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Center for Imaging Science, Mathematical Institute for Data Science,
Department of Biomedical Engineering, Johns Hopkins University.

Abstract. The use of human embryonic stem cell-derived cardiomy-
ocytes (hESC-CMs) in applications such as cardiac regenerative medicine
requires understanding them in the context of adult CMs. Their classi-
fication in terms of the major adult CM phenotypes is a crucial step to
build this understanding. However, this is a challenging problem due to
the lack of labels for hESC-CMs. Adult CM phenotypes are easily distin-
guishable based on the shape of their action potentials (APs), but it is
still unclear how these phenotypes are expressed in the APs of hESC-CM
populations. Recently, a metamorphosis distance was proposed to mea-
sure similarities between hESC-CM APs and adult CM APs, which led to
state-of-the-art performance when used in a 1 nearest neighbor scheme.
However, its computation is prohibitively expensive for large datasets.
A recurrent neural network (RNN) classifier was recently shown to be
computationally more efficient than the metamorphosis-based method,
but at the expense of accuracy. In this paper we argue that the APs of
adult CMs and hESC-CMs intrinsically belong to different domains, and
propose an unsupervised domain adaptation approach to train the RNN
classifier. The idea is to capture the domain shift between hESC-CMs
and adult CMs by adding a term to the loss function that penalizes their
maximum mean discrepancy (MMD) in feature space. Experimental re-
sults in an unlabeled 6940 hESC-CM dataset show that our approach
outperforms the state of the art in terms of both clustering quality and
computational efficiency. Moreover, it achieves state-of-the-art classifica-
tion accuracy in a completely different dataset without retraining, which
demonstrates the generalization capacity of the proposed method.
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1 Introduction

The insufficient supply of oxygen-rich blood to the heart, known as Ischaemic
Heart Disease (IHD), has remained the global leading cause of death for more
than 15 years, taking the lives of almost 18 million people in 2016 [1]. Along with
prevention, there is a need for innovative approaches to treat IHD. In particular,
cardiomyocyte (CM) transplantation has shown favorable results of remuscular-
ization in animals [2], which is promising for post-myocardial infarction patients.
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Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) success-
fully resemble embryonic CMs in terms of structure and function [3]. Thus, they
are an important source of CMs not only for regenerative medicine, but also for
other applications such as drug screening. However, any application requires to
understand hESC-CM characteristics relative to the ones of adults CMs, which
remain unclear. A first step in that direction is to study the presence of the
major adult CM phenotypes (atrial, ventricular, etc) in hESC-CM populations.

Initial approaches to classification of hESC-CMs like [4] or [5] were based
on handcrafted action potential (AP) features with ad-hoc thresholds in small
datasets, which made them subjective and difficult to transfer to other datasets.
New electrophysiological recording techniques increased the size of the datasets
from dozens and hundreds to several thousand samples [6], which required auto-
matic methods for their classification. However, the lack of ground truth labels
for hESC-CMs makes this problem challenging. Gorospe et al. [7, 8] proposed
to leverage the existence of electrophysiological models of adult CMs to build
a 1 nearest neighbor classifier based on a minimum deformation distance called
metamorphosis. Their method, 1NN-M, achieved good performance in hESC-
CM populations but it is computationally expensive because it requires to solve
20 optimization problems for each new sample to be classified. To overcome this
drawback, a recurrent neural network (RNN) based classifier was proposed in
[9]. They trained the RNN in a semi-supervised way using labeled adult CM
APs and unlabeled hESC-CM APs, showing significant computational advan-
tages with respect to 1NN-M and reaching similar, but not better, clustering
quality. Although its computational advantages are undeniable, the approach
presented in [9] lacks in a fundamental aspect: the classifier is not aware of the
existence of two different domains. Classical machine learning algorithms rely on
the assumption that training and testing data are sampled from the same distri-
bution. Unfortunately, this assumption does not hold in the case of adult CMs
and hESC-CMs, and therefore we argue that a domain adaptation approach is
needed to appropriately train the RNN.

Domain adaptation addresses the problem of optimizing the performance in
one domain (called target domain), given training data in a different domain
(called source domain). We propose to use the RNN architecture presented in
[9], but train it in a different way. We consider the output of its hidden layer as
a feature space shared by adult CMs and hESC-CMs. The domain shift between
their distributions in the feature space is then reduced by adding their maximum
mean discrepancy (MMD) to the loss function. The RNN classifier is trained
using a subset of 1600 samples from an unlabeled 6940 hESC-CM APs dataset
and 1600 adult CM APs from electrophysiological models. Experimental results
confirm that the addition of a domain adaptation term to the loss function
improves with respect to the state of the art in terms of clustering quality, and
at the same time keeps the computational advantages of previous RNN-based
approaches. Moreover, it also reaches state-of-the-art classification accuracy in a
completely different dataset without retraining (outperforming previous RNN-
based methods), which further demonstrate the advantages of our approach.
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2 Methods

2.1 Problem formulation

Let Ωe = {xej}
Ne
j=1 be an unlabeled hESC-CM APs dataset from the target do-

main, where the sequence xej = {xej(k) ∈ R}Kk=1 represents the jth hESC-CM
AP and K is the total number of samples in one cycle length. Hereafter we will
refer to this dataset as embryonic because of its resemblance of embryonic CM
APs. Let Ωa={(xai , yai )}Na

i=1 be a labeled adult dataset from the source domain,
where xai = {xai (k) ∈ R}Kk=1 is the ith adult AP and yai ∈ {0, 1} is its ground
truth label (yai = 0 denotes atrial and yai = 1 denotes ventricular). We consider
the problem of assigning a label ŷej to each xej ∈ Ωe, where ŷej = 0 denotes atrial-
like and ŷej = 1 denotes ventricular-like. Let δ ∈ {e, a} indicate the embryonic
or adult domain. P{x|δ = e} denotes the probability density function of APs
in embryonic domain and P{x|δ = a} denotes the probability density function
of APs in the adult domain.We assume: (i) P{x|δ = e} 6= P{x|δ = a}, and (ii)
P{y|x, δ = e} = P{y|x, δ = a} (covariate shift assumption).

Classifying samples from Ωe using training data from Ωa corresponds to un-
supervised domain adaptation, which according to [10] can be addressed via: in-
stance weighting, self-labeling approaches, clustering-based methods, or feature
representation methods. Instance weighting approaches require shared support
between both distributions, which does not hold in our case because there are
embryonic APs never observed in adult data. On the other hand, self-labeling
approaches as well as clustering-based methods often rely on computing similari-
ties between samples, which can be computationally expensive for APs. Thus, we
use a feature representation approach in which probability distribution functions
of both domains are forced to be similar in a learned feature space ϕ(x).

2.2 Maximum Mean Discrepancy

Maximum mean discrepancy [11] corresponds to the distance between the mean
of two probability distribution functions mapped into a reproducing kernel Hilbert
space (RKHS), embedding their samples via ψ(·). An estimation of the MMD
between two datasets Ωa = {xai }

Na
i=1 and Ωe = {xej}

Ne
j=1 is given by
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where K(x, y) is a positive semidefinite kernel such that K(x, y) = ψ(x)>ψ(y).

The Gaussian kernel K (xi,xj) = exp
(
−‖xi−xj‖2

2σ2
k

)
is commonly used.

The equation in (1) allows us to estimate how different the distributions are
based on their samples. The MMD estimator has been successfully applied to
learn appropriate kernels for cross-domain SVM-based classification, regression
and video concept detection, among others [12, 13]. This estimator has also been
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recently applied with fixed kernels as a metric to learn the parameters of genera-
tive networks [14], and the parameters of feature extraction layers for multi-task
learning in multiple domains [15], which is closely related to our task.

2.3 Network Architecture
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Fig. 1: Domain adapted classification approach.

As shown in Fig. 1, we
use the architecture pro-
posed in [9]: one input
layer, one hidden LSTM
layer of dimension p =
3, and a single sigmoid
unit as output layer. The
LSTM layer is explicitly
considered as a feature
extractor, such that x 7→
ϕWF (x) = h(x,K) ∈ R3. Note that h(x,K) emphasizes that the output cell at
time K depends on the entire input sequence. The feature vector ϕWF depends
on the parameters of the feature extractor WF , and thus it is learnable. For a
given set of parameters W = {WF ,Wc, bc}, we represent the classifier as the
function fW(x) = ŷ that maps an action potential x to a predicted label ŷ.

2.4 Domain Adaptation Objective Function

We aim to enforce similarity between the probability density functions of both
domains in feature space, i.e. P{ϕWF (x)|δ = a} ≈ P{ϕWF (x)|δ = e}, while
training a classifier with source domain data. In that sense, the network learns
to classify samples in a space in which embryonic and adult data “are similar”.
We propose an objective function that builds on top of the semisupervised loss
presented in [9] as follows

1− λ
Na
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Na∑
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λ
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 Ne∑
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(2)

where γ ≥ 0 and λ ∈ [0, 1] modulate the relative importance given to the domain
adaptation term and unsupervised term, respectively. The first two terms of (2)
correspond to the supervised and unsupervised losses presented in [9]. `(·, ·) is the
crossentropy loss, and `u(·, ·) is an unsupervised contrastive loss that depends on
the similarity between the samples. The domain adaptation term is the square
of the empirical estimator of MMD in feature space using a Gaussian kernel.

2.5 Metrics

Classification Accuracy. When ground truth labels are available, it is the
ratio between correctly classified samples and the total number of samples.
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Davies-Bouldin Index (DBI) [16]. The DBI is a measure of clustering qual-
ity, which is used as a proxy for classification performance when ground truth
labels are not available. It corresponds to the ratio between the intra-cluster and
inter-cluster dispersion and should be as small as possible.

3 Experiments

3.1 AP Data

Adult CM AP Data. Electrophysiological models of adult atrial [17] and
ventricular [18] CMs were paced at 1.5 Hz to generate 800 APs of each class by
randomizing their parameters as described in [9]. Fig. 2(a) shows their normal-
ized version (maximum value 1 and resting membrane potential 0).

hESC-CM AP Data: Optical recording dataset [6]. Large unlabeled dataset
composed of 6940 APs optically recorded from 9 cell aggregates paced at 1.5 Hz.
Fig. 2(b) shows the normalized hESC-CM APs from this dataset.

hESC-CM AP Data: Single cell recording dataset [4]. Small labeled
dataset composed of 52 APs recorded from spontaneously beating hESC-CMs.
The nonlinear mapping proposed in [19] was used to adjust them to 1.5 Hz pac-
ing rate. As shown in Fig. 2(c), 16 of them are atrial-like (blue) and 36 of them
are ventricular-like (red). This dataset is only used for testing purposes.

(a) APs from adult CMs (b) APs from hESC-CMs:
optical recording

0 100 200 300
-0.5

0

0.5

1

(c) APs from hESC-CMs:
single cell recording

Fig. 2: Action potentials: (a) 1600 adult CMs, (b) 6940 unlabeled hESC-CMs,
and (c) 52 labeled hESC-CMs.

3.2 Implementation Details

The classifier was implemented in Keras [20] with TensorFlow backend and
trained using the RMSprop optimizer (ε = 0.003). The weights were initial-
ized from the Sup-LSTM network presented in [9]: a network trained for 100
epochs in a fully supervised way using 300 adult atrial and ventricular APs.
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Ne = 1600 embryonic APs from the optical recording dataset and Na =
1600 adult APs are used for training and validation in balanced batches of 32
samples. The data was split into 10 folds, and the average performance of 10-fold
crossvalidation experiments is reported. Once the network is trained, a forward
pass in the optical recording dataset is performed to compute the clustering
quality (DBI) of the output. Similarly, a forward pass in the single cell recording
dataset is done to compute the classification accuracy.

Four cases are studied: (i) Supervised learning λ = 0 and γ = 0 (Sup-LSTM);
(ii) Semisupervised learning with metamorphosis distances λ = 0.1 and γ = 0
(Semi-M-LSTM), (iii) Supervised learning with domain adaptation λ = 0 and
γ = 1 (DA-Sup-LSTM); and (iv) Semisupervised learning with metamorphosis
distances and domain adaptation λ = 0.1 and γ = 5 (DA-Semi-M-LSTM). They
are trained for 100 epochs, except Sup-LSTM which converges in 15 epochs.

3.3 Results

(a) 1 NN M (DBI: 0.2297) [8]

(b) Sup-LSTM (DBI: 0.2793) [9]

(c) Semi-M-LSTM (DBI: 0.2449) [9]

(d) DA-Sup-LSTM (DBI: 0.2412)

(e) DA-Semi-M-LSTM (DBI: 0.2212)

Fig. 3: LSTM classification results (each
pixel corresponds to one hESC-CM AP).
Blue indicates atrial-like phenotype and
red indicates ventricular-like phenotype.

Classification results for the 9 cell
aggregates of the optical record-
ing dataset are depicted in Fig. 3
along with the mean clustering qual-
ity index (DBI). In all cases the
LSTM network suggests heterogene-
ity in the cell clusters and gen-
erates smooth classification bound-
aries, which coincides with previ-
ous findings [6, 8]. As reported in
[9], Sup-LSTM results are easily dis-
tinguishable from all the other ap-
proaches and lead to significantly
worse clustering quality, which sup-
ports the idea that adult CMs and
hESC-CMs intrinsically belong to
different domains. In that sense, the
simple addition of the domain adap-
tation term to the loss function (DA-
Sup-LSTM) improves the mean clus-
tering quality from 0.2793 to 0.2412, which makes it comparable to Semi-M-
LSTM (0.2449), but with significant computational advantages since it does not
require any computation of metamorphosis distances. However, the addition of
the unsupervised term along with the domain adaptation (DA-Semi-M-LSTM)
leads to the best performance, outperforming the state-of-the-art method (1NN-
M) in terms of clustering quality. Therefore, the effects of the semi-supervised
term and the domain adaptation term seem to be complementary.

Table 1 and Fig. 4 summarize the results for the studied cases in terms of
the clustering quality achieved in the optical recording dataset as well as the
classification accuracy obtained in the single cell recording dataset.
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Table 1: Performance comparison in the 10-fold crossvalidation experiments.

Accuracy ↑ DBI ↓
mean median (std) mean median (std)

1NN M [8] 0.9615 0.9615 (0.0000) 0.2297 0.2297 (0.0000)
Sup-LSTM [9] 0.3269 0.3269 (0.0000) 0.2793 0.2795 (0.0009)
Semi-M-LSTM [9] 0.7154 0.7596 (0.1301) 0.2449 0.2420 (0.0059)
DA-Sup-LSTM (ours) 0.8385 0.9135 (0.1339) 0.2412 0.2408 (0.0047)
DA-Semi-M-LSTM (ours) 0.9673 0.9904 (0.0472) 0.2212 0.2197 (0.0072)

0.22 0.24 0.26 0.28 0.3
0.2

0.4

0.6

0.8

1

Fig. 4: Comparison of performance in
10-fold crossvalidation. Mean perfor-
mance is marked by solid-colored sym-
bols and variability is shown by translu-
cent ellipses (whose semi-axes corre-
spond to standard deviations).

Whereas Semi-M-LSTM and DA-
Sup-LSTM are comparable in terms of
clustering quality, the domain adap-
tation approach performs significantly
better in terms of classification ac-
curacy (0.8385 vs 0.7154). Note that
this corresponds to a forward pass on
the single cell recording dataset, so it
shows that the the domain adaption
method provides better generalization
across datasets. However, their classifi-
cation accuracy is still far from the one
achieved by 1NN-M (0.9615). Again it
is the complementary action of semisu-
pervised and domain adaptation terms

(DA-Semi-M-LSTM) that succeeds in outperforming the 1NN-M also in terms of
classification accuracy (0.9673). This is a powerful result because our approach
not only outperforms the state-of-the-art method, but also it is significantly
faster. The classification of the single cell recording dataset is reported to take
approximately 12 seconds with the most efficient algorithm for 1NN-M in 2 8-
core computer nodes with 8 hyperthreaded 2.3 GHz CPUs per node [8], whereas
in our case it takes less than 0.4 seconds in one 2.2 GHz CPU with 2 cores, 4
threads.

The first row of Fig. 5 shows the distribution of adult samples and unlabeled
hESC-CM samples in latent space in the four cases studied. Noticeably, atrial
and ventricular samples are located in different areas of the feature space, and the
hESC-CMs form a one dimensional path between them. The second row of Fig. 5
represents the histogram of samples along this path. The effect that the domain
adaptation term has in the data distribution in the feature space is subtle for
the supervised case (DA-Sup-LSTM vs Sup-LSTM): it induces a more balanced
distribution of hESC-CMs samples in the location of atrial and ventricular adult
CMs. In the semisupervised case however, Semi-M-LSTM generates a high con-
centration of embryonic samples far from adult CM data, and the addition of the
domain adaptation term significantly reduces this effect (DA-Semi-M-LSTM).
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Fig. 5: Distribution of adult CMs and hESC-CMs in latent space (first row) and
histogram of their projection on the one dimensional path (second row).

4 Conclusion

We have applied for the first time the concept of domain adaptation to address
discrepancies related to the stem cell differentiation process. Moreover, the pro-
posed approach has proven to be useful, since it outperforms the state-of-the-art
method for classification of hESC-CM APs not only in terms of clustering quality,
but also in terms of computational efficiency and inter-dataset generalization.
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