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Abstract. This paper presents an approach to defining distances between non-
linear and hybrid dynamical systems based on formal power series theory. The
main idea is that the input-output behavior of a wide range of dynamical systems
can be encoded by rational formal power series. Hence, a natural distance be-
tween dynamical systems is the distance between the formal power series encod-
ing their input-output behavior. The paper proposes several computable distances
for rational formal power series and discusses the application of such distances to
various classes of nonlinear and hybrid systems. In particular, the paper presents
a detailed discussion of distances for stochastic jump-linear systems.

1 Introduction

In this paper, we present several possible definitions of a computable distance for ra-
tional formal power series and their representations. The main motivation for studying
distances between rational formal power series is that the input-output behavior of var-
ious classes of dynamical systems can be encoded by rational formal power series. For
example, linear and bilinear systems, switched linear and bilinear systems, finite state
hidden Markov models, and linear and bilinear hybrid systems [1–5]. Therefore, one
can define a distance between two dynamical systems as the distance between the for-
mal power series that encode the input-output behavior of the systems. By construction,
the proposed distances will be invariant under any transformation that preserves the
input-output behavior of the systems. In addition, restricting attention to rational for-
mal power series will enable us to compute the distances by using the rational represen-
tations of the formal power series. In general, such rational representations can easily
be computed from the dynamical system. Another advantage of the proposed approach
is that it connects well with identification and realization theory, because several iden-
tification methods are based on realization theory and hence on finding an appropriate
rational representation of a family of formal power series.

Endowing the space of dynamical systems with a topology and a metric not only
is an interesting theoretical exercise, but also has several interesting applications. A
classical application is in system identification, more precisely, in finding a continuous
parameterization and suitable canonical forms of dynamical systems [6–9]. Another im-
portant application comes from the field of computer vision, where one is interested in
automatically recognizing different types of motions in a video sequence. That is, given
a sequence of images depicting moving objects and people at different time instances,
we would like to determine automatically the object class, the person identify, and the
type of motion we see in the video sequence. For instance, we would like to determine



whether the video sequence depicts a running person or a galloping deer. One of the
traditional mathematical tools for recognition and classification is machine learning.
However, many of the classical machine learning techniques require a metric on the ob-
servation space. Since our observations are video sequences depicting multiple motions,
it is rather natural to model such videos as the output of one or more dynamical systems,
where each dynamical system describes a particular motion. Our observations are then
outputs of dynamical systems, or, after an identification procedure, dynamical systems
themselves. Therefore, in order to apply machine learning algorithms for recognizing
motions in video sequences, one needs to define a suitable metric and topology on the
space of dynamical systems. The study of topological and metric properties of dynam-
ical systems from this point of view is a relatively recent development, see [10–13].

The outline of the paper is as follows. Section 2 presents the background material on
the theory of rational formal power series. Section 3 presents the definition of several
possible distances for rational formal power series and their rational representations.
Section 4 discusses the relationship between formal power series and various classes of
dynamical systems. In particular, it presents a detailed description of this relationship
as well as a distance for stochastic jump-linear systems. Section 5 discusses the rela-
tionship between the results of the current paper and earlier results in the literature, as
well as issues concerning the practical computability of the defined distances.

2 Rational Power Series

This section presents several results on formal power series that will be used throughout
the rest of the paper. The material in Subsections 2.1 and 2.2 can be found in [1]. The
results in Subsection 2.3 are, to the best of our knowledge, new. For more details on the
classical theory of rational formal power series, the reader is referred to [14, 3, 15].

2.1 Definition and Basic Theory

Let X be a finite set. We will refer to X as the alphabet. The elements of X will be
called letters, and every finite sequence of letters will be called a word or string overX .
Denote by X∗ the set of all finite words from elements in X . An element w ∈ X∗ of
length |w| = k ≥ 0 is a finite sequence w = w1w2 · · ·wk with w1, . . . , wk ∈ X . The
empty word is denoted by ε and its length is zero, i.e. |ε| = 0. The concatenation of two
words v = v1 · · · vk and w = w1 · · ·wm ∈ X∗ is the word vw = v1 · · · vkw1 · · ·wm.

For any two sets J and A, an indexed subset of A with the index set J is simply a
map Z : J → A, denoted by Z = {aj ∈ A | j ∈ J}, where aj = Z(j) for all j ∈ J .
Notice that we do not require the elements aj to be all different.

A formal power series S with coefficients in R
p is a map S : X∗ → R

p. We will call
the values S(w) ∈ R

p, w ∈ X∗, the coefficients of S. We denote by R
p � X∗ � the

set of all formal power series with coefficients in R
p. Consider the indexed set of formal

power series Ψ = {Sj ∈ R
p � X∗ �| j ∈ J} with an arbitrary (not necessarily finite)

index set J . We will call such an indexed set of formal power series a family of formal
power series. A family of formal power series Ψ is called rational if there exists an
integer n ∈ N, a matrix C ∈ R

p×n, a collection of matrices Aσ ∈ R
n×n where σ ∈ X



runs through all elements of X , and an indexed set B = {Bj ∈ R
n | j ∈ J} of vectors

in R
n, such that for each index j ∈ J and for all sequences σ1, . . . , σk ∈ X , k ≥ 0,

Sj(σ1σ2 · · ·σk) = CAσk
Aσk−1

· · ·Aσ1
Bj . (1)

The 4-tupleR = (Rn, {Aσ}σ∈X , B, C) is called a representation of Ψ , and the number
n = dimR is called the dimension of the representation R. If S ∈ R

p � X∗ � is a
single power series, then S will be called rational if the singleton set {S} is rational, and
by a representation of S we will mean a representation of {S}. A representation Rmin

of Ψ is called minimal if all representations R of Ψ satisfy dimRmin ≤ dimR. Two
representations of Ψ , R = (Rn, {Aσ}σ∈X , B, C) and R̃ = (Rn, {Ãσ}σ∈X , B̃, C̃), are
called isomorphic, if there exists a nonsingular matrix T ∈ R

n×n such that T Ãσ =
AσT for all σ ∈ X , T B̃j = Bj for all j ∈ J , and C̃ = CT .

Let R = (Rn, {Aσ}σ∈X , B, C) be a representation of Ψ . In the sequel, we will use
the following short-hand notation Aw

.
=Awk

Awk−1
· · ·Aw1

for w = w1 · · ·wk ∈ X∗.
Aε will be identified with the identity map. The representation R is called observable
if OR = {0} and reachable if dimR = dimWR, where WR and OR are the following
subspaces of R

n

WR = Span{AwBj | w ∈ X∗, |w| ≤ n− 1, j ∈ J} and OR =
⋂

w∈X∗,|w|≤n−1

kerCAw. (2)

Observability and reachability of representations can be checked numerically. One can
formulate an algorithm for transforming any representation to a minimal representation
of the same family of formal power series (see [1] and the references therein for details).

Let Ψ = {Sj ∈ R
p � X∗ �| j ∈ J} be a family of formal power series,

and define the Hankel-matrix HΨ of Ψ as the matrix HΨ ∈ R
(X∗×I)×(X∗×J), where

I = {1, 2, . . . , p} and (HΨ )(u,i)(v,j) = (Sj(vu))i. That is, the rows of HΨ are indexed
by pairs (u, i) where u is a word over X and i is and integer in the range 1, . . . , p.
The columns of HΨ are indexed by pairs (v, j) where v is a word over X and j is an
element of the index set J . The element of HΨ whose row index is (u, i) and whose
column index is (v, j) is simply the ith row of the vector Sj(vu) ∈ R

p. The following
result on realization of formal power series can be found in [3, 15, 1].

Theorem 1 (Realization of formal power series) Let Ψ = {Sj ∈ R
p � X∗ �| j ∈

J} be a set of formal power series indexed by J . Then the following holds.
(i) Ψ is rational ⇐⇒ rankHΨ < +∞.
(ii) R is a minimal representation of Ψ ⇐⇒ R is reachable and observable ⇐⇒

dimR = rankHΨ .
(iii) All minimal representations of Ψ are isomorphic.
(iv) If the rank of the Hankel matrix HΨ is finite, i.e. n = rankHΨ < +∞, then one

can construct a representationR = (Rn, {Aσ}σ∈X , B, C) of Ψ using the columns
of HΨ ( see [1] for details).

2.2 Realization Algorithm
In this subsection, we present an algorithm for computing a minimal representation of a
family of formal power series Ψ from finite data, more precisely, from a finite left-upper



block of the infinite Hankel matrix HΨ . The theorem guaranteeing the correctness of
the algorithm, Theorem 2, will also enable us to define a distance between families of
rational formal power series.

Let Ψ = {Sj ∈ R
p � X∗ �| j ∈ J} be a family of formal power series indexed

by a finite set J . Let HΨ,N,M ∈ R
IM×JN be a finite upper-left block of the infinite

Hankel matrix HΨ obtained by taking all columns of HΨ indexed by words over X of
length at most N , and all the rows of HΨ indexed by words of length at most M . More
specifically, HΨ,N,M ∈ R

IM×JN is the matrix whose rows are indexed by elements of
the set IM = {(u, i) | u ∈ X∗, |u| ≤ M, i = 1, . . . , p}, whose columns are indexed
by elements of the set JN = {(v, j) | j ∈ J, v ∈ X∗, |v| ≤ N}, and whose entries are
defined by (HΨ,N,M)(u,i),(v,j) = (Sj(vu))i.

The following algorithm computes a representation of Ψ from HΨ,N+1,N .

Algorithm 1 [16] (Rr, {Aσ}σ∈X , B, C) = ComputeRepresentation(HΨ,N+1,N)

1: Let r = rank HΨ,N,N and choose j1, . . . , jr ∈ J , i1, . . . , ir ∈ {1, . . . , p},
v1, . . . , vr, u1, . . . , ur ∈ X∗ such that for all l = 1, . . . , r, |vl| ≤ N and |ul| ≤ N ,
and the minor T = ((Sjk

(vkul))il
))l,k=1,...,r ∈ R

r×r of HΨ,N,N is of rank r.
2: For each symbol σ ∈ X let Aσ ∈ R

r×r be such that

AσT = Zσ where Zσ = ((Sjk
(vkσul))il

)l,k=1,...,r.

Let B = {Bj | j ∈ J}, where for each index j ∈ J , the vector Bj ∈ R
r is given by

Bj = T
−1((Sj(u1)i1 ), (Sj(u2))i2 , . . . (Sj(ur))ir )T

.

Let C ∈ R
p×r be given by C =

ˆ

C1 · · · Cr

˜

, where Cl = Sjl
(vl), for l = 1, . . . , r.

Theorem 2 ([1, 3, 16]) If rankHΨ,N,N = rankHΨ , then the representation R̃N of
Ψ returned by ComputeRepresentation is minimal. Furthermore, if rankHΨ ≤ N ,
or, equivalently, there exists a representation R of Ψ , such that dimR ≤ N , then
rankHΨ = rankHΨ,N,N , hence R̃N is a minimal representation of Ψ .

From a computational point of view, algorithm ComputeRepresentation may not be
the best way to compute a representation of Ψ . However, we have chosen to present it,
because it makes theoretical reasoning easier. The algorithm is essentially a reformu-
lation of the construction presented in [16]. An alternative algorithm, which uses the
factorization of the finite Hankel-matrixHΨ,N,N+1 can be found in [1].

2.3 A Notion of Stability for Formal Power Series

Since our ultimate goal is to compare formal power series, we might want to restrict
our attention to formal power series that are stable in some sense. In this subsection,
we consider the notion of square summability for formal power series, and translate the
requirement of square summability into algebraic properties of their representations.



Consider a formal power series S ∈ R
p � X∗ �, and denote by || · ||2 the

Euclidean norm in R
p. Consider the following sequence,

Ln =

n∑

k=0

∑

σ1∈X

· · ·
∑

σk∈X

||S(σ1σ2 · · ·σk)||22. (3)

The series S will be called square summable, if the limit limn→+∞ Ln exists and is
finite. We will call the family Ψ = {Sj ∈ R

p � X∗ �| j ∈ J} square summable, if
for each j ∈ J , the formal power series Sj is square summable.

We now characterize square summability of a family of formal power series in terms
of the stability of its representation. Let R = (Rn, {Aσ}σ∈X , B, C) be an arbitrary
representation of Ψ = {Sj ∈ R

p � X∗ �| j ∈ J}. Assume that X = {σ1, . . . , σd},
where d is the number of elements of X , and consider the matrix

ÃR =




Aσ1
⊗Aσ1

Aσ2
⊗Aσ2

· · · Aσd
⊗Aσd

Aσ1
⊗Aσ1

Aσ2
⊗Aσ2

· · · Aσd
⊗Aσd

...
...

...
...

Aσ1
⊗Aσ1

Aσ2
⊗Aσ2

· · · Aσd
⊗Aσd


 ∈ R

n2d×n2d, (4)

where ⊗ denotes the Kronecker product. We will call R stable, if the matrix ÃR is sta-
ble, i.e. if all its eigenvalues λ lie inside the unit disk (|λ| < 1). We have the following.

Theorem 3 A rational family of formal power series is square summable if and only if
all minimal representations are stable.

Notice the analogy with the case of linear systems, where the minimal realization of a
stable transfer matrix is also stable.

3 Distances for Rational Power Series

The goal of this section is to present a notion of distance for families of rational formal
power series, or equivalently, a distance between their minimal representations. The
choice of a distance is by no means unique, in fact, we will suggest several different
distances. The common feature of all these distances is that they all can be computed
either from a minimal representation of the family, or from a big enough but finite set
of values of the formal power series constituting the families.

Through the section, we will fix the space of coefficients R
p and the alphabet X .

Also, we will fix a finite index set J and consider the space of all rational families of
formal power series indexed by J , i.e. PJ = {Ψ = {Sj ∈ R

p � X∗ �| j ∈ J} |
Ψ is rational }. Define the subset PJ,N = {Ψ ∈ PJ | rankHΨ ≤ N} of all rational
families of formal power series whose Hankel-matrix is of rank at most N . Then it is
easy to see that PJ,N ⊆ PJ,K for all N ≤ K, and PJ =

⋃+∞
N=0 PJ,N .



3.1 Distances Based on Truncation

We will first consider distances based on truncation, that is distances that compare
finitely many values of formal power series.

Fix a natural number N , and denote by m = card(J) the cardinality of J . Since J
is finite, without loss of generality, we can assume that J = {1, . . . ,m}. Assume that
the alphabet X is of the form X = {z1, . . . , zd} where d is the number of elements
of X . For each N ≥ 1, let FN,J : R

mpN × R
mpN → R be a distance on R

mpN and
denote by F = {FN,J | N ∈ N} the family of distances.

We now define a pseudo-metric on PJ using the family of distances F . The main
idea is the following. If S ∈ R

p � X∗ � is a formal power series, then it can be
viewed as a map S : X∗ → R

p on words overX . There areM(N) =
∑2N+1

j=0 dj words
of length at most 2N+1 over the alphabetX , if X has d elements. Hence, we can view
the restriction of the map S to the set of all words of length at most 2N + 1 as a vector
in R

M(N)p. We can then define the distance dF,N,J(Ψ1, Ψ2) between two families of
formal power series indexed by J , Ψ1 and Ψ2, as the distance FM(N),J (φ1, φ2) between
the vectors φ1 and φ2 in R

mpM(N) representing the restriction of the elements of Ψ1

and Ψ2, respectively, to the set of words of length at most 2N + 1. More formally,

1. Define an enumeration of all the words over the alphabet X as the bijective map
ψ : X∗ → N defined as follows. For the empty word ε, let ψ(ε) = 0 and for each
letter zi, i = 1, . . . , d, let ψ(zi) = i. Then, for each word of the form w = vzj ,
j = 1, . . . , d, v ∈ X∗ define ψ(w) recursively as ψ(w) = d · ψ(v) + j.

2. Denote by X≤2N+1 = {w ∈ X∗ | |w| ≤ 2N + 1} the set of all words on X of
length at most 2N + 1. Notice that the restriction of ψ to the set X≤2N+1 yields a
bijective map with the range [0,M(N) − 1].

3. For each S ∈ R
p � X∗ � define πN (S) as the vector (ZT

0 , Z
T
1 , . . . , Z

T
M(N)−1)

T

in R
pM(N), where Zi = S(ψ−1(i)) ∈ R

p. Since the integer i goes through all the
values [0,M(N) − 1], ψ−1(i) goes through all possible words of length at most
2N + 1. Hence πN (S) is just the vector of all values S(w) where |w| ≤ 2N + 1.

4. For each rational family of formal power series Ψ = {Sj ∈ R
p � X∗ �| j ∈ J}

define the vector πJ,N (Ψ) = (πN (S1)
T , . . . , πN (Sm)T )T ∈ R

mpM(N) . That is,
πJ,N (Ψ) is obtained by stacking up the vectors πN (S1), . . . , πN (Sm) representing
the values of S1, . . . , Sm on words of length at most 2N + 1.

5. For each Ψ1, Ψ2 ∈ PJ , define the functions dF,N,J : PJ ×PJ → R by

dF,N,J(Ψ1, Ψ2) = FM(N),J (πJ,N (Ψ1), πJ,N (Ψ2)) (5)

We then have the following result.

Lemma 1 (Properties of dF,N,J) dF,N,J is a pseudo-distance in PJ . That is, for each
Ψ1, Ψ2, Ψ3 ∈ PJ

dF,N,J(Ψ1, Ψ2) = dF,N,J(Ψ2, Ψ1) ≥ 0,

dF,N,J(Ψ1, Ψ2) ≤ dF,N,J(Ψ1, Ψ3) + dF,N,J(Ψ2, Ψ3) and
Ψ1 = Ψ2 =⇒ dF,N,J(Ψ1, Ψ2) = 0.

(6)



The following theorem formulates an important property of dF,N,J and it relies on the
partial realization result of Theorem 2.

Theorem 4 (Distance for Rational Formal Power Series) The restriction of dF,N,J

to PN,J is a distance. That is, in addition to the properties listed in Lemma 1, the
following holds.

∀ Ψ1, Ψ2 ∈ PN,J : Ψ1 = Ψ2 ⇐⇒ dF,N,J(Ψ1, Ψ2) = 0 (7)

Proof. If Ψ1 and Ψ2 belong to PN,J , then by Theorem 2 rankHΨi,N,N = rankHΨi

holds for i = 1, 2. It is easy to see that dF,N,J(Ψ1, Ψ2) = 0 if and only if πN,J(Ψ1) =
πN,J(Ψ2), i.e. the values of the elements of Ψ1 and Ψ2 coincide for all the words of
length at most 2N+1. Hence,HΨ1,N+1,N = HΨ2,N+1,N . Therefore, by Theorem 2, the
representation R̃N produced by Algorithm 1 with the input HΨ1,N+1,N is a minimal
representation of both Ψ1 and Ψ2, which implies that Ψ1 = Ψ2.

3.2 The Hilbert Space of Square Summable Families of Formal Power Series
In what follows we will define a scalar product on the space of square summable rational
families of formal power series. With this scalar product the space of square summable
rational families becomes a Hilbert space, and the corresponding distance will take all
values of the formal power series into account.

Consider the set Ps,J = {Ψ ∈ PJ | Ψ is square summable } of square summable
rational families of formal power series. Assume that J is finite. It is clear that Ps,J

is a vector space, if we define addition and multiplication by a scalar as follows. Let
Ψ1 = {Sj ∈ R

p � X∗ �| j ∈ J} and Ψ2 = {Tj ∈ R
p � X∗ �| j ∈ J} be two

square summable rational families of formal power series. Then for each α, β ∈ R, let
αΨ1 + βΨ2 = {αTj + βSj ∈ R

p � X∗ �| j ∈ J}, where αSj + βTj is just the
usual point-wise linear combination on formal power series ([14]), i.e. for all w ∈ X∗,
(αSj + βTj)(w) = αSj(w) + βTj(w). Now, for Ψ1 and Ψ2 defined as before, define
the bilinear map < ·, · >J : Ps,J ×Ps,J → R as

< Ψ1, Ψ2 >J
.
=< ·, · >J (Ψ1, Ψ2) =

∑

j∈J

∑

w∈X∗

Sj(w)T Tj(w) (8)

Since J is finite and Sj , Tj are both square summable, the infinite sum in (8) is well
defined and finite. The following lemma characterizes some properties of < ·, · >J .

Lemma 2 The map < ·, · >J is a scalar product and the space Ps,J with the scalar
product < ·, · >J is a Hilbert space.

As a consequence, we can view Ps,J as a normed space with the norm ||.||J induced by
< ·, · >J , i.e.

||Ψ ||J
.
=

√∑

j∈J

∑

w∈X∗

||Sj(w)||22 =
√
< Ψ, Ψ >J . (9)

The following theorem gives a formula for computing < Ψ1, Ψ2 >J for all Ψ1, Ψ2 ∈
Ps,J , provided that the representations of Ψ1 and Ψ2 are available.



Theorem 5 For i = 1, 2, assume that Ri = (Rni , {Ai,σ}σ∈X , Ci, Bi) is a stable
representation of Ψi ∈ Ps,J and that Bi = {Bi,j ∈ R

ni | j ∈ J}. Then there exists a
unique solution P ∈ R

n1×n2 to the Sylvester equation

P =
∑

σ∈X

AT
1,σPA2,σ + CT

1 C2 (10)

and the scalar product < Ψ1, Ψ2 >J can be written explicitly

< Ψ1, Ψ2 >J=
∑

j∈J

BT
1,jPB2,j . (11)

Notice from Theorem 3 that if R1 and R2 are minimal representations of Ψ1 and Ψ2 in
Ps,J , respectively, then the condition of Theorem 5 holds. Hence we can use any min-
imal representation to compute < Ψ1, Ψ2 >J . From this we may compute the distance
between Ψ1 and Ψ2 as ||Ψ1 − Ψ2||

2
J =< Ψ1, Ψ1 >J −2 < Ψ1, Ψ2 >J + < Ψ2, Ψ2 >J .

4 Rational Power Series and Input-Output Behavior of Dynamical
Systems

The main motivation for introducing the framework of rational formal power series
is that it provides a common algebraic framework for realization theory and system
identification of a wide-variety of input/output systems. The classes of systems whose
behaviors can be described in terms of rational formal power series include linear sys-
tems [17, 9], bilinear systems, [15, 3, 2, 18], multidimensional systems [4], finite state
hidden Markov models [5], continuous-time linear and bilinear switched systems [1]
and continuous-time linear and bilinear hybrid systems [1].

Hence, if we pick two dynamical systems Σ1 and Σ2 from any of the classes men-
tioned above we can compare them as follows. We can construct the families of formal
power series Ψ1 and Ψ2 corresponding to the input-output behaviors of Σ1 and Σ2,
respectively. Then, we can compare Ψ1 and Ψ2 using one of the distances defined in
Section 3. Note that the choice of the families Ψi, i = 1, 2 is unique if Σi belongs to
one of the classes of systems described in the previous paragraph. Alternatively, we can
construct the rational representations RΣ1

and RΣ2
of the families Ψ1 and Ψ2 respec-

tively. In general, the representations RΣ1
and RΣ2

can be easily computed from the
parameters of Σ1 and Σ2. Then, we can use RΣ1

and RΣ2
to compute the distance

between Ψ1 and Ψ2. This approach is particularly appealing if Ψ1 and Ψ2 are square
summable and one wants to use the norm (9). Notice, that even if Ψ1 and Ψ2 are square
summable, RΣ1

or RΣ2
might fail to be stable. In this case we have to minimize RΣ1

and RΣ2
first, and use the resulting stable minimal representations (see Theorem 3 and

Theorem 5) for computing the distance. Algorithms for minimizing representations can
be found in [1]. Notice also that, in general, there need not be any connection between
square summability of Ψi, i = 1, 2 and stability of the dynamical systems Σi, i = 1, 2.

In what follows, we will demonstrate the use of rational formal power series for
stochastic discrete-time jump-linear systems. This class of hybrid systems has a wide
variety of applications including computer vision. To the best of our knowledge, the
relationship between stochastic jump-linear systems and formal power series presented
here is new, though there are some similarities between our approach and that in [18].



4.1 Stochastic Jump-Linear Systems

The terminology and notation used in this section is based on the conventions adopted in
literature, see [19, 9]. A stochastic jump-linear systems [19] is a discrete-time stochastic
system described by the equations

Σ :

{
x(k + 1) = Aθ(k)x(k) +Bθ(k)v(k)

y(k) = Cθ(k)x(k) and o(k) = λ(θ(k))
. (12)

Here, x, θ, y, o and v are stochastic processes of the following form. The process x is
called the continuous state process and takes values in the continuous-state space R

n.
The process θ is called the discrete state process and takes values in the set of discrete
states Q = {1, 2, . . . , d}. The process y is the continuous output process and takes
values in the set of continuous outputs R

p. The process o is the discrete output process
and takes values in the set of discrete outputs O = {1, 2, . . . , l}. Finally, the process v

is the continuous noise and takes values in R
m. The matrices Aq , Bq , Cq , q ∈ Q, are of

the form Aq ∈ R
n×n, Bq ∈ R

n×m, and Cq ∈ R
p×n. The map λ : Q→ O is called the

readout map and it assigns a discrete output to each discrete state. We will assume that
E[v(k)v(l)] = δk,lI and E[v(k)] = 0, for all k, l ∈ N, that is v is a zero mean process
and v(k), k ∈ N are uncorrelated. Furthermore, we will assume that for each k, l ∈ N,
x(0),v(k),θ(l) are mutually independent random variables. We will also assume that
the state-transition of the Markov process θ is governed by the transition probabilities
pq1,q2

, q1, q2 ∈ Q, where pq1,q2
is the probability that θ changes its value from q2 to q1,

i.e. pq1,q2
= Prob(θk+1 = q1 | θk = q2). In addition, we will assume that the initial

probability distribution of θ is given by the vector π = (π1, . . . , πd)
T ∈ R

d, where
πq = Prob(θ(0) = q) denotes the probability that the process θ is in state q at time 0.
The evolution of system (12) is as follows. At each time instant k, the continuous state
x and the continuous output y change according to the discrete-time stochastic linear
system (Aθ(k), Bθ(k), Cθ(k)). The discrete state process θ, together with the discrete
output process o, form a finite state hidden Markov model [5].

In the next subsection, we study the concept of realization for stochastic jump-linear
systems. To that end, we will assume that the stochastic processes x and y are wide-
sense stationary and zero mean, which is guaranteed under the following assumptions.

Assumption 1 The Markov process θ is stationary and ergodic, hence for all q ∈ Q,∑
s∈Q pq,sπs = πq .

Assumption 2 There exists n× n matrices Pq , q ∈ Q, such that for each q ∈ Q

Pq =
∑

s∈Q

pq,sAsPsA
T
s +BsB

T
s pq,sπs, (13)

E[x(0)] = 0, and E[x(0)x(0)Tχ(θ(0) = q)] = Pq , where χ denotes the indicator
function, i.e. χ(A) = 1 if the event A is true, and χ(A) = 0 otherwise.

These assumptions are not particularly strong. For instance, under suitable conditions [19],
there is a unique collection of positive semi-definite matrices Pq such that (13) holds.



4.2 Realization of Stochastic Jump-Linear Systems
Recall the notion of weak realization for linear stochastic systems [9]. In this subsection,
we will formulate a similar concept for stochastic jump-linear systems.

Consider a stationary process õ taking values in the finite output space O, and a
wide-sense stationary, zero-mean stochastic process ỹ taking values in the continuous
output space R

p. let O+ be the set of all nonempty words inO, i.e.O+ = O∗ \{ε}. For
all o0, o1, . . . , ok ∈ O, k ≥ 0, define the maps Peo : O+ → R and Ceo,ey : O+ → R

p×p

Peo(o0o1 · · · ok) = Prob(õ(i) = oi, i = 0, . . . , k)

Ceo,ey(o0o1 · · · ok) = E[ỹ(k)ỹ(0)Tχ(õ(i) = oi, i = 0, . . . , k)].
(14)

Notice that the map Peo gives the probability distribution of the stochastic process õ,
while the map Ceo,ey gives the covariance of ỹ(k) and ỹ(0), provided that the proces õ

takes values o0, . . . , ok in the first k+1 time instances. That is, Ceo,ey collects information
on the second-order moments of ỹ.1

Consider now a jump-linear system Σ of the form (12) and recall the definition of
the processes y and o. If Assumption 1 and Assumption 2 hold, then y is wide-sense
stationary and zero-mean and o is stationary. Hence, Co,y and Po are well-defined. In
fact, they depend only on the matrices Aq , Bq, Cq , q ∈ Q, the discrete state-transition
probabilities pq1,q2

, q1, q2 ∈ Q, the probability distribution of the initial discrete-state
π, and the readout map λ. To emphasize that Co,y andPo depend only on the parameters
ofΣ, we will denote Co,y by CΣ and Po byPΣ . These maps are important, because they
contain information about the probability distribution of the output processes generated
by Σ. In fact, the following is true.
Proposition 1 If x(0) and v are Gaussian, Q = O, and λ = id, i.e. the discrete state
is fully observed, then the map CΣ uniquely determines the distribution of y.
The assumption that Q = O is critical here. Intuitively, the more information about
the discrete state is preserved by the discrete output, i.e. the closer o is to θ, the better
estimate of the probability distribution of y is provided by CΣ.

With the notation above, we are now ready to define a notion of weak realization for
stochastic jump-linear systems. Let ỹ be a wide-sense stationary, zero mean R

p-valued
process, and let õ be a stationary O-valued process. A stochastic-jump linear system Σ

is said to be a weak stochastic realization of (ỹ, õ), if Peo = PΣ and Ceo,ey = CΣ .
Clearly, the fact that Σ is a weak-realization of the processes (ỹ, õ) imposes some

constraints on the probability distribution of the processes õ and ỹ. We will now show
that (ỹ, õ) has a weak realization by a stochastic jump-linear system, only if certain
families of formal power series are rational. We will construct two families of formal
power series Ψeo,ey and Seo based on the maps Ceo,ey and Peo, respectively, as follows.

LetX = O = {1, 2, . . . , l} and Jeo,ey = {1, . . . , p}×O be, respectively, the alphabet
and the index set over which the formal power series will be defined. For each integer
i = 1, . . . , p, letter o ∈ O, and word w ∈ O∗, let Ceo,ey,(i,o)(w) ∈ R

lp be the ith column
of the matrix

[
CT

eo,ey(ow1), CT
eo,ey(ow2), · · · , CT

eo,ey(owl)
]T

∈ R
lp×p. (15)

1 Notice the similarity between Ceo,ey and the generalized covariances in [18].



We define the family of formal power series Ψeo,ey associated with Ceo,ey as

Ψeo,ey = {Ceo,ey,(i,o) ∈ R
pl � O∗ �| (i, o) ∈ Jeo,ey} (16)

The construction of Seo is much simpler. We can simply identify the map Peo with a
formal power series Seo ∈ R � O∗ � by defining Seo(ε) = 1 for the empty word and
Seo(w) = Peo(w) for all w ∈ O+. By abuse of notation we will denote Seo simply by
Peo. We will call (Ψeo,ey,Peo) the pair of formal power series associated with (ỹ, õ).

The next step is to define a pair of representations (RΣ,C , RΣ,D) associated with a
jump-linear system Σ of the form (12).

We define the representation RΣ,C as follows. For each o ∈ O and q, q1, q2 ∈ Q,
let Co

q = Cqχ(λ(q) = o) ∈ R
p×n, Ao

q1,q2
= pq1,q2

χ(λ(q2) = o)Aq2
∈ R

n×n, and
Bo

q = Pq(C
o
q )T ∈ R

n×p, where Pq ∈ R
n×n is the matrix defined in (13). Using this

notation, define the matrices Ão ∈ R
nd×nd, C̃ ∈ R

lp×nd and B̃o ∈ R
nd×p, o ∈ O, as

Ão =




Ao
1,1 A

o
1,2 · · · Ao

1,d

Ao
2,1 A

o
2,2 · · · Ao

2,d

...
...

...
...

Ao
d,1 A

o
d,2 · · · Ao

d,d


 , C̃ =




C1
1 C

1
2 · · · C1

d

C2
1 C

2
2 · · · C2

d
...

...
...

...
Cl

1 C
l
2 · · · Cl

d


 , and B̃o =




Bo
1

Bo
2

...
Bo

d


 .

Then, for each o ∈ O, and i = 1, . . . , p let B̃(i,o) ∈ R
nd be the ith column of B̃o and

define the set B̃ = {B̃(i,o) ∈ R
nd | (i, o) ∈ Jo,y} indexed by Jo,y = {1, . . . , p} × O.

We define the representationRΣ,C as

RΣ,C = (Rnd, {Ão}o∈O, B̃, C̃). (17)

As per the representationRΣ,D, we define it as

RΣ,D = (Rd, {Mo}o∈O, {π}, e), (18)

where e = (1, 1, . . . , 1) ∈ R
1×d, and for each o ∈ O and q1, q2 ∈ Q, the (q1, q2) entry

of the matrix Mo ∈ R
d×d is defined from the transition probabilities of the process θ

as pq1,q2
χ(λ(q2) = o). Notice the similarity between the definition of RΣ,D and the

definition of a quasi-realization for the finite state hidden Markov model formed by
(θ,o) given in [5].

We these definitions, we have the following result.

Theorem 6 (Weak Realization) A jump-linear system Σ of the form (12) is a weak
realization of (ỹ, õ) if and only if RΣ,C is a representation of Ψeo,ey and RΣ,D is a
representation of Peo. Hence, (ỹ, õ) admits a weak stochastic realization by a stochastic
jump-linear system, only if Ψeo,ey is a rational family of formal power series and Peo is a
rational formal power series.

An important implication of the theorem above is the following. If we know that the
processes (ỹ, õ) admit a weak stochastic realization by a stochastic jump-linear sys-
tem, then we can find representations of Ψeo,ey and Peo from finite data. More precisely,
if rankHΨeo,ey

≤ N and rankHPeo
≤ N , then from Ceo,ey(o0 · · · ok), Peo(o0 · · · ok)



k ≤ 2N + 1, o0, . . . , ok ∈ O, we can construct the Hankel matrices HΨeo,ey ,N+1,N and
HPeo,N+1,N and compute a representationReo,ey of Ψeo,ey andReo of Peo respectively. Note
that if we know that (ỹ, õ) has a weak stochastic realization by a jump-linear system
Σ with a continuous state-space of dimension n and a discrete state-space of cardinal-
ity d, then we can take N ≥ nd > 0. Finally, recall that the problem of estimating
Ceo,ey(o0 · · · ok) and Peo(o0 · · · ok) is a classical statistical problem. In particular, if the
joint process (ỹ, õ) is ergodic, then these quantities can easily be estimated from a long
enough sequence of measurements.

4.3 Distances between Stochastic Jump-Linear Systems

Imagine we would like to compare the probability distributions of the output processes
(õ1, ỹ1), and (õ2, ỹ2) of two stochastic jump-linear systems Σ1 and Σ2, respectively.
We can do that by using one of the distances defined in Section 3 to compare their as-
sociated pairs of families of formal power series: Ψeo1,ey1

with Ψeo2,ey2
and Peo1

with Peo2
.

When Σ1 and Σ2 are known, we can construct the representations RΣi,C and RΣi,D,
i = 1, 2. Then, we can use RΣi,C , i = 1, 2 to compute the distance between Ψeo1,ey1

and
Ψeo2,ey2

. Likewise, we can useRΣi,D, i = 1, 2 to compute the distance between Peo1
and

Peo2
. The advantage of using distances on formal power series is even more apparent if

Σ1 andΣ2 are unknown, because the identification of stochastic jump-linear systems is
poorly developed.2 Instead, one could use the estimates of finitely many values of Ceoi,eyi

and Peoi
, i = 1, 2 to compute the minimal representations RC,i of Ψeoi,eyi

, i = 1, 2 and
RD,i of Peoi

, i = 1, 2, and use the computed representations to compare the behavior
of the two systems. The procedure for computing such representations from their Han-
kel matrices is known [1, 15, 16] and it is likely to be computationally less costly than
identifying the original jump-linear systems.

5 Discussion and Conclusion

In this paper several definitions of distances for rational formal power series and ratio-
nal representations were presented. It was argued that the results can be used to define
metrics and topology on the space of a wide variety of dynamical systems. The key
argument is that for many classes of dynamical systems there is a correspondence be-
tween the input-output behaviors of the systems and rational formal power series. In
particular, this is the case for a number of hybrid systems and some nonlinear systems.

To the best of our knowledge, the problem of distances between hybrid systems had
not been addressed so far. In the case of nonlinear systems, there are some results on the
topological and geometric structure of the space of bilinear systems, see for example
[16], where the algebraic variety structure of that space was described. In contrast, there
is a fair amount of literature on distances between linear systems and on the topological
and geometric structure of the space of linear systems. Note the relationship between
input-output maps and output processes of linear systems and families of formal power

2 Even in the linear case, the full identification procedure for linear stochastic systems is com-
putationally costly.



series over the one letter alphabet X = {z}. Because of this correspondence, any dis-
tance on rational families of formal power series will give us a distance between linear
systems. Spaces of equivalence classes of minimal linear systems were already studied
before, for both the stochastic and deterministic settings. In fact, it was shown in [7]
that, for each N , the set of all equivalence classes Mm,p

N of minimal linear systems of
dimensionN withm inputs and p outputs forms both an analytic manifold and an alge-
braic variety and admits a natural topology. Here two minimal linear systems belong to
the same equivalence class if they are algebraically similar. Denote by Mm,p,a

N the set
of equivalence classes of stable minimal linear systems. Then it was shown in [8, 6] that
M

m,p,a
N andMm,p

N are diffeomorphic as analytic manifolds and the topology ofMm,p,a
N

as an analytic manifold can be obtained by the metric induced by theH2 norm. It is easy
to see that the distance induced by the H2 norm is a particular case of the distance in-
duced by the norm (9), if we identify equivalence classes of minimal linear systems
with equivalence classes of minimal rational representations (two minimal representa-
tions are equivalent, if they are isomorphic). More recent papers on distances between
stochastic linear systems can be found in [20, 21, 12]. In particular, [12] introduces the
trace distance between linear systems and gives a formula to compute it. Surprisingly,
the distance induced by the norm (9) is closely related to the trace distance.

In practical situations, the families of formal power series are likely to encode the
external behaviors of some dynamical systems. In such cases, the available information
is either a rational representation of each family of formal power series, or a finite
collection of values of the formal power series.

If we are given a rational representation RΨ of each family Ψ , then any of the
distances described in Section 3 can easily be computed. Notice that if Ψ is square
summable, then we can minimizeRΨ and the obtained minimal representation ofRm,Ψ

will be stable, due to Theorem 3. Hence, using Theorem 5 we can compute the distance
induced by < ·, · >J by solving the corresponding Sylvester equation from Theorem
5. Hence, except for the computational complexity, there are few restrictions on using
any of the distances. Therefore, one may choose different distances depending on the
particular application and the computational costs. Note that the issue of computational
complexity is still open for the distances we presented. However, the computational cost
of computing distances of type dF,N,J between formal power series is exponential in
N , if the underlying alphabet X has more than one element.

If only the finite collection of values is available then the task of choosing the right
distance is more complex. Assume that we know the values of the elements of the fam-
ilies for all words of length at most N . Then there are two cases to be considered. If
N ≥ 2M + 1 and M = rankHΨ for all families Ψ involved, then we may apply
the algorithm described in Theorem 2 to compute a minimal representation RΨ of Ψ .
If Ψ is a square summable family, then the resulting representation RΨ is stable. Even
in this ideal case when N is big enough several issues require attention. First of all,
computing RΨ might be computationally expensive. If we want to compute one of the
distances dF,M,J , M ≤ N , then we might do better by using the data directly, rather
than computing the representations first and then computing the distance from the rep-
resentations. However, computing the representations RΨ might be a good idea if we
want to use the distances induced by the norm (9). Moreover, if the data are noisy, we



do not know whether our algorithm will still produce a stable representation, which is
a prerequisite for the existence of the solution of the Sylvester equation. If we cannot
ensure that N is big enough, then the algorithm from Theorem 2 might fail to produce
a representation of Ψ .
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