consider as noisy
points those candidates which cannot be tracked in the sequence. The
robustness of the algorithm has been verified on simulated data using dif-
ferent constraints. The methods are assessed in several cases where the
number of noisy points and the noise in the measurement of the points
to be tracked are varied. Using this study, it is possible to know the
performance of the tracking method. An example that shows a perfect
tracking of 8 points in a sequence of 10 images with 500 noisy points per
image is shown.

Keywords: Tracking, computer vision, multiple view geometry, epipolar
geometry, trifocal tensors.

1 Introduction

Tracking is posed as a matching problem between correspondences of features in
an image sequence [1]. In this problem, corresponding features, i.e., features in
different views that are representation of the same 3D entity, must be matched.
Generally, the problem is solved in two steps. The first step is the extraction
of features obtained from the (2D) images of the sequence, e.g. points, lines or
curves. The second step is to find correspondence between them. The most diffi-
cult problem is the correspondence of features. Since many tracking algorithms
have been developed to date, we present now, in order to make this topic more
clear, the following dichotomies of tracking. We do not intend to make here a
survey of all previous work. However, the references presented in this review give
a good overview to the reader.



2

i) Tracking by short or long sequences: in short sequences, the tracking is per-
formed using epipolar or trifocal constraints [2]. The use of a larger number of
images allows significant smoothing to be achieved, where a long sequence of
frames is taken so that there is only a small change between adjacent frames [1].
ii) Tracking in monocular or stereo frames: with one camera 2D information is
used to establish the correspondence in the sequence [3], whereas stereo frames
gives the possibility to infer 3D information [1].
iii) Tracking from geometric features (points, lines, contours) or from grey values
features (regions, windows): feature based methods rely on extraction of discrete
object features in successive images, the image coordinate of which are used to
estimate the object motion or to find the trajectories of the objects in the se-
quence. Geometric feature tracking is pose as a matching problem between points
[4], lines [5] or contour curves [6] constructed out of edges in the image. Grey
value feature tracking uses correlation techniques between regions or windows in
order to establish the matching in two frames [1].
iv) Tracking using a motion model or based on a dense motion field: object mo-
tion is computed based on some model of the evolution of 3D motion parameters
(e.g. kinematics model with Kalman filter [1]). In the other hand, optical flow
methods represent motion in the image plane as sampled continuous velocity
fields that can be used to track features [7].
v) Single object motion or multiple object motion: in the first case there is a
single moving object in the sequence [8], whereas in the second case there are
multiple objects with independent motions [4].
vi) Rigid or deformable objects: when the objects are rigid, the 3D shape of
the object is invariable over the time, i.e., the shape can be easily modelled and
stays relatively constant over the sequence [8]. In contrast, there are cases where
the region of interest changes shape throughout the sequence, corresponding to
deformable objects [9].

In this paper we deal with the problem of tracking of points of a single rigid
object in long calibrated image sequences with monocular frames, where the
density of noisy points is high. In a calibrated image sequence the model 3D
→ 2D is a priori known because it was obtained in an off-line process called
calibration [2]. The idea of the tracking algorithm is to consider as noisy points
those candidates which cannot be tracked in the sequence. The tracking is per-
formed using geometrical multiple view constraints. The original algorithm was
developed in [10] for automated visual inspection analysing multiple views with
simple geometric constraints. However, no detailed study of the performance
was made in [10]. In our paper, i) we demonstrate that the consideration of the
geometric constraints based on the Sample distance [2] achieves a better perfor-
mance than the simple constraints; and ii) we show how robust is the tracking
algorithm under several noisy conditions. The rest of the paper is organised as
follows: Section 2 gives an overview of the tracking algorithm. In Section 3 the
different criteria used to establish the correspondence between the points of the
views are described. Section 4 shows the experiments and the results obtained
on synthetic data. Finally, Section 5 gives concluding remarks.
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2 Tracking algorithm

After the candidate points in each image of the sequence are segmented, the
coordinates of the points are normalised using the Cholesky factorisation [2].
Then the attempt is made to track them in the sequence in order to separate
the noise from the object points. The tracking algorithm consists of three steps:
matching in two views, tracking in three views and tracking in four views.

2.1 Matching in two views

Matching requires the position of each detected point. In this work, a = (a, p) will
denote the identified point a in image p. It is assumed that the image sequence
has N images (1 ≤ p ≤ N) and np points were identified in image p (1 ≤ a ≤ np).
The position of point a = (a, p) is arranged in a position vector ma

p. One obtains
then the position vector ma

p = (xa
p , ya

p). This step matches two points (of two
views), point a = (a, p) with point b = (b, q), for p 6= q, if they fulfil all following
matching conditions:
• Constraint in two views: ma

p and mb
q must satisfy the constraint of corre-

spondence between two views, i.e., the epipolar constraint.
• Correct location in 3D: the 3D point reconstructed from the position of the
points must belong to the space occupied by the object. From ma

p and mb
q the

corresponding 3D point M̂ is estimated. It is necessary to examine if M̂ resides
in the volume of the object, the dimensions of which are usually known a priori.

In addition, a similarity condition can be used, if certain features of the can-
didate points and their neighbourhood are available. The matching is established
if the points are similar enough.

The matching conditions in both identified points a = (a, p) and b = (b, q)
are evaluated in 3 consecutive frames, for p = 1, ..., N − 3; q = p + 1, ..., p + 3;
a = 1, ..., np and b = 1, ..., nq. If a point is not matched with any other one, it
will be considered as noise. Multiple matching, i.e., a point that is matched with
more than one point, is allowed. Using this method, problems like non-segmented
points or occluded points in the sequence, can be solved by the tracking if a point
is not identified in consecutive views.

2.2 Tracking in three views

A match between two points a and b will be denoted by a ↔ b or (a, p) ↔ (b, q).
A N2 × 4 matrix A = [ak bk] = [ak pk bk qk], k = 1, ..., N2, is defined, where N2

is the number of all matches determined in Section 2.1.In the tracking problem,
it is required to find trajectories of points in different views. To establish the
correspondence of points in three images one seeks all possible links of three
points in matrix A that satisfy the condition of correspondence in three views.

The procedure is as follows: first, one looks for all two rows i and j of A
(i, j = 1, ..., N2 and i 6= j) that satisfy bi = aj . Supposing rows i and j fulfil this
condition, in other words, the last two elements of row i are equal two the first
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two elements of row j, e.g. Ai = [a p b q] and Aj = [b q c r], one finds three points
(a, p) ↔ (b, q) ↔ (c, r) with coordinates ma

p, mb
q and mc

r respectively that could
be corresponding points. Finally, to examine if they really correspond to each
other, the condition of correspondence between three views must be evaluated.
If the condition is fulfilled, then it is assumed that the points are corresponding.
The non tracked points are eliminated, while the N3 linked triplets are arranged
in a new matrix B.

2.3 Tracking in four views

A N3 × 6 matrix B = [ak bk ck] = [ak pk bk qk ck rk], k = 1, ..., N3, is defined,
where N3 is the number of all triplets determined in Section 2.2. Now, the
attempt is made two find two triplets in B that correspond to the same 3D
point. It is well known that given four points (in four views), if the first three
are corresponding points and the last three are corresponding points too, then
all of them are corresponding points. In this case, it is not necessary to evaluate
a condition of correspondence between four views, because it is redundant. That
means, to seek quadruplets that satisfy the condition of correspondence in four
views, it is necessary to look for all rows i and j of B for (i, j = 1, ...N3 and
i 6= j) that satisfy bi = aj and ci = bj . Supposing rows i and j fulfil this
condition, e.g. Bi = [a p b q c r] and Bj = [b q c r d s], four corresponding
points (a, p) ↔ (b, q) ↔ (c, r) ↔ (d, s) (with coordinates ma

p, mb
q, mc

r and md
s

respectively) are found. The N4 detected quadruplets are placed in a new matrix
C. Finally, a tracking in more views can be achieved by linking quadruplets of
matrix C having common elements.

3 Correspondence and 3D reconstruction criteria

In this investigation different criteria of correspondence of points between two
and three views and 3D reconstruction from two views are used. Normally, the
epipolar constraint, the trilinear constraint and the triangulation approach are
used for these tasks. However, a typical observation consists of a noisy point
correspondence which does not in general satisfy the correspondence constraints
[2]. For this reason, other criteria should be used. In this Section, we present
alternative criteria that take into account the noise in the imaged points.

3.1 Correspondence in two views

Two methods are used to investigate if ma
p and mb

q can be corresponding points.
• Simple: the constraint is fulfilled if the perpendicular Euclidean distance from
the epipolar line of the point ma

p to the point mb
q is smaller than ε [2].

• Sampsom: the constraint is fulfilled if the first-order geometric error of the
epipolar constraint is smaller than ε [2].
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3.2 Correspondence in three views

Two methods are used to investigate if ma
p, mb

q and mc
r satisfy the correspon-

dence in three views:
• Simple: The position of third point is estimated from ma

p and mb
q using a

reprojection approach based on trifocal tensors. The constraint is fulfilled if the
Euclidan distance between estimated point and mc

r is smaller than ε [10].
• Sampsom: the constraint is fulfilled if the first-order geometric error of the
trilinear constraints is smaller than ε [2].

3.3 3D Reconstruction

Two methods are used to estimate a 3D point M̂ that may have produced the
imaged points ma

p and mb
q.

• Simple: Point M̂ is estimated using normalised projection matrices and a
projective 3D transformation [11].
• Sampsom: Point M̂ is estimated using the triangulation of corrected points
m̂a

p and m̂b
q that are computed from the first-order geometric correction of ma

p

and mb
q [2].

4 Experiments and Results

In this Section we present the results obtained recently using synthetic data1.
The data was simulated as follows: A cube was defined and located in N different
positions. For each position the 8 vertices of the cube were projected using a
perspective transformation into an image of M ×M pixels. Thus, a sequence of
N binary images of M ×M pixels was obtained. Additionally, Np points were
randomly superimposed in each image. Fig. 1 illustrates one of these images with

1 A real experiment is available in http://www.ing.puc.cl/∼dmery/sequences.htm.

Fig. 1. Simulation of a projected cube into an image with Np = 500 random points.
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a)                              b)                              c)                               d)

Fig. 2. Tracking of the vertices in a sequence of N = 10 images with Np = 500 noisy
points per image: a) original image of the sequence, and points after b) matching in
two views, c) tracking in three views, and d) tracking in four views.

Np = 500 and M = 400, where the doted lines and the circles were intentionally
added to distinguish the projection of the cube. In order to simulate a more
realistic projection, the coordinates of the projected vertices were altered adding
normal distributed noise with standard deviation σ and mean zero.

The effectiveness of the tracking algorithm for 500 noisy points is illustrated
in Fig. 2. Only one image (see Fig. 2a) of a whole sequence of 10 images is
presented. This image corresponds to Fig. 1. After matching in two views, the
remaining points are shown in Fig. 2b. The other points were eliminated because
they were not matched. The dimensions of the cube were 2×2×2, and the space
used in the correct location in 3D criterion was 8 × 8 × 8 centred in the cube,
i.e., 64 times bigger than the cube. For this reason, the points that satisfied the
matching conditions are approximately located in an area of 4h × 4h, where h
is the distance between two adjacent projected vertices. After tracking in three
and four views (see Fig. 2c and 2d), all noisy points were eliminated without
discriminating the points of the cube.

The performance of the algorithm was evaluated for different conditions vary-
ing the number of noisy points (Np = 10, 25, 50, 100, 200, 500); the standard de-
viation of the projected points (σ = 0, 0.05, 0.1, 0.2, 0.35, 0.5); the tolerance used
in correspondence constraints (ε = 0.0005, 0.001, 0.005, 0.01); and the correspon-
dence and 3D reconstruction criteria (simple or Sampson). In these experiments,
the size of the images was 400 × 400 pixels, and the number of images in the
sequence was 10. Each situation was simulated 10 times and the average of the
following variables was computed: the number of true positives (TP ), i.e., points
of the cube correctly tracked (ideally, TP = 8); the number of false positives
(FP ), i.e., tracked points that do not correspond to the vertices of the cube
(ideally, FP = 0); the computational time (t) required for the tracking process.
The simulation environment was programmed in MATLAB using a PC based
on a CPU Pentium 4, 2.6 GHz, 512 MB RAM, and operating system Microsoft
Windows XP.

In order to evaluate the performance of the tracking, the true positive rate
(TPR = TP/8) and the false positive rate (FPR = FP/Np) were computed
for different noise conditions (Np, σ) varying parameter ε in the geometric con-
straints. Ideally, TPR = 1 and FPR = 0, i.e., all object points are tracked with-
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Table 1. Performance (TPR∗, FPR∗) for different noise conditions (Np, σ).

σ/M method Np = 10 Np = 25 Np = 50 Np = 100 Np = 200 Np = 500 average

0.000000 simple (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001

Sampson (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001

0.000125 simple (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001 ε∗ = 0.001

Sampson (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.001 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.001

0.000250 simple (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (0.97,0.00) (0.97,0.00) (0.99,0.00)
ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.001 ε∗ = 0.001

Sampson (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005

0.000500 simple (1.00,0.00) (1.00,0.00) (0.99,0.00) (1.00,0.00) (1.00,0.00) (0.95,0.00) (0.99,0.00)
ε∗ = 0.005 ε∗ = 0.010 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005

Sampson (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.010 ε∗ = 0.005

0.000875 simple (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (0.97,0.00) (0.98,0.00) (0.99,0.00)
ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.005 ε∗ = 0.005 ε∗ = 0.005

Sampson (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (0.92,0.00) (0.99,0.00)
ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.005

0.001250 simple (1.00,0.00) (0.96,0.01) (0.97,0.00) (0.95,0.01) (0.95,0.00) (0.88,0.00) (0.95,0.00)
ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.005

Sampson (0.93,0.00) (0.97,0.00) (1.00,0.00) (0.99,0.00) (1.00,0.00) (0.91,0.00) (0.97,0.00)
ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010 ε∗ = 0.010
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Fig. 3. Evaluation of the methods depending on the number of noisy points Np: a)
TPR and FPR at ε = 0.01 and σ/M = 0.00125; and b) computational.

out flagging false alarms. The best operation point (TPR∗, FPR∗) at ε = ε∗

is chosen as the point with the smallest Euclidean distance to the ideal point
(1, 0). The obtained results are summarised in Table 1, where the performance
was calculated for different (Np, σ) combinations. As shown in Table 1, parame-
ter ε∗, i.e., the parameter ε that gives the best operation point, depends strongly
on the inherent noise of the projected points (σ) and the number of noisy points
(Np). The larger is σ, the larger should be set ε if one wants to track all object
points. However, the larger is ε, the larger the false alarm rate when Np is large,
because several noisy points can be tracked. As example, Fig. 3a shows TPR
and FPR for σ/M = 0.001250 and ε = 0.01. In addition, the computational
time is presented in Fig. 3b. We observe that the performance and the compu-
tational time of the Sampson criteria is better. On the other hand, the results
of average column Table 1 show the high robustness of the tracking algorithm
in both discrimining noisy points and detecting object points.
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5 Conclusions

In this paper an algorithm that performs the tracking of points in a calibrated
and noisy image sequence was presented. The idea is to consider as noisy points
those candidates which cannot be tracked in the sequence. The tracked points
satisfy certain constraints of the multiple view geometry. The robustness of the
algorithm has been verified on simulated data using two different constraints:
simple and Sampson. The methods were assessed in several cases where the
number of noisy points and the noise in the measurement of the points to be
tracked are varied. The obtained results are: the robustness of the algorithm is
very high, and the best performance was achieved using the Sampson distance.
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