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Abstract. We present realization theory for a class of autonomous discrete-time
hybrid systems callesemi-algebraic hybrid systeniBhese are systems in which

the state and output equations associated with each discrete state are defined by
polynomial equalities and inequalities. We first show that these systems generate
the same output as semi-algebraic systems and implicit polynomial systems. We
then derive necessary and almost sufficient conditions for existence of an implicit
polynomial system realizing a given time-series data. We also provide a charac-
terization of the dimension of a minimal realization as well as an algorithm for
computing a realization from a given time-series data.

1 Introduction

Realization theory is one of the central topics of control and systems theory. Its goals
are to study the conditions under which the observed behavior of a system can be rep-
resented by a state-space representation of a certain type and to develop algorithms
for finding a (preferably minimal) state-space representation of the observed behavior.
Realization theory forms the theoretical foundation of model reduction and systems
identification. It also plays an important role in filtering and control design.

The goal of this paper is to develop realization theory and algorithms for the class
of autonomous discrete-time semi-algebraic hybrid systSei-algebraic hybrid sys-
tems (SAHSSs) are characterized by the following two properties. First, the state and
output trajectories are obtained by switching between various continuous subsystems.
Second, the state-transition and output maps of each continuous subsystem are semi-
algebraic functions, that is functions defined by polynomial equalities and inequali-
ties. Particular examples of semi-algebraic functions are polynomial maps, piecewise-
polynomial maps and piecewise-affine maps. The class of SAHSs includes important
classes of discrete-time dynamical systems, sutihear systemgolynomial systems
and piecewise-affindybrid systems. Furthermore, notice that semi-algebraic continu-
ous state-transition maps can be used to encode discrete-state transition maps, semi-
algebraic resets maps and guards. Hence, the class of SAHSs does implicitly allow for
guards and resets. In this paper, we will deal only \&ittonomou$SAHSSs.

Papers contributions. We present a necessary condition for existence of an SAHS
realization. The condition is formulated in terms of the finiteness of the (Krull) dimen-
sion of the algebra generated by the system outputs. We call this conditialyéteaic
Hankel-rankcondition, as it is a natural generalization of the well-known Hankel-rank
condition for linear systems. We show that the dimension of a minimal realization is



bounded from below by the algebraic Hankel-rank. We also present an algorithm for
computing an almost minimal SAHS realization from a given time-series data.
The results of the paper are based on the following behavioral relationships.

1. Semi-algebraic hybrid systems= semi-algebraic systemsNe will show that the
output of an SAHS can be generated by a discrete-time system with semi-algebraic
state-transition and output maps. The converse is trivially true.

2. Semi-algebraic systems implicit polynomial systems. We will show that the
output of a dynamical system with semi-algebraic equations can be expressed as the
output of a dynamical system defined by means of implicit polynomial equations.

3. Implicit polynomial systems C semi-algebraic hybrid systemsWe will show
that the output of a dynamical system given by implicit polynomial equations can be
generated by an SAHS. In fact, the switching signal of the hybrid system indicates
which solution of the implicit polynomial equations should be chosen at each time.

By exploring the above relationships, we will be able to solve the realization problem
for SAHSs by solving the realization problem for implicit polynomial systems. The
solution of the latter problem is closely related to, and is inspired by, the work of Sontag
[2] on discrete-time polynomial systems. The main difference with respect to [2] is that
the algebras we work with are no longer integral domains.

The approach proposed in this paper bears a close resemblance to the algebraic-
geometric approach to identification of switched autoregressive exogenous (SARX)
systems of Vidal et al. [19-21]. In fact, the reduction of the realization problem for
hybrid systems to finding implicit polynomial equations is analogous to the idea of the
hybrid decoupling polynomiadf [19—-21]. The main differences lie in the classes of
systems that are investigated and in the goals. The work of [19-21] investigates SARX
systems and aims to obtain an SARX representation. Here we study systems which are
autonomous, but otherwise more general than SARX systems, and aim to ofvtaia a
generalsemi-algebraic hybrid system representation from the output data.

Prior work. The realization problem is well studied for deterministic and stochastic
linear systems thanks to the works of Kalman and others (see e.g., [29, 30]). For bilinear
and smooth/analytic nonlinear systems, the realization problem is also well understood
thanks to the works of Sussmann, Jakubczyk, Sontag, Fliess, Isidori and others (see e.g.,
[1,5-7,2-4]). However, the algorithmic aspects of the theory are not fully developed
for general nonlinear systems. There are important results on realization theory of poly-
nomial and rational systems developed by Bartoszewicz, Sontag, Wang, etc., [8, 2, 9].
However, the study of minimality and realization algorithms is not well understood. The
work of Grossmann and Larson [10] is one of the first attempts to tackle realization of
hybrid systems. However, a formal realization theory is not presented. More recently,
several papers have dealt with realization theory of switched linear/bilinear systems
[11-13], linear/bilinear hybrid systems without guards and with partially observed dis-
crete states [14, 13], nonlinear hybrid systems without guards [13, 15], piecewise-linear
hybrid systems [16, 13], and stochastic jump-Markov linear systems [17, 18].

Paper outline. The paper is organized as followi& presents the necessary algebraic
preliminaries.§3 formulates the realization problem and states the main result of the
paper formally§4 contains the sketch of the proofs of the main results along with the
realization algorithmg5 presents the conclusions and directions for future work.



2 Algebraic Preliminaries

In this section we review some basic results from commutative algebra and semi-
algebraic geometry. The reader is referred to [22—25] for more details. In particular,
the reader is encouraged to consult [23, 22] for the definition and basic properties of
Grobner bases and Noether normalization. In what follows the tégebradenotes a
commutative algebra over the field of real numidRrequipped with a unit element.

Polynomials in finitely many commuting variables. Let A be an algebra. Recall
from [22, 23] thatA[ X, X5, ..., X,,] is the algebra of polynomials in the commuting
variablesX, ..., X,, over the algebral. The elements ofi[ X, X5, ..., X,,] are finite
formal sums

= a1 a2 P
o Z af¥1,...7a,,LX1 X2 ...Xnn’

wherea,, ... o, € Aandl is a finite set of natural numbers (possibly including zero).
We will identify X? with the unit element of A for all i = 1,...,n. If we want

to emphasize the dependencef®fon the variablesX, Xo, ..., X,, we will write
P(X1, Xa,...,X,) instead ofP.

Semi-algebraic sets and mapsRecall from [24, 25] that a subsét C R™ is called
semi-algebraidf it is of the form

d my
S={(z1,...,zn) eR" | \/ \(Pij(a1,....20) € 0)},
i=1j=1
where for eachi = 1,...,d andj = 1,...,m; the symbole; ; belongs to the set of
symbols{<, >, <,> =} and P, ; is a polynomial inR[X4, ..., X,]. Here\/ stands

for thelogical or operator ang)\ stands for théogical andoperator. Consider a subset
V of R® and a mapf : V — R™. Recall from [24, 25] that the map is said to be a
semi-algebraic mapf the graph off is a semi-algebraic set.

Finitely generated algebra. Let A be an algebra and let;, ..., z, € A. Denote by
Rlz1,...,z,] the smallest sub-algebra df which containst, ..., z,. We will call
Rlz1,...,z,] thealgebra generatebly x4, . . ., z,,. The algebral is calledfinitely gen-
eratedif there exist finitely many elemenis, . . ., z,, of A such thatd =R[z1, ..., z,].

Krull-dimension of a finitely generated algebra. Consider a finitely generated alge-
braA = R[zy,...,z,]. Consider elements,, ..., zq of A. We will say thatzy, ..., zq
are algebraically independenif the only polynomialQ € R[Zy,..., Z,] such that
Q(z1,...,24) = 0 is the zero polynomial. Her&)(z1, ..., 2,) is the element ofd
obtained fromy by substituting for each variablg; the element; and evaluating the
resulting expression using the addition and multiplication operations ifhe Krull-
dimension ofA is themaximal number of algebraically independent elements. &f/e
refer to theKrull-dimensionof A simply as thalimensiorof A and denote it bylim A.

Algebra of time-series. The algebra of time-series plays a crucial role in this paper.
Consider the sék* of all infinite sequences of real numbers. A typical elemeri of

is of the form(b(n)),en, Whereb(n) € R for all n. We will also refer to the elements

of R*° as time-series, by interpreting a sequence as a sequence of measured system



outputs. We define the addition and multiplication of time-series point-wise. That is,
given two time-seriega(n)),cn and(b(n)),en, their sum is defined as the time-series
(a(n))nen + (b(n))neny = (a(n) + b(n))nen, and their product is defined as the time-
seriega(n))nen:(b(n))nen = (a(n)b(n))nen. Itis easy to see that, with the operations
above R*> forms an algebra. Its null element is the time-series in which every element
is zero. Its identity element is the time-series where each eleménMereover, each

real number: can be identified with the time-series where each element is equal to

3 Problem Formulation and Statement of the Main Results

The goals of this section are to define formally the notions of semi-algebraic systems
(§3.1), semi-algebraic hybrid systen3(2) and implicit polynomial system$3.3),

and to state the main results on realization theory and minimality for these classes of
systems43.4). The proofs of these results together with a realization algorithm will be
presented in the next section.

Before proceeding further, let us fix some notation and terminology. Throughout the
paper we will look at discrete-time systems, i.e. our time axis will be the set of natural
numbers including zero. We will denote the time axishbgnd hencé € N. Also, we
will use (¥(k))ren € RP to denoteR? valued time-series, i.8i(k) € R?, k € N. For
eachi =1,2,...,p, we will denote byy, (k) theith coordinate of the vectar(k).

3.1 Semi-Algebraic Systems

A semi-algebraic syste(®AS) is a discrete-time system of the form

o (XD = Fx(k), x(0) =0,
P vk = hx(h)),

where for eactk € N, thestatex(k) at time k belongs toR" and theoutputy (k)
at timek belongs tdR?. Thestate-transitiormap f : R™ — R™ and thereadout map
h : R™ — RP are semi-algebraic maps. The stagds theinitial stateof the system. Itis
clear that the external behavior of (1) can be characterized by the time{s€ifig$;cx.

1)

Definition 1 (Realization by SASs)We will say that a systei, of the form(1) is a
realization ofY = (y(k))ren € RP? if for all time instantsk € N, y (k) = y (k).

We define thedimensionof S,,, denoted bydim S,,, as the number of state variables,
i.e.dim S, = n. Assume thas, is a realization of a time-serigd. We will say thatS,

is aminimal realizationof ) if S, is a realization ofy that has the smallest possible
dimension among all possible SASs that realize

3.2 Semi-Algebraic Hybrid Systems
A semi-algebraic hybrid syste(BAHS) is a discrete-time hybrid (switched) system of

the form
H, : {X(k +1) = fr) (x(k)), x(0) = xo,

Y (k) = hq) (x(K)), (2)



wherex (k) € R™ denotes theontinuous statat timek € N, x, denotes thénitial
stateof the systemy(k) € RP denotes theontinuous outputt timek € N, and

q(k) € @Q denotes thaliscrete modat timek € N. Here we assume that the ggtis

finite. The switching signalg(k))xen is assumed to be arbitrary. Also, for each discrete
modeq € @, the mapsf, : R® — R™ andh, : R — RP are assumed to be semi-
algebraic, hence the name semi-algebraic hybrid systems. The definition of a realization
for an SAHS is analogous to Definition 1.

Definition 2 (Realization by SAHSs) An SAHSH,, of the form(2) is a realization of

Y= F(k)ren € RPifforall k € N, y(k) = y(k).

We will call the number continuous state variabtethe dimensiorof 7,,, and we will
denote it bydim H,, i.e.dim H,, = n. We will call an SAHSH,, aminimalrealization

of Y if H, is a realization ofy with the smallest dimension among all possible SAHS
realizations of). One may wonder whether this definition of minimality is justified,

as it does not take into the account the number of discrete modes. We think this is an
interesting direction to explore. However, we are not aware of any work in this direction.

3.3 Implicit Polynomial Systems
An implicit polynomial systerfiPS) is a discrete-time dynamical system of the form

{ Qi(xi(k +1),x1(k),...,x,(k)) =0foralli=1,....n
P, :

Pj(yj(k),x1(k),...,xn(k)) =0forallj=1,...,p. @)

In the above equatiox,(k) = (x1(k),...,x,(k))" € R™is thecontinuous statet
timek € N, y(k) = (y1(k),ya(k),...,yp(k))T € RP is thecontinuous outputt
time k € N, x(0) = x¢ is theinitial state of the system, and for each=1,...,n
andj =1,...,p, Qi(Z, Z1,...,Zy,) andP;(Zy, Z1, . .., Z,) are polynomials in the
variablesZ, ..., Z,, with real coefficients. In addition, we will assume the following.

Assumption 1 Forall keN,i=1,...,n,andj=1,...,p, P;(Zo,x1(k),...,xn(k))
andQ;(Zy,x1(k),...,x,(k)) are non-zero polynomials i#4,.

If the assumption above fails for sorhgthen one of the componentsypfk) orx(k+1)
can be chosen indepently of the statg).

Notice that the state and output of (3) at tifhere not determined solely by the
initial statex(0) = x¢. The reason for this is that the current state determines the next
state and the current outpumplicitly, and hence several valid choices for the output
and next state may exist. In the sequel, whenever we speak of an IPS of the form (3),
we will always assume that a specific state trajectarik))rcn and output trajectory
(y(k))ken Is fixed, such thatx(k))reny and(y (k))ken satisfy (3).

Definition 3 (Realization by IPSs) An IPSP, of the form (3) with state trajectory
(x(k))ren € R™ and output trajectory(y (k))ren € RP? is said to be a realization
of the time-seriey = (y(k))ren € RP ifforall k € N, y(k) = y(k).

As before, we define thdimensiorof an IPSP,, of the form (3), denoted bylim P,

to be the number of state variables, dém P, = n. An IPSP, is said to be aninimal
realizationof Y if P, is a realization ofy that has the smallest dimension among all
possible IPSs that realiZe.



3.4 Main Results

In what follows, we state the main results of the paper on realization of SASs, SAHSSs,
and IPSs. We begin with Theorem 1, which states the main result on output equiva-
lence of these systems. Then in Theorems 2—4 we state the main results on existence
and minimality of realizations. The proof of Theorem 1 (§d€l) yields a number of
procedures for converting systems from one of these classes to the others. Before stat-
ing the theorem formally, we need to introduce some notation for each one of these
transformations.

Notation 1 The proof of Theorem 1 yields the following transformations.

Procedure for transforming SAHSs to SAS&iven an SAHS3{,,, we will denote by
SA(H,) the SAS which is the outcome of this procedure if appligid,to

Procedure for transforming SASs to IPSGiven an SASS,, we will denote by
IP(S,) the IPS which is the outcome of this procedure if applie§,to

Procedure for transforming IPSs to SAHSSiven an IPSP,, we will denote by
SAH (Pp) the SAH which is the outcome of this procedure if applie® 0

With this notation, we are ready to state the main result on equivalence of the output
behaviors generated by these systems.

Theorem 1 (Equivalence of SASs, SAHSs and IPSd)et S, be an SASH,, be an
SAHS, andP, be an IPS satisfying Assumption 1. Dét= (y(k))xen € R? be a
time-series. Then the following holds.

— H, is a realization ofY if and only if SA(H,) is a realization of). In addition,
dim SA(H,) = dimH,, + 1.

— S, is a realization ofY if and only if IP(S,) is a realization of). In addition,
dim IP(S,) = dim S, + 1 andI P(S,) satisfies Assumption 1.

— If P, is a realization of), then SAH (P,) is a realization of). In addition,
dim SAH(P,) = dim P,.

We now state the main result on existence of a realization by an IPS, and hence by
an SAHS or SAS. To that end, recall from linear systems theory the definition of the
Hankel-matrixHy, associated with the time-serigs= (y(k))ren € RP. The matrix
Hy, € R***° has an infinite number of rows and columns indexed by natural numbers,
and the entry offy indexed by((I — 1)p+i,j) with 5,1 =1,2,3,...,andi =1,...,p
equalsy;(l + j — 2). Let Hy x € RPN*> be the matrix formed by all rows dffy,
indexed by indices of the forda = ip + i with[ =0,..., N andi = 1,...,p. That s,

Hy y is of the form
y1(0) %) - 310)

Hy n = ?z.(l) ii(l.Jrl) %(l#j) o (4)

yp(.N) yp(N‘Fl) §p(N+7)



A classical result from linear systems theory is that the time-s@fiesimits an au-
tonomous linear system realization if and only if the rank of the Hankel-maixjx

is finite, or equivalently, there is an upper bound on the ranks of the set of matrices
{Hy n,N € N}. Below we will extend this well-known finite Hankel-rank condition

to IPSs, by introducing the notion afgebraic rankof Hy .

Definition 4 (Hankel-algebra) Define the sub-algebrdy, ; of R*> as the sub-algebra
generated by the rows of the matiik, n viewed as scalar time-series. We will call the
sub-algebrady y the N-Hankel-algebra of.

Definition 5 (Algebraic rank of the Hankel-matrix) Define the algebraic rank of the
Hankel-matrixHy,, denoted by alg-ranly,, as the supremum of the Krull-dimensions
of the N-Hankel-algebras. That is,
alg-rank Hy, = sup dim Ay n. (5)
NeN
Remark 1 (Finite rank of the Hankel-matrix implies finite algebraic rank) Notice
that if the rank of the Hankel-matrix is finite, then its algebraic rank is also finite.

Theorem 2 (Existence and minimality of an IPS realization) A time-series) =
(¥(k))ken € RP has a realization by an IPS satisfying Assumption 1 only if the al-
gebraic rank of the Hankel-matri¥ly, is finite. In addition, the dimension of any
IPS realizationP, of ) satisfying Assumption 1 is at least alg-rafk,. Moreover,

if alg-rank Hy = n < +o0o, then we can construct an IPS realization Yfwhose
dimension is, but which does not necessarily satisfy Assumption 1.

We will say that an SAHS3+,, is analmost minimakealization of) = (y(k))ken if
dim H,, = alg-rankHy, andH, is a realization ofy. We will say that an SAS,, is an
almost minimatealization of) if S,, is a realization o) anddim S,, = alg-rankHy +
1. Combining Theorem 2 with Theorem 1 we get the following realization theorems.

Theorem 3 (Existence and minimality of an SAHS realization)A time-series) =

(¥(k))ken € RP has arealization by an SAHS only if alg-rafk, < +oco. In addition,
the dimension of a minimal SAHS realization)uik at least alg-rankidy, —2. Moreover,
if J admits an IPS realizatio®, such thatdim P, = alg-rank H, and P, satisfies
Assumption 1, theAAH (P,) is an almost minimal SAHS realization Jf

Theorem 4 (Existence and minimality of an SAS realization) A time-seriegy =

(¥(k))ren € RP has a realization by an SAS only if alg-rafk, < +oco. In addition,
the dimension of a minimal SAS realizatior)ofs at least alg-rankiy, — 1. Moreover,
if Y has an IPS realizatior?, such thatdim P, = alg-rank Hy and P, satisfies
Assumption 1, theSA(SAH(P,)) is an almost minimal SAS realization Jf

Theorems 2-4 establish conditions for existence and minimality of IPS, SAHS, and
SAS realizations o) = (y(k))ren € RP. In §4.3, we will show that under suitable
assumptions one can actually construct a minimal IPS realiz&jdnom the rows of
Hy. Furthermore, we will show that one can uBg to construct an almost minimal
SAHS realization ofy and an almost minimal SAS realization df Before delving
into the details of these constructions, together with the corresponding realization algo-
rithms, we shall provide i§4.144.2 the proofs for Theorems 1-4.



4 Realization Construction

In this section, we sketch the constructions that lie at the heart of the proofs of Theo-
rems 1-4. Irk4.1 we present the proof of Theorem 1.5#h2 we present the proof of
Theorems 2-4. Finally, if4.3 we discuss the algorithmic aspects of realization theory.

4.1 Proof of Theorem 1

The proof of Theorem 1 will be divided into the following three parts.

Definition of SA(H,) and its properties. Consider an SAH3,, of the form (2) and
letw = (¢(k))reny € @ be its switching signal. Since the set of discrete magas
finite, we can assume without loss of generality tgas of the form@ = {1,2,...,d}.

As shown in [16, 27], this allows one to encode the switching signas a real number

in the intervaI[O 1] by using the following procedure. Define teacodingy(w) of w
asy(w) = Y ey (qg(g)kfl) It is easy to see that this series is absolutely convergent
and that0 < ¢(w) < 1. Recall also from [16, 27] that there exist piecewise-affine
operationsH : [0,1] — RandM : [0,1] — [0, 1] such thatH (¢)(w)) = ¢(0) and
M(p(w)) = ¥((q¢(k + 1))ken). That is, H(¢(w)) returns the first element of the
sequencev, and M (¢(w)) returns the encoding of thehift of w. For each: € [0, 1],
these operations can be written explicitly as:

H(z) = i+ 1 ifi<2dz<i+1forsomei=0,...,d—1
2= d otherwise

(6)

M(z) = 2dz — i ifi <2dz<i+1forsomei=0,...,d—1
?)= z otherwise '

Furthermore, it is easy to see thidtand M can be extended to piecewise-affine maps
defined on the whol®. We can then obtais A(H,) from H,, by adding a new state
variablez(k) that equals the encoding((¢(l + k));en) Of the future switching se-

quence. That is
[ <k+1>} [ (x(k Lz(k))]
SA(H,) : (k+1) M (z(k))
y(k) = h(x(k), z(k))

wherex(0) = x, coincides with the initial state d¢f{,, andz(0) = zp = ¥(w), and the
mapsf andh are defined as

- {1

d\T

(7)

) if H(z) = qforsomeg € Q
) otherwise
h ¢ (8)
Bz, ) = q(x) if H(z) = ¢ for someg € Q
e

4(x) otherwise

Itis easy to see thzﬁandﬁ are semi-algebraic maps. Itis also easy to seeytfigtand
x(k) in (7) are the same ag(k) andx(k) in (2) for all time instanceg € N. Hence,
the system in (7) is a well-defined SAS. Furthermore, it is a realizatigg @f) ) yen if

and only ifH,, is a realization ofy(k))xen, anddim SA(H,) = dim H,, + 1.



Definition of I P(S,) and its properties. Consider an SAS,, of the form (1) with state
transition mapf : R™ — R™ and readout map : R®” — R?. Foralli = 1,...,n and
j=1,...,p,denote byf; : R® 3 z — f;(z) € Randh; : R” > ¢ — h;(z) € Rthe
semi-algebraic maps obtained from tie and;th coordinates of andh, respectively.

It follows from the proof of Proposition 8.13.7 in [24] that there exist polynomials in
R[Zo, ey Zn+1], {QZ(Zo, ey va Zn+1)}7,n:1 Eilr\d{P)j(ZO7 ceey Zn, ZTH-l)};?:l’ such
that the following holds: There existsfmite subset ofR, D = {d;,...,dy} C R,
such that for allzy,...,z, € R there existsy = ~(x1,...,2,) € D such that
Pij(Zy,x1,...,2n,7) andQ;(Zo, x1, . . ., £, ) are nonzero polynomials iffy, and

Qi(fi(z),z1,...,2n,v) =0andP;(h;(x), z1,...,2n,7) =0
forall:=1,...,nandj =1,...,p. We can then definéP(S,) as

Qq(xz(k+ 1),X1(]€),... ,Xn+1(k)) =0foralli= 1, ,n—l—l

Pj(yj(k:),xl(k:),... ;Xn—i-l(k)) =0 for a”] = 1,...,p (9)

where the polynomial§);, P; fori =1,...,n,j = 1,...,p are as defined above and
Qni1(Z0s -y Zyni1) = M, (Zo—d;). The firstn state components; (k), . . ., x,, (k)
of IP(S,) coincide with those ofS,. Then + 1st state is defined as,1(k) =
~v(x1(k),...,x,(k)) € D. The output trajectory af P(S,) is the same as that &F,. It
follows thatI P(S,) is a well defined IPS satisfying Assumption 1. Moreo&fis a re-
alization of) if and only if I P(S,) is a realization oy, anddim I P(S,) = dim S,+1.

Definition of SAH(P,) and its properties. Let P, be an IPS of the form (3) satisfy-
ing Assumption 1. Recall that by specifyifi), we fix a state-trajectoryx (k))xecn and
an output-trajectoryy (k))ren Satisfying the equations in (3). Léf andr; be, respec-
tively, the degrees of the polynomidls (2o, Z1, . .., Z,) andP;(Zy, Z1, . . ., Z,) With
respect taZy, fori = 1,...,n,j = 1,...,p. It follows from Proposition A.5 in [24]

that there are semi-algebraic functions frBMto R, 1; 1, . .., ¥, @andxi 1, - - -, Xi,d»
i=1,...,n,7 =1,...,p, such that for alk,, ..., z, € R, Q;(Zo,z1,...,z,) and
P;(Zy,z1,...,x,) are non-zero polynomials ovefy; if Q;(z,x1,...,z,) = 0, then
z = Xi,i(x1,...,xy,) for auniquel = 1,...,d;, and if Pj(z,z1,...,2,) = 0, then

z = Yjr(z1,...,z,) for a uniquek = 1,...,r;. We can then defin6 AH(P,) as

in (2), with the system parameters defined as follows. Let the set of discrete modes
of SAH(P,) be the set) of all n + p tuples(a,...,ap,B1,...,0,), Wherea; =
1,...,rj,andp; = 1,...,d;, forallj = 1,...,p,7 = 1,...,n. For each discrete
modeq € @ of the formg = (a1, ..., ayp, 01, ..., ,) define

-
folza, ... zn) = [Xlﬁl(gch...,xn) X2,8 (T1, -y Tp) -+ Xn,ﬁn($1,~~7$n)]
_(10)

hq(xla e wrn): [¢17a1 (xla e axn) ¢2,a2(3017 e 73371) T ,(/}p70tp(xl7 e ;xn)

It is easy to see thaf, and h, are semi-algebraic functions for all discrete modes
g € Q. ltis left to define the initial state and the switching signabofH (P,). Recall
that (x(k))ren and(y(k))xen are, respectively, the state and output trajectorppf

It follows from the discussion above and Assumption 1 that for each time instant

N there exist indicess; (k) € {1,...,d;}, i = 1,...,n anda;(k) € {1,...,r;},



Jj =1,...,p, such that;(k 4 1) equalsy; g, ) (x1(k), ..., X, (k)) andy;(k) equals
Vja, k) (X1(K), ..., x,(k)). Choose the switching signal = (q(k))ren asq(k) =
(ar(k),...,ap(k), Bi(k),...,Bn(k)) € Q and the initial state ag(0) = x(. We get
that (x(k))ren and (y(k))ren are the state and output trajectoriesSAH (P,). In
particular, this implies tha AH (P,) is a realization of(y(k))ken. It is easy to see
from the construction of AH (P,) thatdim SAH (P,) = dim P,

4.2 Proof of Theorems 2-4

Theorems 3 and 4 follow easily from Theorems 1 and 2. Therefore, itis enough to prove
Theorem 2. We divide the proof of Theorem 2 into the following three parts.

Necessity.Assume thad’ = (y(k))ren has an IPS realizatioR, of the form (3) satis-
fying Assumption 1. Notice that the time-serigs (k))reny € R, 7 =1, ..., n, formed
by the components of the state trajectory belondR. In addition, for eachj =
1,...,p the time-seriegy;(k))ren € R, coincides with the time-serigy; (k))ren
formed by thejth coordinates of the output trajectory Bf,. For eachlNV denote by
Bp, n the sub-algebra dR> generated by the rows dfy x and by the time-series
(xi(k+1)ken, i = 1,...,nandl = 0,...,N. Itis easy to see that th¥-Hankel-
algebrady y is a sub-algebra afp, n. Moreover, using Corollary 3.7 of [22] we see
that for eachV, dim Ay y < dim Bp, y. If we can show thadlim Bp, v < n, then it
follows that alg-ranky < n < +o0. To that end, consider any minimal prime idéal
of Bp, n (see [22] for the definition of a minimal prime ideal of an algebra) and the sub-
algebrad, = R[(x1(k))ren, - - -, (Xn(k))ren] Of Bp, n. Using Assumption 1 it can be
shown thaBBp, /P is algebraic over, / (A, N P), and henceim Bp, v /P < n for
any minimal primeP. Sincedim Bp, y = max{dim Bp, /P | P is a minimal primg
we get thatlim Bp, x < n.

Sufficiency. Assume that alg-rankly, = n < +o0. It follows that there existsv*
such that for allk > 0, n = dim Ay y- = dim.Ay y+4,. Choose a Noether Nor-

malization (see [22]\z;(k))ken € R, i = 1,...,n, of Ay y-. Then the time-series
(z1(k))ken, - - -, (2, (k))ren are algebraically independent antd, -4 is algebraic
over the algebr&|[(z;(k))ken, - - -, (zn(k))ren]. Therefore, there exist polynomials

Qi(T(),Zl,.. 7Zn) ande(To,Zl,...,Zn),’i: 1,....n,7=1,... ,pSUCh that

Qi(zi(k+1),z1(k),...,zn(k)) =0foralli=1,...,n,keN (11)
Pi(yj(k),z1(k),...,zn(k)) =0forallj=1,...,p,k € N.

It is then easy to see that (11) defines an IPS realizatioy wfith the state trajec-
tory (z(k))ren, z(k) = (z1(k),...,2z,(k)) € R™, k € N, and output trajectory
(¥(k))ken € RP. We will call this IPS thefree realizationof ) and we will denote
it by Py. Notice thatPy need not satisfy Assumption 1.

Minimality. The proof of the statement of Theorem 2 is now rather simple. First,
from the proof of necessity of the finite algebraic rank of the Hankel-matrix, it fol-
lows that if P, is an IPS realization ofy(k))ren andP, satisfies Assumption 1, then
alg-rankHy < dim P,. From the proof of sufficiency it follows that the free realization
Py is an IPS realization ofy (k))ren anddim Py = alg-rankHy,.



4.3 Realization Algorithms

In this section, we present realization algorithms for constructing an almost minimal
IPS, SAS and SAHS realization of a time series. We first present a realization algorithm
that returns the polynomials of an IPS realizati®nof the measured data along with
a finite portion of the state trajectory. We then discuss how to use this algorithm for
computing a minimal SAHS and SAS realization of the same series.

Throughout the section we will assume that the fifkt elements of the time series
Y = (y(k))xen are measured for somd € N.

Realization algorithm for IPSs. The main idea behind the realization algorithm we
are about to present is that each Hankel-algebyav, IV € N, can be represented as a
quotient of a polynomial ring with a suitable idela}. Then, given a Gibner basis for
I, the computation of the polynomials defini®y can be done using @Gbner-basis
techniques. The following paragraphs describe the algorithm in more detail.

For eachV, let R[7y] be the ring of polynomial® [T, ..., T(nt1),] in the vari-
ablesTy, ..., T(n+1)p- Also letIy be the ideal ofR[7] generated by all the polyno-
mials that vanish on the set

Vn ={F&)",....y(k+N)"T e RFOV+D | ke N} (12)

Then, it is easy to see thaty y is isomorphic to the quotiently v = R[7Zn]/In.
Denote byG y the Gibbner-basis off . Choose a numbeb > 0 representing our
guess on the maximal degree of polynomials generating the idgal8Ve are now
ready to formulate the partial realization algoritfiRPartReal(M, D) for IPSs.

IPPartReal(M, D)

1: SetN :=0.

2: Compute the Gibner basis of y andy 1
Gy := ApproxIdeal(M, D, N), Gny1 := Approxldeal(M, D, N + 1).

3: Compute the Noether Normalization G6fy andG 11
({v{,...,Y}},d;) = NoetherNorm(l,G;) for | = N, N + 1.

4: If (dyy1 > dn) and(N + 2 < M), then go back to Step 2 with := N + 1.

5: Compute the polynomials of the free IPS realizatRynas follows.
Letd :=dy = dN+1.
Foreach =1,...,d, |etZi(T1, . 7T(N+2)p) = Y;N(Tp_;,_l, Tp+2, R ,T(N+2)p).
Foreach =1,...,d, letQ; := DepPoly(N + 1,YN, ..., YN, Z;,Gny1).
Foreachj = 1,...,p, let P; := DepPoly(N + 1,YN, ..., YN . T;, Gni1).
Foreach = 1,...,d, definez;(k) == YN ((y(k)T,...,y(k+N)")T).

6: Return the IP$; defined as

(13)

- Qi(zi(k +1),21(k),...,2zq(k)) =0forali=1,....d
Y Pi(y;(k),z1(k),...,zq(k)) =0forallj =1,...,p

Notice that the algorithniPPartReal depends on several other algorithms, such
asApproxIdeal, NoetherNorm andComputeDepPoly. Each one of these algorithms
can be implemented using techniques from commutative algebra, as we describe next.



The algorithmApproxIdeal(D, M, N) computes an approximation of thed@bner-
basis ofl y and proceeds as follows.

ApproxIdeal(D, M, N)
1: Foreachl =0,..., M, let]; 5 be the ideal generated by the polynomiBig ; —
y;i(k+1)foreachk =0,...,N,andj =1,...,p.
2: Compute the Gibner-basigy v,y of the idealln, v = (,—. a L1,n Using the
grlex ordering (see [23]). Return a @mer-basis of the ideal generated by those
elements of7 y ,; that are of degree less thén

The algorithmNoetherNorm(XV, G v) returnsd = dim Ay x and a set of polyno-
mialsYi, ..., Y, in R[Zy] such that the substitutions

z; = Y (y1(k))ken, - - s (Fp(N + k))ren) € R foreachi = 1,...,d

yield aNoether Normalization, . . ., z4 of Ay x. This algorithm is known to be com-
putable from any finite basi§ ; of the ideall, as can be seen from the proof of the
Noether Normalization Theorem (see [22]).

The algorithmDepPoly (N, Y, ..., Yy, Z, Gy) returns a nontrivial polynomia
in d + 1 variables such tha®(Z,Y1,...,Yy) € Iy for polynomialsZ,Y:,...,Y; €
R[7Zx], provided that such a polynomi@l exists. The algorithm proceeds as follows.

ComputeDepPoly (N, Y1,..., Yy, Z,GN)

1: Introduce new variables), S1,..., Sy and define the ideal of the polynomial
ring R[So,...,Sa, T1 ... T(n+1)p] @s the ideal generated by the elements of the
Grobner-basis ofsy and the polynomial$, — Z andS; — Y;,i=1,....d.

2: Compute the Gibner-basig> of the intersection/ N R[So, S1,--.,54], see [23]
for an algorithm. Return an eleme@tof G.

From the Algebraic Sampling Theorem stated in [28] it follows thatifand D are
large enough, theApproxIdeal(D, M, N) returns a Gabner-basis of ;. Hence, we
get the following.

Lemma 1 (Partial realization) Assume alg-rankfy, < +oo. Then, ifAM and D are
large enough, then the IPB; returned bylPPartReal (M, D) is a realization ofy =
(¥(k))ren, and the dimension @®; is at most alg-rankiy,. If Py satisfies Assumption
1, thendim Py = alg-rank Hy.

The question that arises is how to check if the outputRi?PartReal satisfies As-
sumption 1. To this end, we can assume without loss of generality that the polynomi-
als from (13) are of the fornP; = Ef:o Z§P;, andQ; = Z{io ZéQiJ for some
K > 0, whereP;, and@);; are polynomials inz,, ..., Z, foralli = 1,...,n, and
j=1,...,p. Assume that the Groebner-ba&lg of Iy is known. Denote b@i,l and
PN the polynomials ifR[7y| obtained from); ; and P; . by substitutingy,, for Z,,,,

m = 1,...,n. Itis easy to see that the IPS, returned bylPPartReal satisfies As-
sumption 1 if the zero set iR +1)? of the idealS, generated by the set of polynomials
Gy U {Qiyl,ff’j,,. |i=1,...,n,5 =1,...,p,l,r =0,...,K} is empty. Checking



emptiness of5, can be done using techniques from algebraic geometry, for example,
by using procedures for deciding emptiness of semi-algebraic sets, see [26].

Realization algorithm for SAHSs. Assume tha, is the IPS returned by the algo-
rithm IPPartReal. Assume thatP, satisfies Assumption 1 and it is a realization of
Y. Then, it follows thatS AH (P,) is an almost minimal SAH system realizationf
anddim SAH(P,) = alg-rankHy. If the equations of the IP®,, are known, then
the equations o6 AH (P,) can be computed. However, in order to compute the initial
state and the switching sequenceS H (P,) the knowledge of the states &%, is
required. Notice thalPPartReal also computes the state variables for time instances
k=0,...,M.

Realization algorithm for SASs. We can proceed as follows. UBRPartReal an IPS
realizationP, of ). If P, satisfies Assumption 1, we can use the procedure above to
compute the equations and possibly the statd pt= SAH (P,). It is easy to see that
the knowledge of the equations &f, allows us to compute the equationsSf ().
Unfortunately, the computation of the initial state$fl(7,,) is problematic, as it re-
quires the knowledge of the whole infinite switching sequence. It follows$Hat,,)

is a realization ofy anddim SA(H,) = alg-rankHy + 1.

5 Discussion and Future Work

We have presented necessary and an almost sufficient conditions for existence of a
realization for implicit polynomial systems, semi-algebraic systems, and semi-algebraic
hybrid systems, along with a characterization of minimality and a realization algorithm.
There are several potential directions for future research. To begin with, it would
be desirable to find a sufficient condition for existence of a semi-algebraic realization.
In addition, the relationship between minimality and such important properties as ob-
servability and reachability are not well-understood for semi-algebraic hybrid systems.
Another potential research direction is to extend the results of the paper to systems with
inputs, possibly stochastic. A third research direction could be to explore further the re-
lationship between the approach presented in this paper and the works on identification
using GPCA, see [19-21]. Extending the results of the paper to the continuous-time
case represents a potential research direction as well. Investigating the computation
complexity of the presented realization algorithm, remains a topic of future research.
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