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Motivations

•Classification of human embryonic stem cell-derived cardiomyocytes
(hESC-CMs) is relevant to reduce risks in their application to cardiac
regenerative medicine and to enrich drug screen analyses.

•There is a lack of labels in hESC-CM domain because it is not clear how
adult CM phenotypes are expressed in hESC-CM APs populations.

• State-of-the-art methods are computationally expensive [1].

•RNNs significantly reduce computational cost, but at the expense of accuracy [2].

Fig. 1: APs from adult CMs
(synthetic data)

Fig. 2: APs from hESC-CMs
(unlabeled dataset [3])
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Fig. 3: APs from hESC-CMs
(labeled dataset [4])

Contributions
•Our goal is to classify hESC-CM APs considering the domain shift between embryonic

and adult CMs when training the RNNs.

•We apply, for the first time, the concept of domain adaptation to address the domain
shift between hESC-derived cells and adult cells throughout the differentiation process.

•Our approach preserves computational advantages of RNN-based approaches and it out-
performs the state of the art in terms clustering quality and inter-dataset generalization.

Problem Formulation
• Set of unlabeled hESC-CM APs Ωe = {xej}

Ne

j=1: each xej is a time-series of length K.

• Set of labeled adult CM APs Ωa = {xai , yai }
Na

i=1: each xai is a time-series of length K
labeled as atrial (y = 0) or ventricular (y = 1).

•Problem: Assign a label ŷe to a new xe, where ŷe = 0 denotes atrial-like and ŷe = 1
denotes ventricular-like.

•Assumptions:

–P{x | embryonic} 6= P{x | adult}.
–P{y | x, embryonic} = P{y | x, adult} (covariate shift assumption).

Network Architecture

•RNN with LSTM units

– Feature extractor (LSTM)

x 7→ ϕWF(x) = h(x, K).

– Output layer (Sigmoid)

ϕWF(x) 7→ ŷ

ŷ = σ(ϕWF(x)TWc + bc),

where σ(z) = 1
1+e−z .
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Fig. 4: Network architecture

Loss Function

To address lack of labeled hESC-CM data and domain shift we proposed a semi-supervised
learning approach whose loss consists of three terms.
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• Supervised term: binary crossentropy for classifying adult CMs

`s(y
a
i , ŷ

a
i ) = −yai log(ŷai )− (1− yai ) log(1− ŷai ).

•Unsupervised term: contrastive loss on hESC-CM APs that encourages similar predictions
for similar embryonic CMs
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∈ [0, 1] represents the similarity between xej and xej′

•Domain adaptation term: Maximum Mean Discrepancy [5] between both domains
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Gaussian kernel.

Clustering Quality Index
•The Davies-Bouldin Index (DBI) between two clusters Ω0 =

{
xej | ŷej < 0.5

}
and Ω1 ={

xej | ŷej ≥ 0.5
}

is the ratio between intra-cluster dispersion and distance between clusters

DBI (Ω0,Ω1) = S0+S1

M01
,

where Sy is the mean distance from elements of class y to the average signal of the same
class, and M01 is the distance between the average signals of both classes.

Experiments
•Dataset

– Adult CM APs: 1600 synthetic adult APs generated using the O’hara-Rudy ventricular
model (ORd) [6] and the Nygren atrial model [7].

– Unlabeled hESC-CM APs: 6940 hESC-CM APs obtained from 9 cell aggregates [3].

– Labeled hESC-CM APs: 52 hESC-CM APs obtained from single cell recordings [4].

• Implementation Details

– Keras with TensorFlow backend, RMSProp optimizer, batches of 3 adult APs and 16
hESC-CM APs (100 batches, reported 10-fold crossvalidation performance).

•Baselines

– 1NN-Metamorphosis. 1-Nearest-Neighbor method with metamorphosis distances [1].

– Sup-LSTM. Supervised learning λ = 0 and γ = 0 [2].

– Semi-M-LSTM. Semi-supervised learning λ = 0.1 (metamorphosis) and γ = 0 [2].

•Results
Two cases studied:

– DA-Sup-LSTM. Supervised learning λ = 0
with domain adaptation γ = 1.

– DA-Semi-M-LSTM. Semi-supervised learn-
ing λ = 0.1 (metamorphosis) and domain
adaptation γ = 5.

Metrics: Clustering quality (DBI) mea-
sured in the unlabeled hESC-CM APs
dataset, and accuracy measured in the la-
beled hESC-CM APs dataset (no retraining).
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Fig. 5: Acc vs DBI. Mean performance is marked by solid-
colored symbols and variability is shown by translucent el-
lipses.
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Fig. 6: Distribution of adult CMs and hESC-CMs in latent space (first row) and histogram of their projection on the one
dimensional path (second row)

Conclusion
•Domain adaptation concepts have shown to be useful in the context of hESC-CMs.

•The proposed method outperforms the state of the art not only in terms of clustering
quality (median DBI 0.2197 vs 0.2297), but also in terms of computational efficiency
(inference time of 0.4 secs vs 12 secs with comparable resources) and inter-dataset
generalization (median Acc 99.04% vs 96.15%).
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