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This tutorial paper is concerned with the identification
of hybrid models, i.e. dynamical models whose behavior
is determined by interacting continuous and discrete dy-
namics. Methods specifically aimed at the identification
of models with a hybrid structure are of very recent date.
After discussing the main issues and difficulties connected
with hybrid system identification, and giving an overview
of the related literature, this paper focuses on four dif-
ferent approaches for the identification of switched affine
and piecewise affine models, namely an algebraic pro-
cedure, a Bayesian procedure, a clustering-based proce-
dure, and a bounded-error procedure. The main features
of the selected procedures are presented, and possible
interactions to still enhance their effectiveness are sug-
gested.
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1 Introduction

Hybrid systems are heterogeneous dynamical systems
whose behavior is determined by interacting continuous
and discrete dynamics. The continuous dynamics is de-
scribed by variables taking values from a continuous set,
while the discrete dynamics is described by variables tak-
ing values from a discrete, typically finite, set. The con-
tinuous or discrete-valued variables may depend on in-
dependent variables such as time, which in turn may be
continuous or discrete. Some of the variables can also be
discrete-event driven in an asynchronous manner.

Hybrid systems arise not only from the interaction of
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logic devices and continuous processes. They can be used
to describe real phenomena that exhibit discontinuous be-
haviors. For instance, the trajectory of a bouncing ball
results from the alternation between free fall and elastic
contact. Moreover, hybrid models can be used to approx-
imate continuous phenomena by concatenating different
models from a simple class. For instance, a nonlinear dy-
namical system can be approximated by switching among
various linear models.

Due to their many potential applications, hybrid sys-
tems have attracted increasing attention in the control
community during the last decade. Numerous results on
analysis, verification, computation, stability and control
of hybrid systems have appeared in the literature. How-
ever, most of the theoretical developments hinge on the
assumption that a hybrid model of the process at hand
is available. In some situations it is possible to obtain
such a model starting from first principles. On the other
hand, first principles modelling is too complicated or even
impossible to apply in most practical situations, and the
model needs to be identified on the basis of experimental
data.

1.1 Paper contribution

In the first part, this paper provides an introduction to the
topic of hybrid system identification. The main issues
and difficulties connected with hybrid system identifica-
tion are discussed, and an overview of the related litera-
ture is given. It is stressed that most effort in this area has
been devoted to the identification of switched affine and
piecewise affine (PWA) models.

PWA systems are obtained by partitioning the state-
input domain into a finite number of non-overlapping
convex polyhedral regions, and by considering lin-
ear/affine subsystems in each region [66]. The interest
in PWA system identification is motivated by several rea-



sons. The equivalence between PWA models and several
classes of hybrid models [4, 34, 67] makes PWA system
identification techniques suitable to obtain hybrid models
from data. Moreover, the universal approximation prop-
erties of PWA maps [14, 49] make PWA models attractive
also for nonlinear system identification [64].

Identification of PWA models is a challenging problem
that involves the estimation of both the parameters of the
affine submodels, and the coefficients of the hyperplanes
defining the partition of the state-input domain (or the re-
gressors domain, for models in input-output form). The
main difficulty lies in the fact that the identification prob-
lem includes a classification problem where each data
point must be associated to the most suitable submodel.
Concerning the partitioning, two alternative approaches
can be distinguished:

1. the partition is fixed a priori;

2. the partition is estimated along with the submodels.

In the first case, data classification is very simple, and es-
timation of the submodels can be carried out by resorting
to standard linear identification techniques. In the second
case, the regions must be shaped to the clusters of data,
and the strict relation among data classification, param-
eter estimation and region estimation makes the identifi-
cation problem very hard to cope with. The problem is
even harder when also the number of submodels must be
estimated.

Different techniques leading to PWA models of smooth
dynamical systems can be found in the extensive literature
on nonlinear black-box identification. A nice overview is
presented in [61]. However, most of these approaches as-
sume that the system dynamics is continuous. Recently,
novel contributions allowing for discontinuities have been
proposed in both the hybrid systems and the nonlinear
identification communities. An iterative algorithm that
sequentially estimates the parameters of the model and
classifies the data through the use of adapted weights is
described in [60]. A method based on statistical cluster-
ing of measured data via a Gaussian mixture model and
support vector classifiers is presented in [56]. Several
optimization problem formulations of the identification
problem are proposed in [54, 55]. In [62] the identifi-
cation problem is formulated for two subclasses of PWA
models, namely Hinging Hyperplane ARX (HHARX)
and Wiener PWARX (W-PWARX) models, and solved
via mixed-integer linear or quadratic programs. Subspace
identification of piecewise linear systems is addressed in
[10, 71], while recursive identification of switched hybrid
system is addressed in [32, 75].

Among the variety of the proposed approaches, the au-
thors of this paper contributed by developing four differ-
ent procedures for the identification of switched affine
and piecewise affine models, namely the algebraic pro-
cedure [78], the clustering-based procedure [27], the
Bayesian procedure [47], and the bounded-error proce-
dure [5]. These techniques have been successfully ap-
plied in real problems, such as identification of the elec-
tronic component placement process in pick-and-place
machines [5, 43, 47], modelling of a current transformer
[27], traction control [11], and motion segmentation in
computer vision [76, 77]. The main features of the se-
lected techniques are presented in the second part of the
paper, where possible interactions to still enhance their
effectiveness are also suggested.

1.2 Paper outline

This paper is organized as follows. Section 2 introduces
the classes of switched affine and piecewise affine mod-
els, both in state space and input-output form. Section 3
reports several formulations of the identification problem
for these model classes, and gives an overview of the re-
lated literature. Different identification approaches are
classified along the lines proposed in [61]. The problems
of data classification and region estimation are addressed
in Section 4 for those approaches that firstly classify the
data, then estimate the affine dynamics, and finally recon-
struct the polyhedral partition. Most recent contributions
for the identification of models with hybrid and discontin-
uous characteristics belong to this category. Four proce-
dures falling into the category analyzed in Section 4, are
finally described and discussed in Section 5. Section 6
draws the conclusions, and foreshadows interesting top-
ics for future research.

2 Switched affine and piecewise affine models

In this section, discrete-time switched affine models both
in state space and in input-output form are introduced.
Switched affine models are defined as collections of lin-
ear/affine models, connected by switches that are indexed
by a discrete-valued additional variable, called the dis-
crete state. Models for which the discrete state is deter-
mined by a polyhedral partition of the state-input domain,
are called piecewise affine models. They can be used
to model a large number of physical processes (see, e.g.
[3, 17, 18, 48, 69]), and are suitable to approximate non-
linear dynamics, e.g., via multiple linearizations at differ-
ent operating points. Moreover, piecewise affine models
are equivalent to several classes of hybrid models, and can



therefore be used to describe systems that exhibit hybrid
structure.

2.1 Models in state space form

A general discrete-time switched affine model instate
spaceform is described by the equations

xk+1 = Aσ(k) xk + Bσ(k) uk + fσ(k) + wk

yk = Cσ(k) xk + Dσ(k) uk + gσ(k) + vk,
(1)

wherexk ∈ R
n, uk ∈ R

p and yk ∈ R
q are, respec-

tively, the continuousstate, the input and the output of
the system at timek ∈ Z, andwk ∈ R

n andvk ∈ R
q

are noise/error terms. Thediscretestateσ(k), describ-
ing in what affine dynamics the system is at timek,
is assumed to take only a finite number of values, i.e.
σ(k) ∈

{

1, . . . , s
}

, wheres is the number of affine sub-
models. In general,σ(k) can be a function ofk, xk, uk,
or some other external input. The real matrices/vectors
Ai, Bi, fi, Ci, Di andgi, i = 1, . . . , s, having appro-
priate dimensions, describe each affine dynamics. Hence,
model (1) can be seen as a collection of affine models
with continuous statexk, connected by switches that are
indexed by the discrete stateσ(k).

The evolution of the discrete state can be described in a
variety of ways. InJump Linear(JL) models,σ(k) is an
unknown, deterministic and finite-valued input. InJump-
Markov Linear (JML) models, the dynamics ofσ(k) is
modelled as an irreducible Markov chain governed by
the transition probabilitiesπ(i, j) , P

(

σ(k + 1) =
j
∣

∣ σ(k) = i
)

. In PieceWise Affine(PWA) models [66],
σ(k) is given by the rule

σ(k) = i iff [ xk
uk

] ∈ Ωi, i = 1, . . . , s, (2)

where{Ωi}
s
i=1 is a complete partition1 of the state-input

domainΩ ⊆ R
n+p. The regionsΩi are assumed to be

convex polyhedra described by

Ωi =
{

[ x

u
] ∈ R

n+p : H̄i

[

x

u

1

]

�[i] 0
}

, (3)

whereH̄i ∈ R
µ̄i×(n+p+1), i = 1, . . . , s, and µ̄i is the

number of linear inequalities defining theith polyhedral
regionΩi. With abuse of notation, in (3) the symbol�[i]

denotes aµi-dimensional vector whose elements can be
the symbols≤ and< in order to avoid that the regionsΩi

overlap over common boundaries.

1A collection{Ai}
s

i=1
is said to be a (complete) partition ofA ⊆

R
m if ∪s

i=1Ai = A andAi ∩ Aj = ∅, ∀ i 6= j.

Remark 2.1 PWA models form a special class of hy-
brid models. Other descriptions for hybrid systems in-
cludeMixed Logical Dynamical(MLD) models [6],Lin-
ear Complementarity(LC) models [33, 70],Extended
Linear Complementarity(ELC) models [20], andMax-
Min-Plus-Scaling(MMPS) models [21]. Equivalences
among these five classes of systems are shown in [4, 34].
Such results are very important for transferring theoretical
properties and tools (e.g., control and identification tech-
niques) from one class to another, as they imply that one
can choose the most convenient hybrid modelling frame-
work for the study of a particular hybrid system.

2.2 Models in input-output form

For fixed model ordersna andnb, aSwitched AutoRegres-
sive eXogenous(SARX) model is defined by introducing
the regression vector

rk = [ y
⊤
k−1 . . . y

⊤
k−na

u
⊤
k u

⊤
k−1 . . . u

⊤
k−nb

]⊤, (4)

and then by expressing the outputyk as a piecewise affine
function ofrk, namely

yk = θ⊤σ(k) [ rk

1 ] + ek, (5)

whereσ(k) ∈
{

1, . . . , s
}

is the discrete state,s is the
number of submodels,θi, i = 1, . . . , s, are the matrices
of parameters defining each submodel, andek ∈ R

q is a
noise/error term. In the following, the vectorϕk = [ rk

1 ]
will be called theextendedregression vector.

SARX models represent a subclass of the switched
affine models (1), and can be easily transformed into that
form by defining the continuous state as

xk = [ y
⊤
k−1 . . . y

⊤
k−na

u
⊤
k−1 . . . u

⊤
k−nb

]⊤. (6)

As for the models in state space form, the evolution of the
discrete modeσ(k) can be described in a variety of ways.
In PieceWise AutoRegressive eXogenous(PWARX) mod-
els the switching mechanism is determined by a polyhe-
dral partition of the regressors domainR ⊆ R

d, where
d = q ·na +p · (nb +1). This means that for these models
the discrete stateσ(k) is given by

σ(k) = i iff rk ∈ Ri, i = 1, . . . , s, (7)

where{Ri}
s
i=1 is a complete partition ofR. Each region

Ri is a convex polyhedron described by

Ri =
{

r ∈ R
d : Hi [

r

1 ] �[i] 0
}

(8)

whereHi ∈ R
µi×(d+1), i = 1, . . . , s, µi is the number of

linear inequalities defining theith polyhedral regionRi



and, as in (3), the symbol�[i] denotes aµi-dimensional
vector whose elements can be the symbols≤ and<. In
general, the shape ofR reflects the physical constraints
on the inputs and the outputs of the system. For instance,
typical constraints on the output can be‖yk‖∞ ≤ ymax

or ‖yk − yk−1‖∞ ≤ ∆ymax, where‖ · ‖∞ is the infinity
norm of a vector.

By introducing the piecewise affine map

f(r) =











θ⊤1 ϕ if H1ϕ �[1] 0

...
...

θ⊤s ϕ if Hsϕ �[s] 0,

(9)

with ϕ = [ r

1 ], it will be useful to rewrite the model de-
fined by (5), (7) and (8) as

yk = f(rk) + ek. (10)

Remark 2.2 The PWA map (9) can be discontinuous
along the boundaries defined by the polyhedra (8), as
shown in Figure 1. Though, for the sake of simplicity,
in the following the subscript[i] will be removed from
the notation�[i], one must always take care of the defini-
tion of the regions, to avoid that the PWA map is multiply
defined over common boundaries of the regionsRi.

3 Hybrid system identification

In this section, the identification problem will be firstly
addressed for input-output models, and then for state
space models. An overview of the related literature is fi-
nally presented. For the sake of clarity, single input-single
output systems (i.e.p = q = 1) are considered. To this
aim, notationsyk, uk andek will be used instead ofyk,
uk andek. The discussion can be straightforwardly ex-
tended to multi input-single output systems (i.e.p > 1
andq = 1). Multi input-multi output systems (i.e.p > 1
andq > 1) are also handled by state-space techniques,
while in the input-output case one can identify a model
for each output by considering the other outputs as addi-
tional inputs2.

3.1 Identification problem for SARX models

For SARX models (5), the general identification problem
reads as follows.

Problem 3.1 Given a collection ofN input-output pairs
(yk, uk), k = 1, . . . , N , estimate the model ordersna and

2Though this approach may lead in general to a larger number of
regions than necessary, since the overall partition is obtained by inter-
secting the partitions of the single models.
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Figure 1. Discontinuous PWA map of two variables withs = 3
regions.

nb, the number of submodelss, and the parameter vectors
θi, i = 1, . . . , s. Moreover, estimate the discrete state
σ(k) for k > max{na, nb}.

If the system generating the data has the structure (5),
an exact algebraic solution to Problem 3.1 is presented
in [51, 74, 78] for the case of noiseless data (though the
approach can be amended to work also with noisy data).
The algorithm only requires to fix upper boundsn̄a, n̄b,
ands̄ on the model orders and the number of submodels,
respectively. A description of the algorithm will be given
in Section 5.

If the model orders are fixed, the problem is to fit the
data tos hyperplanes. This problem is addressed in the
field of data analysis, and several approaches are pro-
posed wheres is either estimated from data or fixed a
priori. One way to estimates is by solving the following
problem.

Problem 3.2 Givenδ > 0, find the smallest numbers of
vectorsθi, i = 1, . . . , s, and a mappingk 7→ σ(k) such
that

|yk − ϕ⊤
k θσ(k)| ≤ δ (11)

for all k = n̄, . . . , N , wheren̄ = max{na, nb} + 1.

Problem 3.2 consists in finding aPartitionof the system
of inequalities

|yk − ϕ⊤
k θ| ≤ δ , k = n̄, . . . , N, (12)

into a Minimum number ofFeasible Subsystems(MIN
PFS problem). The boundδ in (12) is not necessarily
given a priori (e.g., if the noise is bounded, and the bound
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Figure 2. Number of submodels and mean squared error as a
function ofδ for a data set generated by a SARX system with
four discrete states and Gaussian additive noise with zero mean
and varianceσ2 = 0.1.

is known), rather it can be adjusted in order to find the
desired trade off between fit and accuracy. In fact, the
smallerδ, the larger is typically the number of submod-
els needed to fit the data3, while on the other hand, the
larger δ, the worse is the fit, since larger errors are al-
lowed. Figure 2 shows two typical plots of the number
of submodels and the Mean Squared Error (MSE) as a
function ofδ when solving Problem 3.2 for a given data
set. The choice of a suitableδ is typically made at the
knee of thes-curve, where also the MSE is kept low. The
MIN PFS problem is NP-hard, and a suboptimal greedy
randomized algorithm to tackle its solution is proposed in
[1].

If s is fixed, the well-known optimization approach
used in linear system identification (i.e. choose the pa-
rameters of a linear model such that they minimize some
prediction error norm) can be generalized to the identifi-
cation of SARX models. Given a nonnegative function

3In this case overfit may occur, i.e. the model adjusts to the partic-
ular noise realization.

ℓ(·), such asℓ(ε) = ε2 or ℓ(ε) = |ε|, the estimation of
the parameter vectorsθi, i = 1, . . . , s, and of the discrete
stateσ(k) can be in fact formulated as the following op-
timization problem:































min
θi, χk,i

N
∑

k=n̄

s
∑

i=1

ℓ
(

yk − ϕ⊤
k θi

)

χk,i

s.t.
s

∑

i=1

χk,i = 1 ∀ k

χk,i ∈ {0, 1} ∀ k, i.

(13)

In (13), each binary variableχk,i describes whether the
data point(yk, rk) is associated to theith submodel, un-
der the constraint that each data point must be associated
to only one submodel. The discrete stateσ(k) can be fi-
nally reconstructed according to the rule:

σ(k) = i iff χk,i = 1. (14)

The optimization problem in (13) is amixed integerpro-
gram that is computationally intractable, except for small
instances. In principle, branch and bound algorithms
could be applied, but the search tree increases exponen-
tially with the number of dataN and the number of sub-
modelss. It is shown in [55] that (13) can be transformed
into a smooth constrained optimization problem by relax-
ing the integer constraints, i.e. by requiringχk,i ∈ [0, 1],
∀ k, i. The global optimum of the relaxed problem co-
incides with the global optimum of (13). Moreover, an
integer solution can be readily obtained from the solu-
tion of the relaxed problem. By the same reasoning, it is
also shown that (13) can be transformed into the follow-
ing non-smooth unconstrained optimization problem:

min
θi

N
∑

k=n̄

min
i=1,...,s

ℓ
(

yk − ϕ⊤
k θi

)

. (15)

In order to not get trapped in a local minimum, suitable
optimization techniques must be used to tackle the solu-
tion of the equivalent problems. It is reported in [55] that
state-of-the-art solvers, such as [38], are able to solve (15)
in reasonable time at least for sample problems.

An alternative to the formulation (13) is the clustering
algorithm proposed in [12], which groups the given data
points intos clusters by generatings planes that represent
a local solution to the non-convex problem of minimizing
the sum of squares of the 2-norm distances between each
point and a nearest plane.

3.2 Identification problem for PWARX models

For PWARX models defined by (5), (7) and (8), the gen-
eral identification problem reads as follows.



Problem 3.3 Given a collection ofN input-output pairs
(yk, uk), k = 1, . . . , N , estimate the model ordersna and
nb, the number of submodelss, the parameter vectorsθi

and the regionsRi, i = 1, . . . , s.

Note that, in the case of piecewise affine models, the
partition of the regressors domain automatically implies
the estimation of the discrete state according to (7).

All techniques specifically developed for the identifica-
tion of PWARX models, assume fixed ordersna andnb.
The estimation of the model orders can be based on pre-
liminary data analysis, and carried out by algebraic tech-
niques such as [51, 74], or classical model order selection
techniques (see [50]). Hence, in the following the orders
na andnb are given, and̄n = max{na, nb} + 1.

The considered identification problem consists in find-
ing the PWARX model that best matches the given data
according to a specified criterion of fit. It involves the
estimation of:

• The number of discrete statess.

• The parametersθi, i = 1, . . . , s, of the affine sub-
models.

• The coefficientsHi, i = 1, . . . , s, of the hyperplanes
defining the partition of the regressors set.

This issue also underlies a classification problem such
that each data point is associated to one region, and to
the corresponding submodel. The simultaneous optimal
estimation of all the quantities mentioned above is a very
hard, computationally intractable problem. To the best of
the authors’ knowledge, no satisfactory formulation in the
form of a single optimization problem has been even pro-
vided for it. One of the main concerns is how to choose
s in a sensible way. For instance, perfect fit is obtained
by lettings = N , i.e. one submodel per each data point,
which is clearly an inadequate solution. Penalties on in-
creasings should be therefore introduced in order to keep
the number of submodels reasonably low, and to avoid
overfit because the model is given too many degrees of
freedom. An additional difficulty is how to express ef-
ficiently the constraint that the collection

{

Ri

}s

i=1
must

form a complete partition of the regressors domainR.
The problem becomes easy if the number of discrete

statess is fixed, and the regions (8) are either known or
fixed a priori. In that case each regression vectorrk can
be associated to one submodel according to (7). Hence,
by introducing the quantities

χk, i =

{

1 if rk ∈ Ri

0 otherwise
∀ k, i, (16)

y

r1

r2

y = ϕ
⊤θ

−
y = ϕ

⊤θ
+

ϕ
⊤(θ+ − θ

−) = 0

max{ϕ⊤θ+, ϕ⊤θ−}

Figure 3. Two hinging hyperplanesy = ϕ⊤θ− and
y = ϕ⊤θ+, and the corresponding hinge functiony =
max{ϕ⊤θ+, ϕ⊤θ−}, whereϕ = [ r1 r2 1 ]⊤.

the identification problem reduces to the following opti-
mization problem:

min
θi

1

N

N
∑

k=n̄

s
∑

i=1

ℓ
(

yk − ϕ⊤
k θi

)

χk, i, (17)

whereℓ(·) is a given nonnegative function. Ifℓ(ε) = ε2,
(17) is an ordinary least-squares problem in the unknowns
θi.

In [61, 62] the identification problem is reformulated in
the form of mixed integer linear or quadratic programs for
the class of Hinging-Hyperplane ARX (HHARX) models
[14], which are described by

yk = f(rk; θ) + ek

f(rk; θ) = ϕ⊤
k θ0 +

M
∑

i=1

σi max{ϕ⊤
k θi, 0},

(18)

whereθ = [θ⊤0 θ⊤1 . . . θ⊤M ]⊤, andσi ∈ {−1, 1} are fixed a
priori. It is easy to see that HHARX models are a subclass
of PWARX models for which the PWA map (9) is con-
tinuous. The number of submodelss is bounded by the
quantity

∑d
j=0

(

M
j

)

, which only depends on the lengthd
of the regression vector, and the numberM of hinge func-
tions (see Fig. 3). The identification problem considered
in [62] selects the optimal parameter vectorθ∗ by solving

θ∗ = arg min
θ

N
∑

k=n̄

|yk − f(rk; θ)|
p, (19)

wherep = 1 or 2. Assuming a priori known bounds onθ
(which can be taken arbitrarily large), (19) can be refor-
mulated as a mixed-integer linear or quadratic program



(MILP/MIQP) by introducing auxiliary continuous vari-
ableszi(k) = max{ϕ⊤

k θi, 0}, and binary variables

δi(k) =

{

0 if ϕ⊤
k θi ≤ 0

1 otherwise.
(20)

The MILP/MIQP problems can then be solved for the
global optimum. The optimality of the described ap-
proach comes at the cost of a theoretically very high
worst-case computational complexity, which means that
it is mainly suitable for small-scale problems (e.g., when
it is very costly to obtain data). To be able to handle
somewhat larger problems, different suboptimal approxi-
mations are proposed in [61]. Various extensions are also
possible for handling non-fixedσi, discontinuities, gen-
eral PWARX models, etc., again at the cost of increased
computational complexity.

Most of the heuristic and suboptimal approaches that
are applicable, or at least related, to the identification of
PWARX models, either assume a fixeds, or adjusts itera-
tively (e.g., by adding one submodel at a time) in order to
improve the fit. A few techniques allow for the automatic
estimation ofs from data. An overview of the related lit-
erature is presented in Section 3.4.

3.3 Identification problem for state space models

For switched affine models defined by (1), or piecewise
affine models defined by (1), (2) and (3), the general iden-
tification problem reads as follows.

Problem 3.4 Given a collection ofN input-output pairs
(yk, uk), k = 1, . . . , N , estimate the model or-
der n, the number of submodelss, and the 6-tuples
(Ai, Bi, fi, Ci, Di, gi), i = 1, . . . , s. Moreover, estimate
the discrete stateσ(k), k = 1, . . . , N , and, if the model is
piecewise affine, the regionsΩi, i = 1, . . . , s.

As for the models in input-output form, the difficulty of
Problem 3.4 depends on which quantities are assumed to
be known. Nevertheless, while for SARX/PWARX mod-
els the identification problem is easy if all the quantities
(including the switching sequence) are known, and only
the parameters of the submodels must be estimated, an
additional difficulty arises when dealing with the identi-
fication of state space models. If the switching sequence
is known, the matrices of each submodel can still be es-
timated by classical techniques such as subspace identifi-
cation methods. However, as pointed out in [71], the ma-
trices of the submodels are obtained up to a linear state
transformation. This state transformation is different, in

general, for each of the submodels. To combine the sub-
models they need to be transformed into the same state
basis. In [71] it is discussed how the transitions between
the submodels can be used to this aim. The algorithm re-
quires a sufficiently large number of transitions for which
the states at the transition are linearly independent.

Heuristics and suboptimal techniques for the identifica-
tion of switched and piecewise affine state space models
are summarized in the next subsection.

3.4 Literature overview

In this subsection, an overview of different approaches to
the identification of switched affine and piecewise affine
models is presented. The description is not intended to be
exhaustive, and the interested reader is referred to [61] for
additional details. The list of references in [61] is com-
pleted here with most recent contributions.

3.4.1 Switched affine models

Emphasis on the identification of SARX models is put in
the contributions [51, 74, 78], where an algebraic proce-
dure for the estimation of the model orders, the number of
discrete state and the model parameters, is proposed. The
identification of SARX models is also considered in [58],
where it is assumed that switchings occur with a certain
probability at each time step, and [72, 73], where identi-
fication schemes for multi-mode and Markov models are
developed. Switched affine models in state space form
are considered in [10, 36, 71]. While in [71] the discrete
state is assumed to be known, and the focus is mainly on
determining the state transformations to express all the
submodels in the same state basis (see Section 3.3), in
[10] the number of discrete states and the switching times
are estimated from data. In both contributions, subspace
identification techniques are used to identify the individ-
ual submodels. In [36], the estimation of the model or-
ders, the number of submodels and the switching times
is carried out by embedding the input-output data into
a higher dimensional space, where the problem becomes
the one of segmenting the data into distinct subspaces.

3.4.2 Piecewise affine models

Work on regression with PWA maps can be found in many
fields, such as neural networks, electrical networks, time-
series analysis, function approximation. Most of the re-
lated approaches assume that the system dynamics is con-
tinuous. Indeed, enabling the estimation of discontin-
uous models is a key feature of algorithms specifically



designed for hybrid system identification. This is mo-
tivated by the fact that logic conditions can be repre-
sented through discontinuities in the state-update and out-
put maps of the identified PWA model.

Remark 3.1 If the PWA map is assumed to be contin-
uous, the model parameters and the partition of the do-
main are not independent. For instance, consider the
PWA map (9) withs = 2. If (9) is continuous, at the
switching surface between the two modes it must hold
thatθ⊤1 [ r

1 ] = θ⊤2 [ r

1 ], and hencer must satisfy

(θ1 − θ2)
⊤ [ r

1 ] = 0. (21)

Equation (21) defines a hyperplane which divides the do-
main into two regions. Each mode of the PWA map is
valid on one side of the hyperplane. Exploiting con-
straints of the type of (21) can be helpful to the identi-
fication process.

Different categories of approaches to PWA system
identification can be distinguished depending on how the
partitioning into regions is done. It follows from the dis-
cussion in Section 3.2 that there are mainly two alterna-
tive approaches: either the partition is defined a priori, or
it is estimated along with the different submodels.

The first approach requires to define a priori the grid-
ding of the domain. For instance, rectangular regions with
sides parallel to the coordinate axes are used in [9], while
simplices (i.e. polytopes withd + 1 corners, whered
is the dimension of the domain) are considered in [23]
and [40]. This approach drastically simplifies the estima-
tion of the linear/affine submodels, since standard linear
identification techniques can be used to estimate the sub-
models, given enough data points in each region. On the
other hand, it has the drawback that the number of regions
and the need for experimental data, grow exponentially
with d. This approach is therefore impracticable for high-
dimensional systems.

The second approach consists in estimating the sub-
models and the partition of the domain either simulta-
neously or iteratively. This should allow for the use of
fewer regions, since the regions are shaped according to
the available data. Depending on how the partition is de-
termined, Roll [61] further distinguishes among four dif-
ferent categories of approaches.

1. The first category relies on the direct formulation of
a suitable criterion function to be minimized, such
as (19). The parameters of the affine submodels and
the coefficients of the hyperplanes defining the parti-
tion of the domain are therefore estimated simultane-
ously by minimizing the criterion function through

numerical methods (e.g., Gauss-Newton search).
The algorithms proposed in [3, 15, 29, 41, 59] fall
into this category. This way of tackling the identifi-
cation problem is straightforward, but has the draw-
back that the optimization algorithm may get trapped
in a local minimum. Techniques for reducing the risk
of getting stuck in a local minimum can be used, at
the cost of increased computational complexity.

2. The second category of approaches is an extension
of the first one, and gives more flexibility with re-
spect to the number of submodels. All parameters
are identified simultaneously for a model with a very
simple partition. If the resulting model is not sat-
isfactory, new submodels/regions are added, in or-
der to improve the value of a criterion function. In
other words, instead to be solved at once, the overall
identification problem is divided into several steps,
each consisting in an easier problem to solve. The
algorithms proposed in [14, 22, 35, 37, 39] fall into
this category. The algorithm [14] has been analyzed
in [59]. The paper [41] also describes an iterative
method for introducing new partitions on the do-
main, when the error obtained is not satisfactory. As
for the first category of approaches, there is still a
risk to get stuck in a local minimum. When adding
new submodels, one should also take into consider-
ation the risk of overfit.

3. The third category contains a variety of approaches,
sharing the characteristic that the parameters of the
submodels and the partition of the domain are identi-
fied iteratively or in different steps, each step consid-
ering either the submodels or the regions. The algo-
rithms proposed in [5, 27, 47, 56, 60] start by classi-
fying the data points and estimating the linear/affine
submodels simultaneously. Then, region estimation
is carried out by resorting to standard linear sepa-
ration techniques. In [54], the position of rectan-
gular regions is optimized one by one iteratively.
Then, each rectangular region is divided into sim-
plices, in which affine submodels are finally identi-
fied. In [52], a greedy randomized adaptive search
procedure is used to iteratively and heuristically find
good partitions of the domain. Other approaches can
be found in [30] and [31].

4. The last category of approaches estimates the par-
tition using only information concerning the distri-
bution of the regression vectors, and not the corre-
sponding output values. This means that the domain



is partitioned in such a way that each region con-
tains a suitable number of experimental data to esti-
mate an affine submodel. The algorithms proposed
in [16, 68] fall into this category. The major draw-
back of this category of approaches is that, without
considering the output values, a set of data which
really should be associated to the same submodel
might be split arbitrarily.

It is stressed that most of the aforementioned ap-
proaches (e.g, [3, 14, 16, 22, 29, 35, 37, 41, 59]) as-
sume that the system dynamics is continuous, while, e.g.,
[5, 27, 47, 56, 60] allow for discontinuities. Moreover,
only few approaches (e.g., those in the second category,
[5, 56], and [26], which is an extension of [27]) estimate
also the number of submodels from data.

3.4.3 Other hybrid model classes

Recently, some contributions have focused on the class
of PieceWise Output Error(PWOE) models, which are
defined by the equations

yk = wk + ek

wk = f(rk),
(22)

wheref(·) is the PWA map (9), and the regression vector
rk is built as

rk = [ wk−1 . . . wk−na
uk uk−1 . . . uk−nb

]⊤. (23)

In [63] a prediction-error minimization method for piece-
wise linear output-error predictors is derived under the
assumption that the discrete state is known at each time
step. Estimation of the discrete state is made possible
in [46], where a Bayesian method for identification of
PWOE models is proposed.

3.4.4 Recursive identification approaches

All the aforementioned algorithms operate in a batch
mode, i.e. the model is identified after all the input-output
data have been collected. Since the computational com-
plexity of batch algorithms depends on the number of data
points, such algorithms may not be suitable for real time
applications. An online algorithm for the identification of
SARX/PWARX models is proposed in [65]. It exploits a
mixture of recursive identification and pattern recognition
techniques in order to identify the current parameter val-
ues. A different approach is pursued in the recent contri-
butions [32, 75]. A standard recursive identification algo-
rithm is used to estimate the parameters of a “lifted” ARX

model which is independent of the switching sequence,
and is built by applying a polynomial embedding to the
input-output data. Then, estimates of the ARX submodel
parameters are obtained by differentiation. This approach
also enables for the estimation of the model orders and
the number of submodels.

4 Data classification and region estimation

As pointed out in Section 3.4, identification methods al-
lowing for discontinuities in the PWA map (9) are best
suited in the context of hybrid systems, since they allow
logic conditions to be represented by abrupt changes in
the system dynamics. Most recent contributions, such
as [5, 27, 47, 56, 60], have thus focused on regression
with discontinuous PWA maps. It is interesting to note
that all the above mentioned approaches share the idea
to tackle the identification problem by firstly classifying
the data and estimating the affine submodels, and then es-
timating the partition of the regressors domain. In this
section, the data classification step is discussed in view
of the subsequent step of region estimation. Moreover,
a brief overview of linear separation techniques is given,
and issues related to the estimation of the partition from a
finite number of points are highlighted.

4.1 Data classification

Methods for the identification of PWARX models that
firstly classify the data points and estimate the affine sub-
models, and then estimate the partition of the regressors
domain, split in practice the identification problem into
the identification of a SARX model, followed by the shap-
ing of the regions to the clusters of data. In this respect,
such methods can be also considered as methods for the
identification of SARX models, if the final region esti-
mation step is not addressed. Vice versa, methods de-
veloped for the identification of SARX models, such as
[51, 74, 78], can be used to initialize the procedures for
the identification of PWARX models.

However, in view of the subsequent step of region
estimation, data classification for the identification of
PWARX models needs to be carefully addressed. The
main problem to deal with is represented by data points
that are consistent with more than one submodel, namely
data points lying in the proximity of the intersection of
two or more submodels. Wrong attribution of these data
points may lead to misclassifications when estimating the
polyhedral regions.

In order to clarify this point, Fig. 4 shows a data set ob-
tained from a one-dimensional PWA model withs = 2
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Figure 4. Example showing the problem of intersecting sub-
models. The data point denoted by the black circle could be
in principle attributed to both submodels. Wrong attribution
yields two non-linearly separable clusters of points.

discrete modes. It assumed that the parameter vectorsθ1

andθ2 have been previously estimated, no matter which
method has been used. If each data point(yk, rk) is asso-
ciated to the submodeli∗ such that the prediction error is
minimized, i.e. according to the rule

i∗ = arg min
i=1,...,s

|yk − ϕ⊤
k θi|, (24)

the point denoted by the black circle is attributed to the
first submodel. This yields two non-linearly separable
clusters of points. It is stressed that the issue addressed
in this example does not depend on the particular choice
of (24) for associating each data point to one submodel.
If data classification and parameter estimation are per-
formed by solving Problem 3.2 for a givenδ > 0, the
point denoted by the black circle is still attributed to the
first submodel in this case. The gray area in Fig. 4 repre-
sents the region of all data points satisfying

|yk − ϕ⊤
k θi| ≤ δ (25)

for both i = 1 andi = 2. These data points are termed
undecidable, because they could be in principle attributed
to both submodels.

The identification procedures [5, 27, 47, 56, 60] deal
with the problem of intersecting submodels in different
ways. For instance, an ad-hoc refinement procedure based
on the certainly attributed closest neighbors is proposed in
[5], weights for misclassification are introduced in [47],
and clustering in a feature space is pursued in [27]. These
three approaches will be described in Section 5.

4.2 Region estimation

After the data classification step, providing the estimates
of the discrete stateσ(k) ∈ {1, . . . , s}, it is possible to
form s clusters of regression vectors as

Ai =
{

rk : σ(k) = i
}

, i = 1, . . . , s. (26)

The problem of region estimation consists in finding a
complete polyhedral partition

{

Ri

}s

i=1
of the regressors

domainR such thatAi ⊆ Ri for all i = 1, . . . , s. The
polyhedral regions (8) are defined by hyperplanes. Hence,
the considered problem is equivalent to that of separat-
ing s sets of points by means of linear classifiers (hy-
perplanes). This problem can be tackled in two different
ways:

a) Construct a linear classifier for each pair(Ai,Aj),
with i 6= j.

b) Construct a piecewise linear classifier which is able
to discriminate amongs classes.

In the first approach, a separating hyperplane is con-
structed for each pair(Ai,Aj), i 6= j. This amounts to
solve s(s − 1)/2 two-classlinear separation problems.
Given two setsAi andAj , i 6= j, the linear separation
problem is to findw ∈ R

d andγ ∈ R such that

w⊤
rk + γ > 0 ∀ rk ∈ Ai

w⊤
rk + γ < 0 ∀ rk ∈ Aj .

(27)

This problem can be easily rewritten as a feasibility prob-
lem with linear inequality constraints by introducing the
quantities

zk =

{

1 if rk ∈ Ai

−1 if rk ∈ Aj .
(28)

If a hyperplane separating without errors the points in
Ai from those inAj does not exist (this may happen be-
cause the setsAi andAj have intersecting convex hulls),
a first reasonable approach is to look for a hyperplane that
maximizes the number of well-separated points (equiva-
lently, that minimizes the number of misclassified points).
This problem amounts to find a pair(w, γ) such that the
number of satisfied inequalities in (27) is maximized, and
is known in the literature as MAXimum Feasible Subsys-
tem (MAX FS) problem. Although the MAX FS problem
is known to be NP-hard, several heuristics have been de-
veloped which work well in practice (see [1]). One draw-
back of the MAX FS approach is that it may not have a
unique solution, as shown in Fig. 5.



Figure 5. The two sets are not linearly separable. The contin-
uous line and the dashed line represent two different solutions
to the problem of minimizing the number of misclassifications.
One point is incorrectly classified in both cases.

An alternative approach for linear separation in the in-
separable case is the minimization of a suitable cost func-
tion associated with errors. In the simplest case, this idea
leads to the following linear program:















min
w,γ,vk

∑

ckvk

s.t. zk[w
⊤
rk + γ] ≥ 1 − vk

vk ≥ 0 ∀ rk ∈ Ai ∪ Aj ,

(29)

whereck > 0 are misclassification weights. If the data
set is linearly separable, and therefore there existw andγ
such that the constraints

zk[w
⊤
rk + γ] ≥ 1 (30)

are satisfied for allrk ∈ Ai ∪ Aj , all the auxiliary vari-
ablesvk can be taken equal to zero. If the data set is
not linearly separable, the auxiliary variablesvk allow
the constraints (30) to be violated. Since, at the opti-
mum of (29),vk = max

{

0, 1 − zk[w
⊤
rk + γ]

}

for all
rk ∈ Ai ∪ Aj , each variablevk can be interpreted as a
misclassification error. The originalRobust Linear Pro-
gramming(RLP) method proposed in [7] is a particular
case of (29), while theSupport Vector Machines(SVM)
method [19] solves a quadratic program under the same
constraints as (29).

Remark 4.1 When the setAi has been linearly separated
from all the other setsAj , j 6= i, redundant hyperplanes
(i.e. not contributing to the boundary of the regionRi)
can be eliminated through standard linear programming
techniques, so that the number of linear inequalities defin-
ing theith region isµi ≤ s − 1.

Figure 6. Pairwise linear separation of a data set formed by
four linearly separable sets. The partition is not complete(the
gray area is not covered).

Figure 7. Multi-class linear separation of the same data set as
Fig. 6. The partition is complete.

Approacha) is computationally appealing, since it does
not involve all the data simultaneously. A major draw-
back is that the estimated regions are not guaranteed to
form a complete partition of the regressors domain when
d > 1, as shown in Fig. 6. This drawback is quite im-
portant, since it causes the model to be not completely
defined over the whole regressors domain. If the pres-
ence of “holes” in the partition is not acceptable, one
can resort to approachb). Multi-class linear separation
techniques constructs classification functions such that,
at each data point, the corresponding class function is
maximal. Classical two-class separation methods such
as SVM and RLP have been extended to this multi-class
case [8, 13]. The resulting methods are calledMulticat-
egorySVM (M-SVM) or MulticategoryRLP (M-RLP),
to stress their ability of dealing with problems involving
more than two classes (see Fig. 7). Multi-class problems
involve all the available data, and therefore approachb) is
computationally more demanding than approacha).

Remark 4.2 Even if all data points are correctly classi-
fied, it is not possible in general to reconstruct exactly
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Figure 8. Distinct spikes show up in the plot of the prediction
errors due to discontinuity of the PWA map, and wrong assign-
ment of the regression vectors because of errors in estimating
the switching surfaces.

the regions from a finite data set. If the true system is
characterized by continuous dynamics, small differences
in hyperplane orientations are not expected to alter signif-
icantly the quality of the model. On the other hand, even
small errors in shaping the surfaces along which the true
system is discontinuous, may determine large prediction
errors, if a regression vector falling close to a disconti-
nuity, is associated to the wrong submodel. Such errors
can be typically detected and corrected a posteriori during
the validation or the operation of the model, as shown in
Fig. 8. If distinct spikes show up in the prediction error
plot, the corresponding data points can be re-attributed,
and the augmented data set used to re-estimate the re-
gions.

5 Four procedures for the identification of
SARX/PWARX models

In this section, four procedures for the identification of
SARX/PWARX models are briefly discussed, namely the
algebraic procedure [51, 74, 78], the clustering-based
procedure [27], the Bayesian procedure [47], and the
bounded-error procedure [5]. It is stressed that other tech-
niques are available (see Section 3.4). The ones con-
sidered here are more closely related to the activities of
the authors of this paper, and have been successfully ex-
ploited in several real applications, such as identification
of the electronic component placement process in pick-
and-place machines [5, 43, 47], modelling of a current
transformer [27], traction control [11], and motion seg-
mentation in computer vision [76, 77].

While the algebraic procedure focuses on the identifi-

cation of SARX models, the other three procedures are
designed for the identification of PWARX models, and
are able to deal with discontinuous dynamics. The basic
steps that each method performs are the estimation of the
discrete stateσ(k), and the estimation of the parameter
vectors{θi}

s
i=1. Estimation of the polyhedral partition

{Ri}
s
i=1 of the regressors domain, if needed, can be car-

ried out in the same way for all methods by resorting to
the techniques described in Section 4.2.

5.1 Algebraic procedure

The method proposed in [51, 74, 78] approaches the
identification of SARX models as an algebraic geometric
problem. It provides a closed-form solution to the identi-
fication problem that is provably correct in the absence of
noise.

The key idea behind the algebraic approach is to view
the identification of multiple ARX models as the identi-
fication of a single, “lifted” ARX model that simultane-
ously encodes all the ARX submodels and does not de-
pend on the switching sequence. The parameters of the
“lifted” ARX model can be identified through standard
linear identification techniques after applying a polyno-
mial embedding to the regression vectors. The parame-
ters of the original ARX submodels are then given by the
derivatives of this polynomial.

Assuming for simplicity that the number of submodels
s and the model ordersna andnb are known (these as-
sumptions will be subsequently removed), the algebraic
procedure works as follows. If the data are generated by
model (5) withek = 0 (noiseless case), each data pair
(yk, rk) satisfies

yk − θ⊤i ϕk = 0 (31)

for someθi, i = 1, . . . , s. Hence, the following equality
holds for allk:

s
∏

i=1

(

b⊤i zk

)

(32)

wherebi = [ 1 θ⊤i ]⊤ andzk = [−yk ϕ⊤
k ]⊤. Equation (32)

is called thehybrid decoupling constraint, since it is in-
dependent of the switching sequence and the mechanism
generating the transitions. In view of (32), thehybrid de-
coupling polynomialis defined as

ps(z) =
s

∏

i=1

(

b⊤i z
)

= h⊤νs(z), (33)

which is a homogeneous polynomial of degrees in z =
[ z1 . . . zK ]⊤, K = na + nb + 3. Note that (33) can



be written as a linear combination of all theMs(K)
.
=

( s+K−1
s ) monomials of degrees in K variables. Such

monomials are stacked in the vectorνs(z) according to
the degree-lexicographic order. The vectorh ∈ R

Ms(K)

contains the so-calledhybrid model parameters, and en-
codes the parameter vectors of thes submodels. Since
(32) holds for allk, the vectorh can be estimated by solv-
ing the linear system4

Ls(K)h = 0, (34)

whereLs(K) = [ νs(zn̄) νs(zn̄+1) . . . νs(zN ) ]⊤. Once
h has been computed, the vectorsbi can be reconstructed
as

bi =
Dps(zki

)

[ 1 0 . . . 0 ]Dps(zki
)
, (35)

whereDps(z) = ∂ps(z)
∂z

, andzki
is a data point generated

by theith ARX submodel, which can be chosen automati-
cally onceps(·) is known [78]. Given thebi’s (and conse-
quently theθi’s), the discrete state is estimated according
to the ruleσ(k) = i∗, with i∗ given by (24). As discussed
in Section 4.1, enhanced classification rules can be used
by incorporating additional knowledge about the switch-
ing mechanism (e.g., PWARX models), when available.

The linear system (34) has a unique solution (requiring
that the first component ofh is equal to 1) when the data
are sufficiently exciting, ands, na andnb are known ex-
actly. If s is not known, it is shown in [78] that it can be
estimated as5

s = arg min{i : rank(Li(K)) = Mi(K) − 1}. (36)

The algebraic procedure described above can be
amended when only upper boundss̄, n̄a andn̄b for s, na

and nb, respectively, are available. In those cases, the
procedure allows for the estimation of all the unknown
quantities. More details can be found in [51, 74].

5.2 Clustering-based procedure

The clustering-based procedure [27] exploits the fact that
the PWA map (9) is locally linear. If the data are gener-
ated by (10), there likely exist groups of neighbor regres-
sion vectors belonging to the same region (and the same
submodel). Parameter vectors computed for these small
local data sets should resemble the parameter vector of
the corresponding submodel. Hence, information about

4The solution must be intended in a least-squares sense in the noisy
case.

5Evaluation of (36) in the noisy case requires to introduce a thresh-
old for estimating the rank ofLi(K).

the submodels can be obtained by clustering the local pa-
rameter vectors.

The clustering-based procedure works as follows. The
positive integerc is a fixed parameter.

• Local regression.For k = n̄, . . . , N , a local data
set Ck is built by collecting(yk, rk) and the data
points(yj , rj) corresponding to thec− 1 regression
vectorsrj that are closest6 to rk. Local parameter
vectorsθLS

k are then computed for each local data
setCk by least squares. For analysis purposes, local
data sets containing only data points generated by
the same submodel are referred to aspure, otherwise
they are calledmixed.

• Construction of feature vectors.Each data point
(yk, rk) is mapped onto the feature vector

ξk = [ (θLS
k )⊤ m

⊤
k ]⊤, (37)

wheremk = 1
c

∑

(y,r)∈Ck
r is the center ofCk.

• Clustering. Feature vectors are partitioned intos
groups{Fi}

s
i=1 by applying a “K-means”-like al-

gorithm exploiting suitably defined confidence mea-
sures on the feature vectors. The confidence mea-
sures make it possible to reduce the influence of out-
liers and poor initializations.

• Parameter estimation.Since the mapping of the data
points onto the feature space is bijective, data points
are classified into clusters{Di}

s
i=1 according to the

rule
(yk, rk) ∈ Di iff ξk ∈ Fi. (38)

A parameter vectorθi is estimated for each data clus-
terDi by weighted least squares.

The clustering-based procedure requires that the model
ordersna and nb, and the number of submodelss are
fixed. The parameterc, defining the cardinality of the lo-
cal data sets, is the main tuning knob. In practical use, the
method is expected to perform poorly if the ratio between
the number of mixed and pure local data sets is high. The
number of mixed local data sets increases withc. Hence,
it is desirable to keepc as small as possible. On the other
hand, when the noise level is high, large values ofc may
be needed in order to filter out the effects of noise.

An important feature of the clustering-based procedure
is its ability to distinguish submodels characterized by the
same parameter vector, but defined in different regions.
This is possible because the feature vectors contain also

6According to the Euclidean norm.



information on the location of the local data sets. A mod-
ification to the clustering-based procedure is proposed in
[26] to allow for the simultaneous estimation of the num-
ber of submodels. The clustering-based procedure is ana-
lyzed in [28], where it is shown that optimal classification
can be guaranteed under suitable assumptions in the pres-
ence of bounded noise. A software implementation of the
clustering-based procedure is also available [24].

5.3 Bayesian procedure

The Bayesian procedure [42, 47] is based on the idea of
exploiting the available prior knowledge about the modes
and the parameters of the hybrid system. The parameter
vectorsθi are treated as random variables, and described
through their probability density functions (pdfs) pθi

(·).
A priori knowledge on the parameters can be supplied
to the procedure by choosing appropriate prior parame-
ter pdfs. Various parameter estimates, such as expecta-
tion or maximum a posteriori probability estimate, can be
easily obtained from the parameterpdfs. The data clas-
sification problem is posed as the problem of finding the
data classification with the highest probability. Since this
problem is combinatorial, an iterative suboptimal algo-
rithm is derived. It is assumed that the probability density
functionpe(·) of the additive noise termek is given.

Data classification and parameter estimation are carried
out by sequential processing of the collected data points.
In each iteration, thepdf of one of the parameter vectors
is updated. Letpθi

(·; k) denote thepdf of θi at iteration
k, when the data point(yk, rk) is considered. The condi-
tionalpdf p((yk, rk) | σ(k) = i) is given by

p((yk, rk) | σ(k) = i) =

=

∫

Θi

p((yk, rk) | θ̃) pθi
(θ̃; k − 1) dθ̃, (39)

whereΘi is the set of possible values forθi, and

p((yk, rk) | θ) = pe(yk − θ⊤ϕk). (40)

The discrete state corresponding to(yk, rk) is estimated
asσ(k) = i∗, where

i∗ = arg max
i=1,...,s

p((yk, rk) | σ(k) = i). (41)

Then, the assignment of(yk, rk) to modei∗ is used to
update thepdf of θi∗ by the Bayes rule, i.e.

pθi∗
(θ; k) =

=
p((yk, rk) | θ) pθi∗

(θ; k − 1)
∫

Θi∗

p((yk, rk) | θ̃) pθi∗
(θ̃; k − 1) dθ̃

. (42)

Pdfs of the other parameter vectors remain unchanged,
i.e. pθi

(·; k) = pθi
(·; k − 1) for i 6= i∗. For the numer-

ical implementation of the described algorithm, particle
filtering algorithms are used [2]. After the parameter es-
timation phase, each data point is finally attributed to the
mode that most likely generated it.

To estimate the regions, a modification of the standard
Multicategory RLP (MRLP) method [8] is proposed in
[47]. If a regression vector attributed to modei ends up
in the regionRj (this may happen, e.g., in the case of in-
tersecting submodels, see Section 4.1 and Fig. 4), and the
probabilities that the corresponding data point is gener-
ated by modei and modej are similar, misclassification
should not be penalized highly. To this aim, for each data
point (yk, rk) attributed to modei, the price for misclas-
sification into modej is defined as

νi,j(rk) = log
p((yk, rk) | σ(k) = i)

p((yk, rk) | σ(k) = j)
, (43)

where p((yk, rk) | σ(k) = ℓ) is the likelihood that
(yk, rk) was generated by modeℓ. Note that the price
for misclassification is zero if the probabilities are exactly
equal. Prices for misclassification are plugged into the
MRLP method.

The Bayesian procedure requires that the model orders
na andnb, and the number of submodelss are fixed. The
most important tuning parameters are the prior parameter
pdfspθi

(·; 0), and thepdf pe(·) of the error term. In [46]
the Bayesian approach has been extended to the identifi-
cation of piecewise output error models.

5.4 Bounded-error procedure

Inspired by ideas from set-membership identification
(see, e.g., [53] and references therein), the main feature
of the bounded-error procedure [5, 57] is to impose that
the errore(k) in (10) is bounded by a given quantityδ > 0
for all the samples(yk, rk) in the estimation data set, i.e.

|yk − f(rk)| ≤ δ, ∀k = n̄, . . . , N. (44)

Hence, the bounded-error procedure fits a PWARX model
satisfying (44) to the data, without any assumption on the
system generating the data.

Since any PWARX model satisfying the bounded-error
condition (44) is feasible, an initial guess of the number of
submodelss is obtained by addressing Problem 3.2. The
solution7 of Problem 3.2 provides also a raw data classifi-
cation that suffers two drawbacks. The first one is related

7In [5] a method for the solution of Problem 3.2 is proposed to
enhance the performance of the greedy randomized algorithm [1].



to the suboptimality of the method used to tackle Prob-
lem 3.2, implying that it is not guaranteed to yield the
minimum number of submodels. The second one is re-
lated to the problem ofundecidabledata points (see Sec-
tion 4.1), implying that the cardinality and the composi-
tion of the feasible subsystems may depend on the order
in which they are extracted from (12).

To deal with the aforementioned drawbacks, an itera-
tive refinementprocedure is applied. The refinement pro-
cedure alternates between data reassignment and parame-
ter update. If needed, it enables the reduction of the num-
ber of submodels. For given positive thresholdsα andβ,
submodelsi andj are merged ifαi,j < α, where

αi,j =
‖θi − θj‖

min{‖θi‖, ‖θj‖}
, (45)

and‖ · ‖ is the Euclidean norm. Submodeli is discarded
if the cardinality of the setDi of data points classified to
modei is less thanβN . Data points that do not satisfy
(44) are discarded asinfeasibleduring the classification
process, making it possible to detect outliers. In [5] pa-
rameter estimates are computed by theℓ∞ projection es-
timator, i.e.

θi = arg min
θ

max
(yk,rk)∈Di

|yk − ϕ⊤
k θ|, (46)

but any other projection estimate, such as least squares,
can be used [53].

The bounded-error procedure requires that the model
ordersna andnb are fixed. The main tuning parameter is
the boundδ. As discussed in Section 3.1, the largerδ, the
smaller the required number of submodels at the price of
a worse fit of the data. The optional parametersα andβ,
if used, also implicitly determine the final number of sub-
models returned by the procedure. Another tuning param-
eter is the numberc of closest neighbors used to attribute
undecidable data points to submodels in the refinement
step.

Remark 5.1 The bounded-error formulation (44) is eas-
ily extended to multi-output models. In this case, the out-
put of the system isyk ∈ R

q, the PWA map (9) is aq-
valued function, and (44) is replaced by

‖yk − f(rk)‖∞ ≤ δ , ∀ k = n̄, . . . , N, (47)

where‖·‖∞ is the infinity norm of a vector. The bounded-
error procedure [5, 57] is then applicable also to the case
q > 1, provided that Problem 3.2 is reformulated and
solved accordingly. The interested reader is referred to
[57].

5.5 Discussion

The four identification procedures described in this sec-
tion are compared and discussed in [44] (see also [45]).
Specific behaviors of the procedures with respect to clas-
sification accuracy, noise level, and tuning parameters are
pointed out using simple one-dimensional examples. The
procedures are also tested on the experimental identifi-
cation of the electronic component placement process in
pick-and-place machines.

From the comparison, it comes out that the algebraic
procedure is well suited when the system generating the
data can be accurately described as a switched affine
model, and moderate noise is present. The main fea-
tures of the algebraic procedure are that it can handle the
cases with unknown model orders and unknown number
of submodels, and it does not require any form of ini-
tialization. However, noise and/or nonlinear disturbances
affecting the data may cause poor identification results.
When trying to identify a PWARX model using the data
classification obtained from the algebraic procedure, one
must be aware that the minimum prediction error classi-
fication rule may lead to wrong data association. In such
cases, it is advisable to use one of the classification meth-
ods employed by other procedures.

The clustering-based procedure is well suited when
there is no prior knowledge on the physical system, and
one needs to identify a model with a prescribed structure
(i.e. the number of submodels and the model orders are
given). Identification using the clustering-based proce-
dure is straightforward, as only one parameter has to be
tuned. However, poor results can be obtained when the
model orders are overestimated, since distances in the fea-
ture space become corrupted by irrelevant information.

The Bayesian procedure is designed to take advantage
of prior knowledge and physical insight into the opera-
tion modes of the system (like in the pick-and-place ma-
chine identification [47]). Another interesting feature is
the automatic computation of misclassification weights to
be plugged into the linear separation techniques used for
region estimation. As a major drawback, poor initializa-
tion may lead to poor identification results.

The bounded error procedure is well suited when no
prior knowledge on the physical system is available, and
one needs to identify a model with a prescribed accuracy
(e.g., to approximate nonlinear dynamics in each oper-
ation mode). Tuning parameters allow to trade-off the
model accuracy with the model complexity, expressed in
terms of the mean squared error and the number of sub-
models, respectively. However, finding the right combi-



nation of the tuning parameters is seldom straightforward,
and several attempts are often needed to get a satisfactory
model.

It is stressed that mixing the features of the four proce-
dures could still enhance their effectiveness. In particular:

• The algebraic procedure can be used to initialize the
other three procedures by providing estimates of the
model orders and the number of submodels.

• By exploiting the idea of clustering the feature vec-
tors, the clustering-based procedure is able to distin-
guish submodels characterized by the same param-
eter vector, but defined in different regions. This a
pitfall of both the Bayesian and the bounded-error
classification procedures. Since these procedures do
not exploit the spatial location of the submodels,
data points generated by the same parameter vector
in different regions are classified as a whole. This
may lead to non-linearly separable clusters. Clus-
tering ideas contained in the clustering-based proce-
dure can be extended to the other two procedures in
order to detect and split the clusters corresponding
to such situations.

• The Bayesian procedure includes the computation of
misclassification weights to be plugged into the lin-
ear separation techniques used for region estimation.
This feature can be extended to the clustering-based
and the bounded-error procedures. In the latter case,
for each data point(yk, rk) attributed to modei, the
price for misclassification into modej could be de-
fined as

νi,j(rk) = λ log max{1,
|yk − θ⊤j rk|

δ
}, (48)

whereλ > 0 is a scale factor.

• The bounded-error procedure can be used to guess
the number of submodels, especially when the dy-
namics in each operation mode of the true system is
nonlinear, and more modes than the true system are
thus required to accurately approximate all the non-
linear dynamics.

6 Conclusions

Hybrid system identification is an emerging field whose
importance grows with the potential new applications of
hybrid systems in real life. In order to use the numer-
ous tools for analysis, verification, computation, stabil-
ity, and control of hybrid systems, a hybrid model of the

process at hand is needed. Hence, techniques for obtain-
ing accurate models are of paramount importance. Most
effort in the area of hybrid system identification has re-
cently focused on identifying switched affine and PWA
models. In the first part of the paper, different formula-
tions of the identification problem for these model classes
have been reported, and an overview of the related liter-
ature has been proposed. Although work on regression
with continuous PWA maps can be found in the exten-
sive literature on nonlinear black-box identification, most
recent contributions aimed at the identification of mod-
els with a hybrid and discontinuous structure. Among
these, an algebraic procedure, a Bayesian procedure, a
clustering-based procedure, and a bounded-error proce-
dure have been successfully applied in several real prob-
lems. The four procedures have been the topic of the sec-
ond part of the paper.

It has emerged that a fundamental issue in PWA system
identification is how to keep the computational complex-
ity and the model complexity (number of model parame-
ters) low. The computational complexity for a given algo-
rithm is a function of the number of regions/submodels,
the number of experimental data, and the model orders.
Hence, there are many trade-off situations when compar-
ing different methods and tuning parameters for given al-
gorithms. For instance, it has been pointed out that prior
gridding of the domain drastically simplifies the identi-
fication problem, but the numbers of regions and data
needed to get good results increase exponentially with the
model orders. Hence, this approach may be good for low-
dimensional systems.

Another trade-off issue concerns model complexity and
quality. The more degrees of freedom are allowed in the
model structure, the closer the model can approximate
the experimental data. However, since data are typically
corrupted by noise, too much flexibility might cause the
model to adjust to the noise realization, thereby causing
overfit. This is indeed a general problem of system identi-
fication, occurring not only for piecewise affine systems.

Several issues still remain open. Though, given the
equivalence between PWA models and other classes of
hybrid models, PWA system identification techniques can
be regarded as general hybrid system identification tech-
niques, the development of specific identification tools for
different hybrid model classes would be advisable. In this
way, the identification process could take advantage of
available prior knowledge that cannot be easily expressed
in the PWA formalism.

Including prior knowledge and system physics in the
identification process leads to the broader perspective



of application-based hybrid system identification. New
frontiers for hybrid system identification are opening,
e.g., along with the emerging field of systems biology (see
[25] and references therein).

Finally, the choice of persistently exciting input signals
for identification (i.e. allowing for the correct identifica-
tion of all the affine dynamics) is another important topic
to be addressed. Preliminary results have been proposed
in [75], but the derived persistence of excitation condi-
tions involve both the input and the output data. More-
over, when dealing with discontinuous PWARX models,
the choice of the input signal should be such that not only
all the affine dynamics are sufficiently excited, but also
accurate shaping of the boundaries of the regions is pos-
sible.
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