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This tutorial paper is concerned with the identificatioogic devices and continuous processes. They can be used
of hybrid models, i.e. dynamical models whose behaviordescribe real phenomena that exhibit discontinuous be-
is determined by interacting continuous and discrete digaviors. For instance, the trajectory of a bouncing ball
namics. Methods specifically aimed at the identificatioesults from the alternation between free fall and elastic
of models with a hybrid structure are of very recent dateontact. Moreover, hybrid models can be used to approx-
After discussing the main issues and difficulties conneciathte continuous phenomena by concatenating different
with hybrid system identification, and giving an overviemodels from a simple class. For instance, a nonlinear dy-
of the related literature, this paper focuses on four difkamical system can be approximated by switching among
ferent approaches for the identification of switched affinarious linear models.
and piecewise affine models, namely an algebraic pro-Due to their many potential applications, hybrid sys-
cedure, a Bayesian procedure, a clustering-based prodems have attracted increasing attention in the control
dure, and a bounded-error procedure. The main featureemmunity during the last decade. Numerous results on
of the selected procedures are presented, and possialysis, verification, computation, stability and control
interactions to still enhance their effectiveness are sugf hybrid systems have appeared in the literature. How-
gested. ever, most of the theoretical developments hinge on the
assumption that a hybrid model of the process at hand
Keywords: Hybrid System Identification; Switcheds ayailable. In some situations it is possible to obtain
Affine and Piecewise Affine Models; Classification; Pasych a model starting from first principles. On the other
rameter Estimation; Linear Separation hand, first principles modelling is too complicated or even
impossible to apply in most practical situations, and the
model needs to be identified on the basis of experimental
data.

1 Introduction

Hybrid systems are heterogeneous dynamical systeing Paper contribution
whose behavior is determined by interacting continuous

and discrete dynamics. The continuous dynamics is q§+the first part, this paper provides an introduction to the
scribed by variables taking values from a continuous sgipic of hybrid system identification. The main issues
while the discrete dynamics is described by variables tafq difficulties connected with hybrid system identifica-
ing values from a discrete, typically finite, set. The CoRiyn are discussed, and an overview of the related litera-
tinuous or discrete-valued variables may depend on e js given. It is stressed that most effort in this area has

dependent variables such as time, which in turn may Bgen devoted to the identification of switched affine and
continuous or discrete. Some of the variables can alsodigcewise affine (PWA) models.

discrete-event driven in an asynchronous manner. PWA systems are obtained by partitioning the state-
Hybrid systems arise not only from the interaction QBput domain into a finite number of non-overlapping
“E-mail: A.Juloski@tue.nl convex polyhedral regions, and by considering lin-
**E-mail: giancarlo.ferrari@unipv.it ear/affine subsystems in each region [66]. The interest
“**E-mail: rvidal@cis.jhu.edu in PWA system identification is motivated by several rea-
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sons. The equivalence between PWA models and sever@imong the variety of the proposed approaches, the au-
classes of hybrid models [4, 34, 67] makes PWA systeimors of this paper contributed by developing four differ-
identification techniques suitable to obtain hybrid modeésnt procedures for the identification of switched affine
from data. Moreover, the universal approximation proand piecewise affine models, namely the algebraic pro-
erties of PWA maps [14, 49] make PWA models attractivaedure [78], the clustering-based procedure [27], the
also for nonlinear system identification [64]. Bayesian procedure [47], and the bounded-error proce-

Identification of PWA models is a challenging problerdure [5]. These techniques have been successfully ap-
that involves the estimation of both the parameters of thled in real problems, such as identification of the elec-
affine submodels, and the coefficients of the hyperplantesnic component placement process in pick-and-place
defining the partition of the state-input domain (or the renachines [5, 43, 47], modelling of a current transformer
gressors domain, for models in input-output form). TH&7], traction control [11], and motion segmentation in
main difficulty lies in the fact that the identification probcomputer vision [76, 77]. The main features of the se-
lem includes a classification problem where each ddézted techniques are presented in the second part of the
point must be associated to the most suitable submogbgper, where possible interactions to still enhance their
Concerning the partitioning, two alternative approacheffectiveness are also suggested.

can be distinguished: _
o o 1.2 Paper outline
1. the partition is fixed a priori;

2. the partition is estimated along with the submodelér.his paper is organized as follows. Section 2 introduces
the classes of switched affine and piecewise affine mod-

In the first case, data classification is very simple, and @35 hoth in state space and input-output form. Section 3
timation of the submodels can be carried out by resortigghorts several formulations of the identification problem
to standard linear identification techniques. In the secopg these model classes, and gives an overview of the re-
case, the regions must be shaped to the clusters of dgf@yg literature. Different identification approaches are
and the strict relation among data classification, parag)assified along the lines proposed in [61]. The problems
eter estimation and region estimation makes the identi¢ gata classification and region estimation are addressed
cation problem very hard to cope with. The problem ig section 4 for those approaches that firstly classify the
even harder when also the number of submodels musiga, then estimate the affine dynamics, and finally recon-
estimated. struct the polyhedral partition. Most recent contributions
Different techniques leading to PWA models of smooifa the identification of models with hybrid and discontin-
dynamical systems can be found in the extensive literatyj§,s characteristics belong to this category. Four proce-
on nonlinear black-box identification. A nice overview igjres falling into the category analyzed in Section 4, are
presented in [61]. However, most of these approaches fgally described and discussed in Section 5. Section 6

sume that the system dynamics is continuous. Recenglyaws the conclusions, and foreshadows interesting top-
novel contributions allowing for discontinuities have beggs for future research.

proposed in both the hybrid systems and the nonlinear

identification communities. An iterative algorithm tha2 Switched affine and piecewise affine models
sequentially estimates the parameters of the model and

classifies the data through the use of adapted weight$nighis section, discrete-time switched affine models both
described in [60]. A method based on statistical clustéf- state space and in input-output form are introduced.
ing of measured data via a Gaussian mixture model afwitched affine models are defined as collections of lin-
support vector classifiers is presented in [56]. Sevegedr/affine models, connected by switches that are indexed
optimization problem formulations of the identificatio®y a discrete-valued additional variable, called the dis-
problem are proposed in [54, 55]. In [62] the identificrete state. Models for which the discrete state is deter-
cation problem is formulated for two subclasses of PWmined by a polyhedral partition of the state-input domain,
models, namely Hinging Hyperplane ARX (HHARX)are called piecewise affine models. They can be used
and Wiener PWARX (W-PWARX) models, and solvedo model a large number of physical processes (see, e.g.
via mixed-integer linear or quadratic programs. Subspd@ 17, 18, 48, 69]), and are suitable to approximate non-
identification of piecewise linear systems is addressedliipear dynamics, e.g., via multiple linearizations at differ-
[10, 71], while recursive identification of switched hybrignt operating points. Moreover, piecewise affine models
system is addressed in [32, 75]. are equivalent to several classes of hybrid models, and can



therefore be used to describe systems that exhibit hybRdmark 2.1 PWA models form a special class of hy-

structure. brid models. Other descriptions for hybrid systems in-
) cludeMixed Logical Dynamica{MLD) models [6],Lin-
2.1 Models in state space form ear ComplementaritfLC) models [33, 70],Extended

. . . ) . Linear ComplementaritfyELC) models [20], andVax-

A general _dlscrete_—tlme switched a_fflne modelsiate Min-Plus-Scaling(MMPS) models [21]. Equivalences
spaceform is described by the equations among these five classes of systems are shown in [4, 34].

Such results are very important for transferring theoretical
(1) properties and tools (e.g., control and identification tech-
nigues) from one class to another, as they imply that one
can choose the most convenient hybrid modelling frame-
¥vork for the study of a particular hybrid system.

1 = Aot Tk + Bory Uk + for) + Wi
Yk Co(k) Tk + Do (i) Uk + Go(k) + Vks

wherex;, € R", u; € RP andy, € R? are, respec-
tively, the continuousstate, the input and the output o
the system at timé& < Z, andw;, € R" andvy € R? 22 Models in input-output form
are noise/error terms. Tlaliscretestateo(k), describ-

ing in what affine dynamics the system is at tifhe For fixed model orders, andn;, aSwitched AutoRegres-

is assumed to take only a finite number of values, i€§ye eXogenouSARX) model is defined by introducing
o(k) € {1,...,s}, wheres is the number of affine sub-the regression vector

models. In generaly(k) can be a function ok, xy, uy,

or some other external input. The real matricesivectorss = [Up—1 -+ Yf_p, g wiq - uwl_, 17, (4)
Ai, Bi, fi, Ci, Di andg;, i = 1,...,s, having appro- 4y by expressing the outgytas a piecewise affine
priate dimensions, describe each affine dynamics. Henf:e

. ! fiction ofry, namel
model (1) can be seen as a collection of affine mode?s Tk y

with continuous state:;, connected by switches that are Y = 95(1@) ["F] + ek, (5)
indexed by the discrete stai¢k).

The evolution of the discrete state can be described iwhereo(k) € {1,...,s} is the discrete states is the
variety of ways. InJump Linear(JL) modelso(k) is an number of submodel®;, i = 1,...,s, are the matrices

unknown, deterministic and finite-valued input.Jump- of parameters defining each submodel, apcE R? is a
Markov Linear (JML) models, the dynamics af(k) is noise/error term. In the following, the vectoy, = ["}]
modelled as an irreducible Markov chain governed byill be called theextendedegression vector.

the transition probabilitiesr(i,j) = P(o(k + 1) = SARX models represent a subclass of the switched
j } o(k) = i). In PieceWise AffinéPWA) models [66], affine models (1), and can be easily transformed into that
o (k) is given by the rule form by defining the continuous state as
T T T T T
ok)y=1i iff [Z]eq, i=1,...,s, (2) Tr = [Ye1 - Yhong Up—1 -+ Ykop, ] - (6)

. N _ As for the models in state space form, the evolution of the
where{Q;};_, sa complete partitiohof the state-input gjscrete mode (k) can be described in a variety of ways.
domainf} € R""”. The regions); are assumed to bej, pjeceWwise AutoRegressive eXoger@WARX) mod-

convex polyhedra described by els the switching mechanism is determined by a polyhe-
ot dral partition of the regressors domaih C R4, where
O ={[3]eR"™ : H; h] = 0}, (3) d=q-na+p-(ny+1). This means that for these models

the discrete state(k) is given by
where H; € REx(tp+l) 4 — 1 s andf; is the
number of linear inequalities defining thi#h polyhedral
region(;. With abuse of notation, in (3) the symbsl; where{R;};_, is a complete partition oR. Each region
denotes au;-dimensional vector whose elements can IJe; is a convex polyhedron described by
the symbols< and< in order to avoid that the regioif,
overlap over common boundaries. Ri={r eR": H;[{] <} 0} (8)

olk)=141 iff rpeR;y, i=1,...,s, @)

1A collection {A;}:_, is said to be a (complete) partiion @f  ~ WhereH; € Reax(@H) i =1, .5, p; is the number of
R™if Us_; A; = AandA; NA; = 0, Vi # 5. linear inequalities defining th&h polyhedral regiorR;



and, as in (3), the symbot|; denotes au;-dimensional
vector whose elements can be the symboland<. In
general, the shape ® reflects the physical constraints 10
on the inputs and the outputs of the system. For instanc
typical constraints on the output can ;.|| < Ymax
or Hyk - yk—lHoo < Aymaacf Where” ’ HOO is the Infmlty
norm of a vector.

By introducing the piecewise affine map

0l it Hip=p0

f(r) = : : )

with ¢ = [T], it will be useful to rewrite the model de- X o X

fined by (5), (7) and (8) as

Figure 1. Discontinuous PWA map of two variables with= 3
Yp = f(ry) + e (10) regions.

Remark 2.2 The PWA map (9) can be discontinuous

along the boundaries defined by the polyhedra (8), s the number of submodeisand the parameter vectors
shown in Figure 1. Though, for the sake of simplicity» ¢ = L,-..,s. Moreover, estimate the discrete state
in the following the subscripti] will be removed from (k) for k > max{nq,ns}.

the notation=;, one must always take care of the defini- ¢ system generating the data has the structure (5),
tlon_ of the regions, to avoid that_ the PWA map IS mUIt'p|¥in exact algebraic solution to Problem 3.1 is presented
defined over common boundaries of the regiBis in [51, 74, 78] for the case of noiseless data (though the
approach can be amended to work also with noisy data).
The algorithm only requires to fix upper bounals, 7y,

In this section, the identification problem will be firstly2nds on the model orders and the number of submodels,
addressed for input-output models, and then for stafspectively. A description of the algorithm will be given
space models. An overview of the related literature is fl S€ction 5.

nally presented. For the sake of clarity, single input-single!f the model orders are fixed, the problem is to fit the
output systems (i.ep = ¢ = 1) are considered. To thisdata tos hyperplanes. This problem is addressed in the
aim, notationsy;, u; ande, will be used instead of,,, field of data analysis, and several approaches are pro-
uy, andey. The discussion can be straightforwardly exosed wheres is either estimated from data or fixed a
tended to multi input-single output systems (i;e.> 1 Priori. One way to estimateis by solving the following
andq = 1). Multi input-multi output systems (i.e» > 1 Problem.

andg > 1) are also handled by state-space teChniqu?’srbblem 3.2 Givend > 0, find the smallest numberof
while in the input-output case one can identify a model ’

3 Hybrid system identification

o ctors#;, i = 1,...,s, and a mappin k) such
for each output by considering the other outputs as ad\é](le—at ’ s pping: — o (k) su
tional inputg.

P Yk — @p Oy <6 (11)
3.1 Identification problem for SARX models forallk = 7,..., N, wheren = max{nq, ny} + 1.

For SARX models (5), the general identification problem Problem 3.2 consists in findingRartition of the system
reads as follows. of inequalities

Problem 3.1 Given a collection ofV input-output pairs Y — (pge‘ <5 k=n... . N (12)
(yg,ur), k = 1,..., N, estimate the model ordeng and N

2Though this approach may lead in general to a larger number'QFO a Minimum number ofFeasible Subsysten(#IN

regions than necessary, since the overall partition is obtained by inlB_ES prOb_lem)- Th_e bounQ in_(12) is not necessarily
secting the partitions of the single models. given a priori (e.g., if the noise is bounded, and the bound



14 , , , , : : {(-), such ag(e) = €2 or {(¢) = e, the estimation of
the parameter vectots, i = 1,..., s, and of the discrete
stateo (k) can be in fact formulated as the following op-
timization problem:

( N s
emin Z Zf(yk — ©p 0i) Xki

XKL TR i1
S

st Y xgi=1 Vk
=1
Xki € {0,1}  VE,i.

In (13), each binary variablg; describes whether the
data point(yx, rx) is associated to th&h submodel, un-

der the constraint that each data point must be associated
to only one submodel. The discrete staté) can be fi-
nally reconstructed according to the rule:

ok)=14 iff xp;=1. (14)

The optimization problem in (13) ismixed integetpro-
gram that is computationally intractable, except for small
instances. In principle, branch and bound algorithms
could be applied, but the search tree increases exponen-
tially with the number of data&v and the number of sub-
modelss. It is shown in [55] that (13) can be transformed
into a smooth constrained optimization problem by relax-
Figure 2. Number of submodels and mean squared error agng the integer constraints, i.e. by requiring; € [0,1],
function of § for a data set generated by a SARX system with%: ;. The global optimum of the relaxed problem co-
four dis_crete s2tates and Gaussian additive noise with zeEnmijncides with the global optimum of (13). Moreover, an
and variance = = 0.1. integer solution can be readily obtained from the solu-
tion of the relaxed problem. By the same reasoning, it is
is known), rather it can be adjusted in order to find tfso shown that (13) can be transformed into the follow-
desired trade off between fit and accuracy. In fact, tffgg hon-smooth unconstrained optimization problem:

number of submodels

(13)

mean squared error

smallerd, the larger is typically the number of submod- N
els needed to fit the d&awhile on the other hand, the min Y~ min £(yx — @1 0;). (15)
larger 6, the worse is the fit, since larger errors are al- bi o s

lowed. Figure 2 shows two typical plots of the numben order to not get trapped in a local minimum, suitable
of submodels and the Mean Squared Error (MSE) asgtimization techniques must be used to tackle the solu-
function of § when solving Problem 3.2 for a given datéion of the equivalent problems. It is reported in [55] that
set. The choice of a suitableis typically made at the state-of-the-art solvers, such as [38], are able to solve (15)
knee of thes-curve, where also the MSE is kept low. Thén reasonable time at least for sample problems.
MIN PFS problem is NP-hard, and a suboptimal greedyAn alternative to the formulation (13) is the clustering
randomized algorithm to tackle its solution is proposed Hlgorithm proposed in [12], which groups the given data
[1]. points intos clusters by generatingplanes that represent

If s is fixed, the well-known optimization approach local solution to the non-convex problem of minimizing

used in linear system identification (i.e. choose the pre sum of squares of the 2-norm distances between each
rameters of a linear model such that they minimize sorpgint and a nearest plane.

prediction error norm) can be generalized to the identifi- o
cation of SARX models. Given a nonnegative functiod.2 ldentification problem for PWARX models

3In this case overfit may occur, i.e. the model adjusts to the particOr PWARX models defined by (5), (7) and (8), the gen-
ular noise realization. eral identification problem reads as follows.



Problem 3.3 Given a collection ofV input-output pairs y
(yk,ur), k=1,..., N, estimate the model orderg and
nyp, the number of submodels the parameter vectots
and the region®R;,i =1, ..., s.

Note that, in the case of piecewise affine models, ther:
partition of the regressors domain automatically implies
the estimation of the discrete state according to (7).

All techniques specifically developed for the identifica-
tion of PWARX models, assume fixed orders andn,.

The estimation of the model orders can be based on pre-
liminary data analysis, and carried out by algebraic tech-
niques such as [51, 74], or classical model order selectiogure 3. Two hinging hyperplanesy = "¢~ and
techniques (see [50]). Hence, in the following the orde¥s = ' 67, and the corresponding hinge functign =
n, andny, are given, andh = max{ny,ny} + 1. max{p 0", "0}, wherep = [r1 2 1]

The considered identification problem consists in find-
ing the PWARX model that best matches the given dajge identification problem reduces to the following opti-
according to a specified criterion of fit. It involves thenization problem:
estimation of:

N s
e The number of discrete states 1 .
NN Z Zg(yk — 01 0i) Xk, i (17)

e The parameters;, i = 1,..., s, of the affine sub- k=n =1
models.

where/(-) is a given nonnegative function. ffe) = 2,
e The coefficientdd;,i = 1,..., s, of the hyperplanes (17) is an ordinary least-squares problem in the unknowns

defining the partition of the regressors set. 0;.
In[61, 62] the identification problem is reformulated in

This issue also underlies a classification problem Suffréform of mixed integer linear or quadratic programs for

that each data _point is associated tc_) one region, anc{ﬁg class of Hinging-Hyperplane ARX (HHARX) models
the corresponding submodel. The simultaneous optmrﬂ] which are described by

estimation of all the quantities mentioned above is a very

hard, computationally intractable problem. To the best of g = f(r:0) + en
the authors’ knowledge, no satisfactory formulation in the v
form of a single optimization problem has been even pro- Frs0) = ol 6o + Z o max{e] 6;,0} (18)

vided for it. One of the main concerns is how to choose
s in a sensible way. For instance, perfect fit is obtained
by lettings = NN, i.e. one submodel per each data poinyhered = [0 6, ...6;,]", ando; € {—1,1} are fixed a
which is clearly an inadequate solution. Penalties on ifriori. It is easy to see that HHARX models are a subclass
creasings should be therefore introduced in order to keegf PWARX models for which the PWA map (9) is con-
the number of submodels reasonably low, and to avaifluous. The number of submodelss bounded by the
overfit because the model is given too many degreesqaj‘antityzgzo (1}74) which only depends on the length
freedom. An additional difficulty is how to express efpfthe regression vector, and the numbéiof hinge func-
ficiently the constraint that the collectiofR;}’_, must tions (see Fig. 3). The identification problem considered

form a complete partition of the regressors donfdin  in [62] selects the optimal parameter vedidiby solving
The problem becomes easy if the number of discrete

statess is fixed, and the regions (8) are either known or N

fixed a priori. In that case each regression veatprcan 0" = argmin >k — flr 0)17, (19)
be associated to one submodel according to (7). Hence, k=n

by introducing the quantities

. 1 ifr,eR; .
Xk, _{ 0 otherwise " (16)

i=1

wherep = 1 or 2. Assuming a priori known bounds @h
(which can be taken arbitrarily large), (19) can be refor-
mulated as a mixed-integer linear or quadratic program



(MILP/MIQP) by introducing auxiliary continuous vari-general, for each of the submodels. To combine the sub-

ablesz; (k) = max{¢; 0;,0}, and binary variables models they need to be transformed into the same state
basis. In [71] it is discussed how the transitions between
0 if @6, <0 the submodels can be used to this aim. The algorithm re-
0i(k) = 1 otherwise (20) quires a sufficiently large number of transitions for which

the states at the transition are linearly independent.

The MILP/MIQP problems can then be solved for the Heuristics and suboptimal techniques for the identifica-

global optimum. The optimality of the described apion of switched gnd piecewise affin_e state space models
proach comes at the cost of a theoretically very higde summarized in the next subsection.

worst-case computational complexity, which means th?t
. . . 4
it is mainly suitable for small-scale problems (e.g., wheri

It is verhy tclostly 0 ogltaln dzﬁ)' T? bi at:_le t(l) handll% this subsection, an overview of different approaches to
somewnat larger probiems, difterent suboplimal approXs jqentification of switched affine and piecewise affine

matlc_Jtr:Is afre Eropdciged n [63]' :;ang_us extt_enil_ons are aaddels is presented. The description is not intended to be
possibie Tor handiing Non-fixed,, diSCONUNUILES, 9N~ o, 44 stive, and the interested reader is referred to [61] for

. . e
eral PWARX models, efc., again at the cost of Ir‘Creas}':_’\tgditional details. The list of references in [61] is com-

computational complgxny. ] hpleted here with most recent contributions.
Most of the heuristic and suboptimal approaches that

are applicable, or at least related, to the identification 8f4.1 Switched affine models

PWARX models, either assume a fixedr adjusts itera-

tively (e.g., by adding one submodel at a time) in order @mphasis on the identification of SARX models is put in
improve the fit. A few techniques allow for the automatithe contributions [51, 74, 78], where an algebraic proce-
estimation ofs from data. An overview of the related lit-dure for the estimation of the model orders, the number of
erature is presented in Section 3.4. discrete state and the model parameters, is proposed. The
identification of SARX models is also considered in [58],
where it is assumed that switchings occur with a certain

. , , . . probability at each time step, and [72, 73], where identi-
For switched affine models defined by (1), or p'ecew'ﬁ%ation schemes for multi-mode and Markov models are

a_lffine_models defined by (1), (2) and (3), the general iOIe(5"(5)veloped. Switched affine models in state space form
tification problem reads as follows. are considered in [10, 36, 71]. While in [71] the discrete
state is assumed to be known, and the focus is mainly on
determining the state transformations to express all the
der n, the number of submodels, and the 6-tuples submodels in the same state basis (see Se_cthn 3._3), in
(Ai, By, fi,Ci, Diygi), i = 1,..., 5. Moreover, estimate [10] thg number of discrete states and t_he §W|tch|ng times
the discrete state(k), k = 1,..., N, and, if the model is € e_s_tlmgted from.data. In both con.trlbut_lons, sybs_p_ace
identification techniques are used to identify the individ-
ual submodels. In [36], the estimation of the model or-

As for the models in input-output form, the difficulty ofders, the number of submodels and the switching times
Problem 3.4 depends on which quantities are assumedstgarried out by embedding the input-output data into
be known. Nevertheless, while for SARX/PWARX moda higher dimensional space, where the problem becomes
els the identification problem is easy if all the quantitid§e one of segmenting the data into distinct subspaces.

(including the switching sequence) are known, and onlg/z}12 Piccewise affine models

the parameters of the submodels must be estimated,™a

a'lddl.tlonal difficulty arises when dealing .Wlth the Iden'[I\_/Vork on regression with PWA maps can be found in many

fication of state space models. If the switching sequentceI . .
ields, such as neural networks, electrical networks, time-

is known, the matrices of each submodel can still be es- . . . S
?I%r_les analysis, function approximation. Most of the re-

timated by classical techniques such as subspace |denI L
) . . ated approaches assume that the system dynamics is con-
cation methods. However, as pointed out in [71], the ma- : C : .
. . . inuous. Indeed, enabling the estimation of discontin-
trices of the submodels are obtained up to a linear state

. i models is a key feature of algorithm ificall
transformation. This state transformation is different, |1rj1ous odels is a key feature of algorithms specifically

Literature overview

3.3 Identification problem for state space models

Problem 3.4 Given a collection ofV input-output pairs
(yk,ux), k& = 1,...,N, estimate the model or-

piecewise affine, the regioy, i =1, ..., s.



designed for hybrid system identification. This is mo-
tivated by the fact that logic conditions can be repre-
sented through discontinuities in the state-update and out-
put maps of the identified PWA model.

Remark 3.1 If the PWA map is assumed to be contin-
uous, the model parameters and the partition of the do-
main are not independent. For instance, consider the
PWA map (9) withs = 2. If (9) is continuous, at the
switching surface between the two modes it must hold2
thatf, [7] = 6, [7], and hence must satisfy '

(61 —62)" [T] =0. (21)

Equation (21) defines a hyperplane which divides the do-
main into two regions. Each mode of the PWA map is

valid on one side of the hyperplane. Exploiting con-

straints of the type of (21) can be helpful to the identi-

fication process.

Different categories of approaches to PWA system
identification can be distinguished depending on how the
partitioning into regions is done. It follows from the dis-
cussion in Section 3.2 that there are mainly two alterna-
tive approaches: either the partition is defined a priori, or
it is estimated along with the different submodels.

The first approach requires to define a priori the grid-
ding of the domain. For instance, rectangular regions with
sides parallel to the coordinate axes are used in [9], while
simplices (i.e. polytopes witkd + 1 corners, wherel
is the dimension of the domain) are considered in [23]
and [40]. This approach drastically simplifies the estima-"
tion of the linear/affine submodels, since standard linear
identification techniques can be used to estimate the sub-
models, given enough data points in each region. On the
other hand, it has the drawback that the number of regions
and the need for experimental data, grow exponentially
with d. This approach is therefore impracticable for high-
dimensional systems.

The second approach consists in estimating the sub-
models and the partition of the domain either simulta-
neously or iteratively. This should allow for the use of
fewer regions, since the regions are shaped according to
the available data. Depending on how the patrtition is de-
termined, Roll [61] further distinguishes among four dif-
ferent categories of approaches.

1. The first category relies on the direct formulation of
a suitable criterion function to be minimized, such
as (19). The parameters of the affine submodels and.
the coefficients of the hyperplanes defining the parti-
tion of the domain are therefore estimated simultane-
ously by minimizing the criterion function through

numerical methods (e.g., Gauss-Newton search).
The algorithms proposed in [3, 15, 29, 41, 59] fall
into this category. This way of tackling the identifi-
cation problem is straightforward, but has the draw-
back that the optimization algorithm may get trapped
in a local minimum. Techniques for reducing the risk
of getting stuck in a local minimum can be used, at
the cost of increased computational complexity.

The second category of approaches is an extension
of the first one, and gives more flexibility with re-
spect to the number of submodels. All parameters
are identified simultaneously for a model with a very
simple partition. If the resulting model is not sat-
isfactory, new submodels/regions are added, in or-
der to improve the value of a criterion function. In
other words, instead to be solved at once, the overall
identification problem is divided into several steps,
each consisting in an easier problem to solve. The
algorithms proposed in [14, 22, 35, 37, 39] fall into
this category. The algorithm [14] has been analyzed
in [59]. The paper [41] also describes an iterative
method for introducing new partitions on the do-
main, when the error obtained is not satisfactory. As
for the first category of approaches, there is still a
risk to get stuck in a local minimum. When adding
new submodels, one should also take into consider-
ation the risk of overfit.

The third category contains a variety of approaches,
sharing the characteristic that the parameters of the
submodels and the partition of the domain are identi-
fied iteratively or in different steps, each step consid-
ering either the submodels or the regions. The algo-
rithms proposed in [5, 27, 47, 56, 60] start by classi-
fying the data points and estimating the linear/affine
submodels simultaneously. Then, region estimation
is carried out by resorting to standard linear sepa-
ration techniques. In [54], the position of rectan-
gular regions is optimized one by one iteratively.
Then, each rectangular region is divided into sim-
plices, in which affine submodels are finally identi-
fied. In [52], a greedy randomized adaptive search
procedure is used to iteratively and heuristically find
good patrtitions of the domain. Other approaches can
be found in [30] and [31].

The last category of approaches estimates the par-
tition using only information concerning the distri-
bution of the regression vectors, and not the corre-
sponding output values. This means that the domain



is partitioned in such a way that each region comodel which is independent of the switching sequence,
tains a suitable number of experimental data to estind is built by applying a polynomial embedding to the
mate an affine submodel. The algorithms proposetput-output data. Then, estimates of the ARX submodel
in [16, 68] fall into this category. The major draw-parameters are obtained by differentiation. This approach
back of this category of approaches is that, withoatso enables for the estimation of the model orders and
considering the output values, a set of data whi¢the number of submodels.

really should be associated to the same submodel o ) . .
might be split arbitrarily. 4 Data classification and region estimation

It is stressed that most of the aforementioned aps pointed out in Section 3.4, identification methods al-
proaches (e.g, [3, 14, 16, 22, 29, 35, 37, 41, 59]) dswing for discontinuities in the PWA map (9) are best
sume that the system dynamics is continuous, while, e gujted in the context of hybrid systems, since they allow
[5, 27, 47, 56, 60] allow for discontinuities. Moreoverlogic conditions to be represented by abrupt changes in
only few approaches (e.g., those in the second categdhng system dynamics. Most recent contributions, such
[5, 56], and [26], which is an extension of [27]) estimatas [5, 27, 47, 56, 60], have thus focused on regression

also the number of submodels from data. with discontinuous PWA maps. It is interesting to note
_ that all the above mentioned approaches share the idea
3.4.3  Other hybrid model classes to tackle the identification problem by firstly classifying

the data and estimating the affine submodels, and then es-

Recently, some contributions have focused on the Clgggating the partition of the regressors domain. In this
of PieceWise Output Erro(PWOE) models, which aré ge o the data classification step is discussed in view

defined by the equations of the subsequent step of region estimation. Moreover,

a brief overview of linear separation techniques is given,
(22) and issues related to the estimation of the partition from a
wy = f(r), finite number of points are highlighted.

Yk = Wi + €eg

wheref(-) is the PWA map (9), and the regression vector 1 Data classification
7}, 1S built as

T Methods for the identification of PWARX models that
i = [ W1 - Whong Uk k-1 - Uk—p, ] (23) firstly classify the data points and estimate the affine sub-
- S . models, and then estimate the partition of the regressors
In [63] a prediction-error minimization method for piece- . . . . e .
domain, split in practice the identification problem into

wise linear -error predictors i riv nder . e
s¢€ finea output-e orp edictors s derived unde tnﬁe identification of a SARX model, followed by the shap-
assumption that the discrete state is known at each timée

L . . ng of the regions to the clusters of data. In this respect,
step. Estimation of the discrete state is made possi .
. . . L uch methods can be also considered as methods for the
in [46], where a Bayesian method for identification a

PWOE models is proposed. |den.tification.of SARX models, if _the final region esti-
mation step is not addressed. Vice versa, methods de-
3.4.4 Recursive identification approaches veloped for the identification of SARX models, such as
[51, 74, 78], can be used to initialize the procedures for
All the aforementioned algorithms operate in a batdhe identification of PWARX models.
mode, i.e. the model is identified after all the input-output However, in view of the subsequent step of region
data have been collected. Since the computational cogstimation, data classification for the identification of
plexity of batch algorithms depends on the number of df¥VARX models needs to be carefully addressed. The
points, such algorithms may not be suitable for real tini@ain problem to deal with is represented by data points
applications. An online algorithm for the identification othat are consistent with more than one submodel, namely
SARX/PWARX models is proposed in [65]. It exploits alata points lying in the proximity of the intersection of
mixture of recursive identification and pattern recognitidvo or more submodels. Wrong attribution of these data
techniques in order to identify the current parameter v4loints may lead to misclassifications when estimating the
ues. A different approach is pursued in the recent contgelyhedral regions.
butions [32, 75]. A standard recursive identification algo- In order to clarify this point, Fig. 4 shows a data set ob-
rithm is used to estimate the parameters of a “lifted” AR}ined from a one-dimensional PWA model with= 2



4.2 Region estimation

After the data classification step, providing the estimates
of the discrete state(k) € {1,...,s}, it is possible to
form s clusters of regression vectors as

Ai={ry :o(k)=1i}, i=1,...,s. (26)

The problem of region estimation consists in finding a

complete polyhedral partitior[ﬂei}f:1 of the regressors

domainR such thatd; € R; foralli = 1,...,s. The

r polyhedral regions (8) are defined by hyperplanes. Hence,
the considered problem is equivalent to that of separat-

Figure 4. Example showing the problem of intersecting suling s sets of points by means of linear classifiers (hy-

models. The data point denoted by the black circle could perplanes). This problem can be tackled in two different
in principle attributed to both submodels. Wrong attributioways:

yields two non-linearly separable clusters of points.

y = b

a) Construct a linear classifier for each péi;, A;),
: with ¢ # 7.
discrete modes. It assumed that the parameter vegtors
and¢, have been previously estimated, no matter whichy) Construct a piecewise linear classifier which is able

method has been used. If each data p@jptry) is asso- to discriminate among classes.
ciated to the submodet such that the prediction error is
minimized, i.e. according to the rule In the first approach, a separating hyperplane is con-

structed for each paitA4;, A;), i # j. This amounts to
(24) solve s(s — 1)/2 two-classlinear separation problems.
Given two sets4; and A;, i # j, the linear separation
problem is to findw € R? and~ € R such that
the point denoted by the black circle is attributed to the
first submodel. This yields two non-linearly separable wirg+y>0 Vr, €A
plus‘gers of points. It is stressed that the issue addres_sed wiry+v<0 Ve, e A
in this example does not depend on the particular choice
of (24) for associating each data point to one submodehis problem can be easily rewritten as a feasibility prob-
If data classification and parameter estimation are p&m with linear inequality constraints by introducing the
formed by solving Problem 3.2 for a givenh > 0, the quantities
point denoted by the black circle is still attributed to the 1 ifrp e A;
first submodel in this case. The gray area in Fig. 4 repre- k= { -1 ifr, € Aj. (28)
sents the region of all data points satisfying

. . T
" =arg min [y, — ¢ 0,
1=1,...,s

(27)

If a hyperplane separating without errors the points in
- A; from those in4; does not exist (this may happen be-
lyk — ¢ il <0 (25)  cause the setd, and.4; have intersecting convex hulls),
afirst reasonable approach is to look for a hyperplane that
for bothi = 1 andi = 2. These data points are termednaximizes the number of well-separated points (equiva-
undecidablebecause they could be in principle attributelntly, that minimizes the number of misclassified points).
to both submodels. This problem amounts to find a pdiw, v) such that the
The identification procedures [5, 27, 47, 56, 60] dealmber of satisfied inequalities in (27) is maximized, and
with the problem of intersecting submodels in differens known in the literature as MAXimum Feasible Subsys-
ways. Forinstance, an ad-hoc refinement procedure basad (MAX FS) problem. Although the MAX FS problem
on the certainly attributed closest neighbors is proposedsrknown to be NP-hard, several heuristics have been de-
[5], weights for misclassification are introduced in [47)veloped which work well in practice (see [1]). One draw-
and clustering in a feature space is pursued in [27]. Thdsck of the MAX FS approach is that it may not have a
three approaches will be described in Section 5. unique solution, as shown in Fig. 5.
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uous line and the dashed line represent two different solsti

to the problem of minimizing the number of misclassification A A
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separable case is the minimization of a suitable cost func- N A °
tion associated with errors. In the simplest case, this idea " o i
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leads to the following linear program: o oo o P
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min C
Juin, > en o
s.t. zelw Ty +9] > 1 — v (29)
v >0  Vrpe A UA;, Figure 7. Multi-class linear separation of the same data set as

Fig. 6. The partition is complete.
wherec;, > 0 are misclassification weights. If the data
setis linearly separable, and therefore there exiahd~y

such that the constraints Approacha) is computationally appealing, since it does

not involve all the data simultaneously. A major draw-
anlw ey +4] > 1 (30) back is that the estimated regions are not guaranteed to

form a complete partition of the regressors domain when
are satisfied for alr;, € A; U A;, all the auxiliary vari- d > 1, as shown in Fig. 6. This drawback is quite im-
ablesv;, can be taken equal to zero. If the data set portant, since it causes the model to be not completely
not linearly separable, the auxiliary variables allow defined over the whole regressors domain. If the pres-
the constraints (30) to be violated. Since, at the opgnce of “holes” in the partition is not acceptable, one
mum of (29),v;, = max {07 1 — zp[w ry + 7]} for all can resort to approadh). Multi-classlinear separation
ri € A; U Aj, each variabley, can be interpreted as atechniques construat classification functions such that,
misclassification errar The originalRobust Linear Pro- at each data point, the corresponding class function is
gramming(RLP) method proposed in [7] is a particulafmaximal. Classical two-class separation methods such
case of (29), while th&upport Vector Machine(&SVM) as SVM and RLP have been extended to this multi-class

method [19] solves a quadratic program under the saf@se [8, 13]. The resulting methods are calddlticat-
constraints as (29). egory SVM (M-SVM) or MulticategoryRLP (M-RLP),

to stress their ability of dealing with problems involving
Remark 4.1 When the se#; has been linearly separatednore than two classes (see Fig. 7). Multi-class problems
from all the other setsl;, j # i, redundant hyperplanesinvolve all the available data, and therefore apprdgdh
(i.e. not contributing to the boundary of the regi®) computationally more demanding than approagh
can be eliminated through standard linear programming
techniques, so that the number of linear inequalities deflRemark 4.2 Even if all data points are correctly classi-
ing theith region isy; < s — 1. fied, it is not possible in general to reconstruct exactly



cation of SARX models, the other three procedures are
designed for the identification of PWARX models, and
are able to deal with discontinuous dynamics. The basic
steps that each method performs are the estimation of the
discrete stater(k), and the estimation of the parameter
vectors{f;}7_,. Estimation of the polyhedral partition
{R;}{_, of the regressors domain, if needed, can be car-
ried out in the same way for all methods by resorting to
the techniques described in Section 4.2.

€, (prediction error)

5.1 Algebraic procedure

0 ‘ 20 0 60 80
k (time) The method proposed in [51, 74, 78] approaches the
Figure 8. Distinct spikes show up in the plot of the predictiofidentification of SARX models as an algebraic geometric
errors due to discontinuity of the PWA map, and wrong assigRtoblem. It provides a closed-form solution to the identi-
ment of the regression vectors because of errors in estignatlication problem that is provably correct in the absence of
the switching surfaces. noise.
The key idea behind the algebraic approach is to view
Ige identification of multiple ARX models as the identi-

the regions from a finite data set. If the true system tl

characterized by continuous dynamics, small differencfé%at'on of a single, "lifted” ARX mode| that simultane-

in hyperplane orientations are not expected to alter sign?l':ISIy encodes all the ARX submodels and does not de-

icantly the quality of the model. On the other hand, eveﬁ?nd on the switching sequence. The parameters of the
ARX model can be identified through standard

small errors in shaping the surfaces along which the trﬂg[ed"

system is discontinuous, may determine large predictilﬂ'?]e‘lf’lr |dgngggatlon tschnlques_after applylngha polyno-
errors, if a regression vector falling close to a disconfii@l €mbedding to the regression vectors, The parame-

nuity, is associated to the wrong submodel. Such errdfLs of the original ARX submodels are then given by the

can be typically detected and corrected a posteriori duriﬂﬁ”vat've_s of th's_ polyqomlal.

the validation or the operation of the model, as shown inAssumlng for simplicity that the number of submodels
Fig. 8. If distinct spikes show up in the prediction errof 2d the model orders, andn, are known (these as-
plot, the corresponding data points can be re—attributéd',mpt'onS will be subsequently removed), the algebraic

and the augmented data set used to re-estimate theplrgpedure works as follows. If the data are generated by
model (5) withe, = 0 (noiseless case), each data pair

ions.

g (yx, 7)) Satisfies

5 Four procedures for the identification of yk — 0] o =0 (31)
SARX/PWARX models , . .

for somed;, i = 1,...,s. Hence, the following equality

In this section, four procedures for the identification dtolds for allk: s

SARX/PWARX models are briefly discussed, namely the 11 ®/ 2) (32)

algebraic procedure [51, 74, 78], the clustering-based i=1

procedure [27], the Bayesian .procedure [47], and tm‘\erebi =1 H;I' I andzy = [y (’0; ]T. Equation (32)
bounded-error procedure [5]. Itis stressed that other tegh. e thehybrid decoupling constrainsince it is in-

niques are available (see Section 3.4). The ones c@@pendent of the switching sequence and the mechanism

sidered here are more closely related to the aCtiVitieSé)énerating the transitions. In view of (32), thgbrid de-
the authors of this paper, and have been successfully €8upling polynomiais defined as '

ploited in several real applications, such as identification
of the electronic component placement process in pick-

s

_ Ty _ 2T
and-place machines [5, 43, 47], modelling of a current ps(2) = H (bi 2) = h vs(2), (33)
transformer [27], traction control [11], and motion seg- =1

mentation in computer vision [76, 77]. which is a homogeneous polynomial of degeei@ z =

While the algebraic procedure focuses on the identifiz; ... zx }T, K = ng + ny + 3. Note that (33) can



be written as a linear combination of all tiés;(K) = the submodels can be obtained by clustering the local pa-
(stE-=1) monomials of degree in K variables. Such rameter vectors.

monomials are stacked in the vectar z) according to  The clustering-based procedure works as follows. The
the degree-lexicographic order. The vedtoe RM:(K)  positive integer: is a fixed parameter.

contains the so-calledybrid model parametersand en-
codes the parameter vectors of theubmodels. Since
(32) holds for allk, the vector can be estimated by solv-
ing the linear systefn

e Local regression.Fork = n,..., N, a local data
setCy, is built by collecting(yx, ) and the data
points(y;, ;) corresponding to the— 1 regression
vectorsr; that are closeStto r;. Local parameter

Ly(K)h =0, (34) vectorsf-° are then computed for each local data
setC, by least squares. For analysis purposes, local
whereL,(K) = [vs(za) vs(zat1) ... vs(zn)]". Once data sets containing only data points generated by
h has been computed, the vectbysan be reconstructed  the same submodel are referred tgpass, otherwise
as they are calleanixed
b — Dps(zki) (35) ] )
" 110 ...0]Dps(zx,) e Construction of feature vectorsEach data point

(yk, 1) is mapped onto the feature vector
whereDp;(z) = %, andz, is a data point generated
by theith ARX submodel, which can be chosen automati- &G=[00%)"my 17, (37)
cally oncep,(-) is known [78]. Given the;’s (and conse-
guently thed;’s), the discrete state is estimated according
to the rules (k) = i*, with i* given by (24). As discussed o Clustering. Feature vectors are partitioned into
in Section 4.1, enhanced classification rules can be used groups{F;};_, by applying a “K-means’-like al-
by incorporating additional knowledge about the switch-  gorithm exploiting suitably defined confidence mea-
ing mechanism (e.g., PWARX models), when available.  sures on the feature vectors. The confidence mea-

The linear system (34) has a unique solution (requiring  sures make it possible to reduce the influence of out-
that the first component df is equal to 1) when the data liers and poor initializations.

are sufficiently exciting, and, n, andn; are known ex- S _
actly. If s is not known, it is shown in [78] that it can be ® Parameter estimatiorSince the mapping of the data

wherem, = %Z(w) r is the center of},.

eCy,

estimated a5 points onto the feature space is bijective, data points
are classified into clustefsD; }?_, according to the
s =argmin{s : rank(L;(K)) = M;(K) —1}. (36) rule
(yr,rr) €Dy iff & € Fi. (38)

The algebraic procedure described above can be
amended when only upper boungls:, andn, for s, n,
and ny, respectively, are available. In those cases, the
procedure allows for the estimation of all the unknown The clustering-based procedure requires that the model
quantities. More details can be found in [51, 74]. ordersn, andn,, and the number of submodeisare
fixed. The parameter, defining the cardinality of the lo-
cal data sets, is the main tuning knob. In practical use, the

?thod is expected to perform poorly if the ratio between

. : m
The clustering-based procedure [27] exploits the fact t . o
the PWA map (9) is locally linear. If the data are geneqr%e number of mixed and pure local data sets is high. The

. . . number of mixed local data sets increases withlence,
ated by (10), there likely exist groups of neighbor regres- . .
: : . it is desirable to keep as small as possible. On the other
sion vectors belonging to the same region (and the sa

d, when the noise level is high, large values nfay
submodel). Parameter vectors computed for these sma . : .
be‘&needed in order to filter out the effects of noise.

A parameter vectdt; is estimated for each data clus-
ter D; by weighted least squares.

5.2 Clustering-based procedure

local data sets should resemble the parameter vector 6f . )
the corresponding submadel. Hence, information abou n important feature of the clustering-based procedure
' ’ IS its ability to distinguish submodels characterized by the

“The solution must be intended in a least-squares sense in the néigyne parameter vector, but defined in different regions.

case. This is possible because the feature vectors contain also
SEvaluation of (36) in the noisy case requires to introduce a thresh-

old for estimating the rank aof; (K). S5According to the Euclidean norm.




information on the location of the local data sets. A modRdfs of the other parameter vectors remain unchanged,
ification to the clustering-based procedure is proposedii@. py,(-; k) = py,(-;k — 1) for i # *. For the numer-
[26] to allow for the simultaneous estimation of the numeal implementation of the described algorithm, particle
ber of submodels. The clustering-based procedure is afiléering algorithms are used [2]. After the parameter es-
lyzed in [28], where it is shown that optimal classificatiotimation phase, each data point is finally attributed to the
can be guaranteed under suitable assumptions in the pragede that most likely generated it.

ence of bounded noise. A software implementation of theTo estimate the regions, a modification of the standard

clustering-based procedure is also available [24]. Multicategory RLP (MRLP) method [8] is proposed in
_ [47]. If a regression vector attributed to modends up
5.3 Bayesian procedure in the regionR; (this may happen, e.g., in the case of in-

) ] . tersecting submodels, see Section 4.1 and Fig. 4), and the
The Bayesian procedure [42, 47] is based on the IOIeap‘i’&babilities that the corresponding data point is gener-

exploiting the available prior knqwledge about the mOd%?ed by mode and modej are similar, misclassification
and the parameters of the hybrid system. The pParamelgh id not be penalized highly. To this aim, for each data

vectorsd; are treated as random variables, and describ&g‘nt (y,71,) attributed to mode, the price for misclas-
through their probability density functionpdfs) py, (-). sification7 into modej is defined as
A priori knowledge on the parameters can be supplied

to the procedure by choosing appropriate prior parame-
ter pdfs. Various parameter estimates, such as expecta- p((yk,ri) | o(k) =37)
tion or maximum a posteriori probability estimate, can be . .

easily obtained from the parametetfs. The data clas- where p((ye, 74) | o(k) = () is the likelihood that
sification problem is posed as the problem of finding thé*’ r_’f) was .gen_eraf[ed by _mooPe Note_t.h_at the price
data classification with the highest probability. Since thfgr misclassification is zero if the probabilities are exactly

problem is combinatorial, an iterative suboptimal alg&qual' Prices for misclassification are plugged into the

rithm is derived. It is assumed that the probability densiMRtp methqd. q , hat th del ord
functionp,(-) of the additive noise terray is given. The Bayesian procedure requires that the model orders

Data classification and parameter estimation are carrf@dand”b’ and the number of submodeisre fixed. The

out by sequential processing of the collected data poinrf%(.)St important tuning parameters are the prior parameter

In each iteration, thedf of one of the parameter vector?dfsmi('; Q)’ and thepdf p(-) of the error term. In [‘.16] -
is updated. Lepy, (-; k) denote thepdf of 6; at iteration the Bayesian approach has been extended to the identifi-

k, when the data poirly, r1) is considered. The condi-Cation of piecewise output error models.
tional pdf p((yx, 74) | o (k) = 7) is given by 5.4 Bounded-error procedure

P((yk, i) [ o (k) = i) =

Vi,j(rk) = log p((ylmrk) ’ O'(k) - Z) (43)

Inspired by ideas from set-membership identification
= /p((yk,’r'k) | é) pgi(é; E—1) de, (39) (see, e.g., [63] and references therein), the main feature
=9 of the bounded-error procedure [5, 57] is to impose that

the errore(k) in (10) is bounded by a given quantify> 0

where®; is the set of possible values fy, and for all the samplesgyy, r1) in the estimation data set, i.e.

p((yr,71) | 0) = pe(yr — 0 o). (40) _
_ _ _ _ lye — f(ri)| <6, Vk=n,...,N. (44)
The discrete state corresponding(ig, r) is estimated
aso (k) = i*, where Hence, the bounded-error procedure fits a PWARX model

. . satisfying (44) to the data, without any assumption on the
= arg ig}é??sp(@k’ ri) | o(k) =1).  (41) system generating the data.

o Since any PWARX model satisfying the bounded-error
condition (44) is feasible, an initial guess of the number of
submodelss is obtained by addressing Problem 3.2. The
po,. (05 k) = solutiorf of Problem 3.2 provides also a raw data classifi-

(k) | 0) pa,. (65K — 1) 42) cation that suffers two drawbacks. The first one is related

[ p((yk, k) | 0) po,. (O;k — 1) do 7In [5] a method for the solution of Problem 3.2 is proposed to
O, ! enhance the performance of the greedy randomized algorithm [1].

Then, the assignment @f;, ;) to modei* is used to
update thepdf of 8;~ by the Bayes rule, i.e.




to the suboptimality of the method used to tackle Prob-5 Discussion

lem 3.2, implying that it is not guaranteed to yield the

minimum number of submodels. The second one is rEbe four identification procedures described in this sec-

lated to the problem afindecidabledata points (see Sec-tion are compared and discussed in [44] (see also [45]).

tion 4.1), implying that the cardinality and the composSpecific behaviors of the procedures with respect to clas-

tion of the feasible subsystems may depend on the org#ication accuracy, noise level, and tuning parameters are

in which they are extracted from (12). pointed out using simple one-dimensional examples. The
To deal with the aforementioned drawbacks, an itergrocedures are also tested on the experimental identifi-

tive refinemenprocedure is applied. The refinement prazation of the electronic component placement process in

cedure alternates between data reassignment and pardig&-and-place machines.

ter update. If needed, it enables the reduction of the numFrom the comparison, it comes out that the algebraic

ber of submodels. For given positive threshaldand3, procedure is well suited when the system generating the

submodels and; are merged ify; ; < «, where data can be accurately described as a switched affine
model, and moderate noise is present. The main fea-

P 10; — ;1 : (45) lures of the algebraic procedure are that it can handle the

7 min{[|0s]], 16,11} cases with unknown model orders and unknown number

and|| - || is the Euclidean norm. Submodeiks discarded qf §ubmodels, and it dpes not require any fprm of ini-
tialization. However, noise and/or nonlinear disturbances

if the cardinality of the seD; of data points classified toaffectin the data mav cause poor identification results
mode: is less thandN. Data points that do not satisfy 9 y P '

(44) are discarded anfeasibleduring the classification When trying to identify a PWARX model using the data

process, making it possible to detect outliers. In [5] pgl_assmcatlon obtained from the algebraic procedure, one

. o must be aware that the minimum prediction error classi-
rameter estimates are computed by theprojection es- . . -
timator. i.e fication rule may lead to wrong data association. In such

cases, it is advisable to use one of the classification meth-

0; = argmin max |y — ¢;9,7 (46) ods employed by other procedures.
0 (yk,rr)ED; The clustering-based procedure is well suited when

but any other projection estimate, such as least squafB€re i no prior knowledge on the physical system, and
can be used [53]. one needs to identify a model with a prescribed structure

The bounded-error procedure requires that the modigf- the number of submodels and the model orders are
ordersn, andn; are fixed. The main tuning parameter iglven). Ideptlflcatlon using the clustering-based proce-
the bounds. As discussed in Section 3.1, the largethe dure is straightforward, as only one parameter has to be

smaller the required number of submodels at the pricetyf'€d- However, poor results can be obtained when the
a worse fit of the data. The optional parametemnd 3 model orders are overestimated, since distances in the fea-

if used, also implicitly determine the final number of sugt'® space become corrupted by irrelevant information.
models returned by the procedure. Another tuning param- "€ Bayesian procedure is designed to take advantage

eter is the number of closest neighbors used to attribut8' Prior knowledge and physical insight into the opera-

undecidable data points to submodels in the refinemdff? modes of the system (like in the pick-and-place ma-
step. chine identification [47]). Another interesting feature is

the automatic computation of misclassification weights to
Remark 5.1 The bounded-error formulation (44) is easse plugged into the linear separation techniques used for
ily extended to multi-output models. In this case, the outegion estimation. As a major drawback, poor initializa-
put of the system ig, € R?, the PWA map (9) is - tion may lead to poor identification results.
valued function, and (44) is replaced by The bounded error procedure is well suited when no
prior knowledge on the physical system is available, and
(47) one needs to identify a model with a prescribed accuracy

where|- || is the infinity norm of a vector. The bounded!(€-9-» 10 @pproximate nonlinear dynamics in each oper-

error procedure [5, 57] is then applicable also to the ca%téon mode). Tuning parameters allow to trade-off the

g > 1, provided that Problem 3.2 is reformulated anondel accuracy with the model complexity, expressed in

solved accordingly. The interested reader is referredfgMs Of the mean squared error and the number of sub-
[57]. models, respectively. However, finding the right combi-

”yk_f(rk’)HOOSé? Vk:ﬁa"'aNa



nation of the tuning parameters is seldom straightforwamtocess at hand is needed. Hence, techniques for obtain-
and several attempts are often needed to get a satisfactogyaccurate models are of paramount importance. Most
model. effort in the area of hybrid system identification has re-
It is stressed that mixing the features of the four proceently focused on identifying switched affine and PWA
dures could still enhance their effectiveness. In particulanodels. In the first part of the paper, different formula-
_ ... . tions of the identification problem for these model classes
e The algebraic procedure can be used to initialize i, o yeen reported, and an overview of the related liter-
other three procedures by providing estimates of tg?ure has been proposed. Although work on regression
model orders and the number of submodels. with continuous PWA maps can be found in the exten-

By exploiting the idea of clustering the feature veciVe literature on nonlinear black-box identification, most

tors, the clustering-based procedure is able to distfi§c€nt contributions aimed at the identification of mod-

guish submodels characterized by the same para["ﬂﬁ with a hybrid gnd discontinuous stru.cture. Among
eter vector, but defined in different regions. This §€S€, an algebraic procedure, a Bayesian procedure, a

pitfall of both the Bayesian and the bounded-err&iustering-based procedure, and a bounded-error proce-

classification procedures. Since these proceduresdti€ have been successfully applied in several real prob-
not exploit the spatial location of the submodeldems. The four procedures have been the topic of the sec-

data points generated by the same parameter ve@Bf! Part of the paper. . _
in different regions are classified as a whole. This It has emerged that a fundamental issue in PWA system

may lead to non-linearly separable clusters. cluilentification is how to keep the computational complex-

tering ideas contained in the clustering-based prodd.and the model complexity (number of model parame-
dure can be extended to the other two procedures§S) 1ow. The computational complexity for a given algo-

order to detect and split the clusters correspondifif!™ IS a function of the number of regions/submodels,
to such situations. the number of experimental data, and the model orders.

Hence, there are many trade-off situations when compar-
e The Bayesian procedure includes the computationiagy different methods and tuning parameters for given al-

misclassification weights to be plugged into the lirgorithms. For instance, it has been pointed out that prior
ear separation techniques used for region estimatigridding of the domain drastically simplifies the identi-
This feature can be extended to the clustering-badgshtion problem, but the numbers of regions and data
and the bounded-error procedures. In the latter caseeded to get good results increase exponentially with the
for each data pointyy, 1) attributed to mode, the model orders. Hence, this approach may be good for low-
price for misclassification into modecould be de- dimensional systems.

fined as Another trade-off issue concerns model complexity and
lyr — 0] 74| quality. The more degrees of freedom are allowed in the
vij(re) = Alog max{1, +}’ (48) model structure, the closer the model can approximate
the experimental data. However, since data are typically

where) > 0 is a scale factor. corrupted by noise, too much flexibility might cause the

model to adjust to the noise realization, thereby causing
e The bounded-error procedure can be used to gugggrfit. This is indeed a general problem of system identi-
the number of submodels, especially when the dyzation, occurring not only for piecewise affine systems.
namics in each operation mode of the true system isseyeral issues still remain open. Though, given the
nonlinear, and more modes than the true system @& ivalence between PWA models and other classes of
thus required to accurately approximate all the NoRyhrid models, PWA system identification techniques can
linear dynamics. be regarded as general hybrid system identification tech-
niques, the development of specific identification tools for
different hybrid model classes would be advisable. In this

Hybrid system identification is an emerging field whos§@Y: the identification process could take advantage of

importance grows with the potential new applications &vallable prior knowledge that cannot be easily expressed

hybrid systems in real life. In order to use the numel? Ithel F;WA for_mall|(sm. led q hvsics in th
ous tools for analysis, verification, computation, stabil- ncluding prior knowledge and system physics in the

ity, and control of hybrid systems, a hybrid model of th@Ientification process leads to the broader perspective

6 Conclusions
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