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Abstract. We present realization theory for a class of autonomous discrete-time
hybrid systems calledsemi-algebraic hybrid systems. These are systems in which
the state and output equations associated with each discrete state are defined by
polynomial equalities and inequalities. We first show that these systems generate
the same output as semi-algebraic systems and implicit polynomial systems. We
then derive necessary and almost sufficient conditions for existence of an implicit
polynomial system realizing a given time-series data. We also provide a charac-
terization of the dimension of a minimal realization as well as an algorithm for
computing a realization from a given time-series data.

1 Introduction

Realization theory is one of the central topics of control and systems theory. Its goals
are to study the conditions under which the observed behavior of a system can be rep-
resented by a state-space representation of a certain type and to develop algorithms
for finding a (preferably minimal) state-space representation of the observed behavior.
Realization theory forms the theoretical foundation of model reduction and systems
identification. It also plays an important role in filtering and control design.

The goal of this paper is to develop realization theory and algorithms for the class
of autonomous discrete-time semi-algebraic hybrid systems. Semi-algebraic hybrid sys-
tems (SAHSs) are characterized by the following two properties. First, the state and
output trajectories are obtained by switching between various continuous subsystems.
Second, the state-transition and output maps of each continuous subsystem are semi-
algebraic functions, that is functions defined by polynomial equalities and inequali-
ties. Particular examples of semi-algebraic functions are polynomial maps, piecewise-
polynomial maps and piecewise-affine maps. The class of SAHSs includes important
classes of discrete-time dynamical systems, such aslinear systems, polynomial systems,
andpiecewise-affinehybrid systems. Furthermore, notice that semi-algebraic continu-
ous state-transition maps can be used to encode discrete-state transition maps, semi-
algebraic resets maps and guards. Hence, the class of SAHSs does implicitly allow for
guards and resets. In this paper, we will deal only withautonomousSAHSs.

Papers contributions. We present a necessary condition for existence of an SAHS
realization. The condition is formulated in terms of the finiteness of the (Krull) dimen-
sion of the algebra generated by the system outputs. We call this condition thealgebraic
Hankel-rankcondition, as it is a natural generalization of the well-known Hankel-rank
condition for linear systems. We show that the dimension of a minimal realization is



bounded from below by the algebraic Hankel-rank. We also present an algorithm for
computing an almost minimal SAHS realization from a given time-series data.

The results of the paper are based on the following behavioral relationships.

1. Semi-algebraic hybrid systems= semi-algebraic systems.We will show that the
output of an SAHS can be generated by a discrete-time system with semi-algebraic
state-transition and output maps. The converse is trivially true.

2. Semi-algebraic systems⊆ implicit polynomial systems.We will show that the
output of a dynamical system with semi-algebraic equations can be expressed as the
output of a dynamical system defined by means of implicit polynomial equations.

3. Implicit polynomial systems ⊆ semi-algebraic hybrid systems. We will show
that the output of a dynamical system given by implicit polynomial equations can be
generated by an SAHS. In fact, the switching signal of the hybrid system indicates
which solution of the implicit polynomial equations should be chosen at each time.

By exploring the above relationships, we will be able to solve the realization problem
for SAHSs by solving the realization problem for implicit polynomial systems. The
solution of the latter problem is closely related to, and is inspired by, the work of Sontag
[2] on discrete-time polynomial systems. The main difference with respect to [2] is that
the algebras we work with are no longer integral domains.

The approach proposed in this paper bears a close resemblance to the algebraic-
geometric approach to identification of switched autoregressive exogenous (SARX)
systems of Vidal et al. [19–21]. In fact, the reduction of the realization problem for
hybrid systems to finding implicit polynomial equations is analogous to the idea of the
hybrid decoupling polynomialof [19–21]. The main differences lie in the classes of
systems that are investigated and in the goals. The work of [19–21] investigates SARX
systems and aims to obtain an SARX representation. Here we study systems which are
autonomous, but otherwise more general than SARX systems, and aim to obtain amore
generalsemi-algebraic hybrid system representation from the output data.

Prior work. The realization problem is well studied for deterministic and stochastic
linear systems thanks to the works of Kalman and others (see e.g., [29, 30]). For bilinear
and smooth/analytic nonlinear systems, the realization problem is also well understood
thanks to the works of Sussmann, Jakubczyk, Sontag, Fliess, Isidori and others (see e.g.,
[1, 5–7, 2–4]). However, the algorithmic aspects of the theory are not fully developed
for general nonlinear systems. There are important results on realization theory of poly-
nomial and rational systems developed by Bartoszewicz, Sontag, Wang, etc., [8, 2, 9].
However, the study of minimality and realization algorithms is not well understood. The
work of Grossmann and Larson [10] is one of the first attempts to tackle realization of
hybrid systems. However, a formal realization theory is not presented. More recently,
several papers have dealt with realization theory of switched linear/bilinear systems
[11–13], linear/bilinear hybrid systems without guards and with partially observed dis-
crete states [14, 13], nonlinear hybrid systems without guards [13, 15], piecewise-linear
hybrid systems [16, 13], and stochastic jump-Markov linear systems [17, 18].

Paper outline. The paper is organized as follows.§2 presents the necessary algebraic
preliminaries.§3 formulates the realization problem and states the main result of the
paper formally.§4 contains the sketch of the proofs of the main results along with the
realization algorithm.§5 presents the conclusions and directions for future work.



2 Algebraic Preliminaries

In this section we review some basic results from commutative algebra and semi-
algebraic geometry. The reader is referred to [22–25] for more details. In particular,
the reader is encouraged to consult [23, 22] for the definition and basic properties of
Gröbner bases and Noether normalization. In what follows the termalgebradenotes a
commutative algebra over the field of real numbersR, equipped with a unit element.

Polynomials in finitely many commuting variables. Let A be an algebra. Recall
from [22, 23] thatA[X1, X2, . . . , Xn] is the algebra of polynomials in the commuting
variablesX1, . . . , Xn over the algebraA. The elements ofA[X1, X2, . . . , Xn] are finite
formal sums

P =
∑

α1,...,αn∈I

aα1,...,αnX
α1
1 Xα2

2 · · ·Xαn
n ,

whereaα1,...,αn
∈ A andI is a finite set of natural numbers (possibly including zero).

We will identify X0
i with the unit element1 of A for all i = 1, . . . , n. If we want

to emphasize the dependence ofP on the variablesX1, X2, . . . , Xn, we will write
P (X1, X2, . . . , Xn) instead ofP .

Semi-algebraic sets and maps.Recall from [24, 25] that a subsetS ⊆ Rn is called
semi-algebraicif it is of the form

S = {(x1, . . . , xn) ∈ Rn |
d∨

i=1

mi∧
j=1

(Pi,j(x1, . . . , xn) εi,j 0)},

where for eachi = 1, . . . , d andj = 1, . . . ,mi the symbolεi,j belongs to the set of
symbols{<,>,≤,≥,=} andPi,j is a polynomial inR[X1, . . . , Xn]. Here

∨
stands

for the logical or operator and
∧

stands for thelogical andoperator. Consider a subset
V of Rn and a mapf : V → Rm. Recall from [24, 25] that the mapf is said to be a
semi-algebraic map, if the graph off is a semi-algebraic set.

Finitely generated algebra. Let A be an algebra and letx1, . . . , xn ∈ A. Denote by
R[x1, . . . , xn] the smallest sub-algebra ofA which containsx1, . . . , xn. We will call
R[x1, . . . , xn] thealgebra generatedbyx1, . . . , xn. The algebraA is calledfinitely gen-
eratedif there exist finitely many elementsx1, . . . , xn ofA such thatA=R[x1, . . . , xn].
Krull-dimension of a finitely generated algebra. Consider a finitely generated alge-
braA = R[x1, . . . , xn]. Consider elementsz1, . . . , zd of A. We will say thatz1, . . . , zd

are algebraically independent, if the only polynomialQ ∈ R[Z1, . . . , Zd] such that
Q(z1, . . . , zd) = 0 is the zero polynomial. Here,Q(z1, . . . , zn) is the element ofA
obtained fromQ by substituting for each variableZi the elementzi and evaluating the
resulting expression using the addition and multiplication operations inA. The Krull-
dimension ofA is themaximal number of algebraically independent elements ofA. We
refer to theKrull-dimensionof A simply as thedimensionof A and denote it bydimA.

Algebra of time-series. The algebra of time-series plays a crucial role in this paper.
Consider the setR∞ of all infinite sequences of real numbers. A typical element ofR∞
is of the form(b(n))n∈N, whereb(n) ∈ R for all n. We will also refer to the elements
of R∞ as time-series, by interpreting a sequence as a sequence of measured system



outputs. We define the addition and multiplication of time-series point-wise. That is,
given two time-series(a(n))n∈N and(b(n))n∈N, their sum is defined as the time-series
(a(n))n∈N + (b(n))n∈N = (a(n) + b(n))n∈N, and their product is defined as the time-
series(a(n))n∈N·(b(n))n∈N = (a(n)b(n))n∈N. It is easy to see that, with the operations
above,R∞ forms an algebra. Its null element is the time-series in which every element
is zero. Its identity element is the time-series where each element is1. Moreover, each
real numberx can be identified with the time-series where each element is equal tox.

3 Problem Formulation and Statement of the Main Results

The goals of this section are to define formally the notions of semi-algebraic systems
(§3.1), semi-algebraic hybrid systems (§3.2) and implicit polynomial systems (§3.3),
and to state the main results on realization theory and minimality for these classes of
systems (§3.4). The proofs of these results together with a realization algorithm will be
presented in the next section.

Before proceeding further, let us fix some notation and terminology. Throughout the
paper we will look at discrete-time systems, i.e. our time axis will be the set of natural
numbers including zero. We will denote the time axis byN and hence0 ∈ N. Also, we
will use (ỹ(k))k∈N ∈ Rp to denoteRp valued time-series, i.e.̃y(k) ∈ Rp, k ∈ N. For
eachi = 1, 2, . . . , p, we will denote bỹyi(k) theith coordinate of the vector̃y(k).

3.1 Semi-Algebraic Systems

A semi-algebraic system(SAS) is a discrete-time system of the form

Sp :

{
x(k + 1) = f(x(k)), x(0) = x0,

y(k) = h(x(k)),
(1)

where for eachk ∈ N, the statex(k) at timek belongs toRn and theoutputy(k)
at timek belongs toRp. Thestate-transitionmapf : Rn → Rn and thereadout map
h : Rn → Rp are semi-algebraic maps. The statex0 is theinitial stateof the system. It is
clear that the external behavior of (1) can be characterized by the time-series(y(k))k∈N.

Definition 1 (Realization by SASs)We will say that a systemSp of the form(1) is a
realization ofY = (ỹ(k))k∈N ∈ Rp if for all time instantsk ∈ N, ỹ(k) = y(k).

We define thedimensionof Sp, denoted bydimSp, as the number of state variables,
i.e.dimSp = n. Assume thatSp is a realization of a time-seriesY. We will say thatSp

is a minimal realizationof Y if Sp is a realization ofY that has the smallest possible
dimension among all possible SASs that realizeY.

3.2 Semi-Algebraic Hybrid Systems

A semi-algebraic hybrid system(SAHS) is a discrete-time hybrid (switched) system of
the form

Hp :

{
x(k + 1) = fq(k)(x(k)), x(0) = x0,

y(k) = hq(k)(x(k)),
(2)



wherex(k) ∈ Rn denotes thecontinuous stateat timek ∈ N, x0 denotes theinitial
stateof the system,y(k) ∈ Rp denotes thecontinuous outputat timek ∈ N, and
q(k) ∈ Q denotes thediscrete modeat timek ∈ N. Here we assume that the setQ is
finite. The switching signal(q(k))k∈N is assumed to be arbitrary. Also, for each discrete
modeq ∈ Q, the mapsfq : Rn → Rn andhq : Rn → Rp are assumed to be semi-
algebraic, hence the name semi-algebraic hybrid systems. The definition of a realization
for an SAHS is analogous to Definition 1.

Definition 2 (Realization by SAHSs) An SAHSHp of the form(2) is a realization of
Y = (ỹ(k))k∈N ∈ Rp if for all k ∈ N, ỹ(k) = y(k).

We will call the number continuous state variablesn thedimensionof Hp, and we will
denote it bydimHp, i.e.dimHp = n. We will call an SAHSHp aminimalrealization
of Y if Hp is a realization ofY with the smallest dimension among all possible SAHS
realizations ofY. One may wonder whether this definition of minimality is justified,
as it does not take into the account the number of discrete modes. We think this is an
interesting direction to explore. However, we are not aware of any work in this direction.

3.3 Implicit Polynomial Systems

An implicit polynomial system(IPS) is a discrete-time dynamical system of the form

Pp :

{
Qi(xi(k + 1),x1(k), . . . ,xn(k)) = 0 for all i = 1, . . . , n

Pj(yj(k),x1(k), . . . ,xn(k)) = 0 for all j = 1, . . . , p.
(3)

In the above equation,x(k) = (x1(k), . . . ,xn(k))> ∈ Rn is thecontinuous stateat
time k ∈ N, y(k) = (y1(k),y2(k), . . . ,yp(k))> ∈ Rp is the continuous outputat
time k ∈ N, x(0) = x0 is the initial state of the system, and for eachi = 1, . . . , n
andj = 1, . . . , p, Qi(Z0, Z1, . . . , Zn) andPj(Z0, Z1, . . . , Zn) are polynomials in the
variablesZ0, . . . , Zn with real coefficients. In addition, we will assume the following.

Assumption 1 For all k∈N, i=1, . . . , n, andj=1, . . . , p, Pj(Z0,x1(k), . . . ,xn(k))
andQi(Z0,x1(k), . . . ,xn(k)) are non-zero polynomials inZ0.

If the assumption above fails for somek, then one of the components ofy(k) orx(k+1)
can be chosen indepently of the statex(k).

Notice that the state and output of (3) at timek are not determined solely by the
initial statex(0) = x0. The reason for this is that the current state determines the next
state and the current outputimplicitly, and hence several valid choices for the output
and next state may exist. In the sequel, whenever we speak of an IPS of the form (3),
we will always assume that a specific state trajectory(x(k))k∈N and output trajectory
(y(k))k∈N is fixed, such that(x(k))k∈N and(y(k))k∈N satisfy (3).

Definition 3 (Realization by IPSs) An IPSPp of the form (3) with state trajectory
(x(k))k∈N ∈ Rn and output trajectory(y(k))k∈N ∈ Rp is said to be a realization
of the time-seriesY = (ỹ(k))k∈N ∈ Rp if for all k ∈ N, ỹ(k) = y(k).

As before, we define thedimensionof an IPSPp of the form (3), denoted bydimPp,
to be the number of state variables, i.e.dimPp = n. An IPSPp is said to be aminimal
realizationof Y if Pp is a realization ofY that has the smallest dimension among all
possible IPSs that realizeY.



3.4 Main Results

In what follows, we state the main results of the paper on realization of SASs, SAHSs,
and IPSs. We begin with Theorem 1, which states the main result on output equiva-
lence of these systems. Then in Theorems 2–4 we state the main results on existence
and minimality of realizations. The proof of Theorem 1 (see§4.1) yields a number of
procedures for converting systems from one of these classes to the others. Before stat-
ing the theorem formally, we need to introduce some notation for each one of these
transformations.

Notation 1 The proof of Theorem 1 yields the following transformations.

Procedure for transforming SAHSs to SASs.Given an SAHSHp, we will denote by
SA(Hp) the SAS which is the outcome of this procedure if applied toHp.

Procedure for transforming SASs to IPSs.Given an SASSp, we will denote by
IP (Sp) the IPS which is the outcome of this procedure if applied toSp.

Procedure for transforming IPSs to SAHSs.Given an IPSPp, we will denote by
SAH(Pp) the SAH which is the outcome of this procedure if applied toPp.

With this notation, we are ready to state the main result on equivalence of the output
behaviors generated by these systems.

Theorem 1 (Equivalence of SASs, SAHSs and IPSs)Let Sp be an SAS,Hp be an
SAHS, andPp be an IPS satisfying Assumption 1. LetY = (ỹ(k))k∈N ∈ Rp be a
time-series. Then the following holds.

– Hp is a realization ofY if and only ifSA(Hp) is a realization ofY. In addition,
dimSA(Hp) = dimHp + 1.

– Sp is a realization ofY if and only if IP (Sp) is a realization ofY. In addition,
dim IP (Sp) = dimSp + 1 andIP (Sp) satisfies Assumption 1.

– If Pp is a realization ofY, thenSAH(Pp) is a realization ofY. In addition,
dimSAH(Pp) = dimPp.

We now state the main result on existence of a realization by an IPS, and hence by
an SAHS or SAS. To that end, recall from linear systems theory the definition of the
Hankel-matrixHY associated with the time-seriesY = (ỹ(k))k∈N ∈ Rp. The matrix
HY ∈ R∞×∞ has an infinite number of rows and columns indexed by natural numbers,
and the entry ofHY indexed by((l−1)p+ i, j) with j, l = 1, 2, 3, . . ., andi = 1, . . . , p
equalsỹi(l + j − 2). Let HY,N ∈ RpN×∞ be the matrix formed by all rows ofHY
indexed by indices of the formk = lp+ i with l = 0, . . . , N andi = 1, . . . , p. That is,
HY,N is of the form

HY,N =


ỹ1(0) ỹ1(1) · · · ỹ1(j) · · ·

...
...

...
...

...
ỹi(l) ỹi(l + 1) · · · ỹi(l + j) · · ·

...
...

...
...

...
ỹp(N) ỹp(N + 1) · · · ỹp(N + j) · · ·

 . (4)



A classical result from linear systems theory is that the time-seriesY admits an au-
tonomous linear system realization if and only if the rank of the Hankel-matrixHY
is finite, or equivalently, there is an upper bound on the ranks of the set of matrices
{HY,N , N ∈ N}. Below we will extend this well-known finite Hankel-rank condition
to IPSs, by introducing the notion ofalgebraic rankof HY .

Definition 4 (Hankel-algebra) Define the sub-algebraAY,N ofR∞ as the sub-algebra
generated by the rows of the matrixHY,N viewed as scalar time-series. We will call the
sub-algebraAY,N theN -Hankel-algebra of̃y.

Definition 5 (Algebraic rank of the Hankel-matrix) Define the algebraic rank of the
Hankel-matrixHY , denoted by alg-rankHY , as the supremum of the Krull-dimensions
of theN -Hankel-algebras. That is,

alg-rankHY = sup
N∈N

dimAY,N . (5)

Remark 1 (Finite rank of the Hankel-matrix implies finite algebraic rank) Notice
that if the rank of the Hankel-matrix is finite, then its algebraic rank is also finite.

Theorem 2 (Existence and minimality of an IPS realization) A time-seriesY =
(ỹ(k))k∈N ∈ Rp has a realization by an IPS satisfying Assumption 1 only if the al-
gebraic rank of the Hankel-matrixHY is finite. In addition, the dimension of any
IPS realizationPp of Y satisfying Assumption 1 is at least alg-rankHY . Moreover,
if alg-rank HY = n < +∞, then we can construct an IPS realization ofY whose
dimension isn, but which does not necessarily satisfy Assumption 1.

We will say that an SAHSHp is analmost minimalrealization ofY = (ỹ(k))k∈N if
dimHp = alg-rankHY andHp is a realization ofY. We will say that an SASSp is an
almost minimalrealization ofY if Sp is a realization ofY anddimSp = alg-rankHY+
1. Combining Theorem 2 with Theorem 1 we get the following realization theorems.

Theorem 3 (Existence and minimality of an SAHS realization)A time-seriesY =
(ỹ(k))k∈N ∈ Rp has a realization by an SAHS only if alg-rankHY < +∞. In addition,
the dimension of a minimal SAHS realization ofY is at least alg-rankHY−2. Moreover,
if Y admits an IPS realizationPp such thatdimPp = alg-rankHY andPp satisfies
Assumption 1, thenSAH(Pp) is an almost minimal SAHS realization ofY.

Theorem 4 (Existence and minimality of an SAS realization) A time-seriesY =
(ỹ(k))k∈N ∈ Rp has a realization by an SAS only if alg-rankHY < +∞. In addition,
the dimension of a minimal SAS realization ofY is at least alg-rankHY − 1. Moreover,
if Y has an IPS realizationPp such thatdimPp = alg-rankHY and Pp satisfies
Assumption 1, thenSA(SAH(Pp)) is an almost minimal SAS realization ofY.

Theorems 2-4 establish conditions for existence and minimality of IPS, SAHS, and
SAS realizations ofY = (ỹ(k))k∈N ∈ Rp. In §4.3, we will show that under suitable
assumptions one can actually construct a minimal IPS realizationPp from the rows of
HY . Furthermore, we will show that one can usePp to construct an almost minimal
SAHS realization ofY and an almost minimal SAS realization ofY. Before delving
into the details of these constructions, together with the corresponding realization algo-
rithms, we shall provide in§4.1-§4.2 the proofs for Theorems 1-4.



4 Realization Construction

In this section, we sketch the constructions that lie at the heart of the proofs of Theo-
rems 1–4. In§4.1 we present the proof of Theorem 1. In§4.2 we present the proof of
Theorems 2–4. Finally, in§4.3 we discuss the algorithmic aspects of realization theory.

4.1 Proof of Theorem 1

The proof of Theorem 1 will be divided into the following three parts.

Definition of SA(Hp) and its properties. Consider an SAHSHp of the form (2) and
let w = (q(k))k∈N ∈ Q be its switching signal. Since the set of discrete modesQ is
finite, we can assume without loss of generality thatQ is of the formQ = {1, 2, . . . , d}.
As shown in [16, 27], this allows one to encode the switching signalw as a real number
in the interval[0, 1] by using the following procedure. Define theencodingψ(w) of w
asψ(w) =

∑∞
k=0

(q(k)−1)
(2d)k+1 . It is easy to see that this series is absolutely convergent

and that0 ≤ ψ(w) < 1. Recall also from [16, 27] that there exist piecewise-affine
operationsH : [0, 1] → R andM : [0, 1] → [0, 1] such thatH(ψ(w)) = q(0) and
M(ψ(w)) = ψ((q(k + 1))k∈N). That is,H(ψ(w)) returns the first element of the
sequencew, andM(ψ(w)) returns the encoding of theshift of w. For eachz ∈ [0, 1],
these operations can be written explicitly as:

H(z) =
{
i+ 1 if i ≤ 2dz < i+ 1 for somei = 0, . . . , d− 1

d otherwise

M(z) =
{

2dz − i if i ≤ 2dz < i+ 1 for somei = 0, . . . , d− 1
z otherwise

.

(6)

Furthermore, it is easy to see thatH andM can be extended to piecewise-affine maps
defined on the wholeR. We can then obtainSA(Hp) from Hp by adding a new state
variablez(k) that equals the encodingψ((q(l + k))l∈N) of the future switching se-
quence. That is

SA(Hp) :


[
x(k + 1)
z(k + 1)

]
=

[
f̃(x(k), z(k))
M(z(k))

]
y(k) = h̃(x(k), z(k))

(7)

wherex(0) = x0 coincides with the initial state ofHp andz(0) = z0 = ψ(w), and the
mapsf̃ andh̃ are defined as

f̃(x, z) =
{
fq(x) if H(z) = q for someq ∈ Q
fd(x) otherwise

h̃(x, z) =
{
hq(x) if H(z) = q for someq ∈ Q
hd(x) otherwise

(8)

It is easy to see that̃f andh̃ are semi-algebraic maps. It is also easy to see thaty(k) and
x(k) in (7) are the same asy(k) andx(k) in (2) for all time instancesk ∈ N. Hence,
the system in (7) is a well-defined SAS. Furthermore, it is a realization of(ỹ(k))k∈N if
and only ifHp is a realization of(ỹ(k))k∈N, anddimSA(Hp) = dimHp + 1.



Definition of IP (Sp) and its properties. Consider an SASSp of the form (1) with state
transition mapf : Rn → Rn and readout maph : Rn → Rp. For all i = 1, . . . , n and
j = 1, . . . , p, denote byfi : Rn 3 x 7→ fi(x) ∈ R andhj : Rn 3 x 7→ hj(x) ∈ R the
semi-algebraic maps obtained from theith andjth coordinates off andh, respectively.
It follows from the proof of Proposition 8.13.7 in [24] that there exist polynomials in
R[Z0, . . . , Zn+1], {Qi(Z0, . . . , Zn, Zn+1)}n

i=1 and{Pj(Z0, . . . , Zn, Zn+1)}p
j=1, such

that the following holds: There exists afinite subset ofR, D = {d1, . . . , dM} ⊆ R,
such that for allx1, . . . , xn ∈ R there existsγ = γ(x1, . . . , xn) ∈ D such that
Pj(Z0, x1, . . . , xn, γ) andQi(Z0, x1, . . . , xn, γ) are nonzero polynomials inZ0, and

Qi(fi(x), x1, . . . , xn, γ) = 0 andPj(hj(x), x1, . . . , xn, γ) = 0

for all i = 1, . . . , n andj = 1, . . . , p. We can then defineIP (Sp) as

Qi(xi(k + 1),x1(k), . . . ,xn+1(k)) = 0 for all i = 1, . . . , n+ 1
Pj(yj(k),x1(k), . . . ,xn+1(k)) = 0 for all j = 1, . . . , p

(9)

where the polynomialsQi, Pj for i = 1, . . . , n, j = 1, . . . , p are as defined above and
Qn+1(Z0, . . . , Zn+1) = ΠM

l=1(Z0−dl). The firstn state componentsx1(k), . . . ,xn(k)
of IP (Sp) coincide with those ofSp. The n + 1st state is defined asxn+1(k) =
γ(x1(k), . . . ,xn(k)) ∈ D. The output trajectory ofIP (Sp) is the same as that ofSp. It
follows thatIP (Sp) is a well defined IPS satisfying Assumption 1. Moreover,Sp is a re-
alization ofY if and only if IP (Sp) is a realization ofY, anddim IP (Sp) = dimSp+1.

Definition of SAH(Pp) and its properties. LetPp be an IPS of the form (3) satisfy-
ing Assumption 1. Recall that by specifyingPp we fix a state-trajectory(x(k))k∈N and
an output-trajectory(y(k))k∈N satisfying the equations in (3). Letdi andrj be, respec-
tively, the degrees of the polynomialsQi(Z0, Z1, . . . , Zn) andPj(Z0, Z1, . . . , Zn) with
respect toZ0, for i = 1, . . . , n, j = 1, . . . , p. It follows from Proposition A.5 in [24]
that there are semi-algebraic functions fromRn toR,ψj,1, . . . , ψj,rj

andχi,1, . . . , χi,di
,

i = 1, . . . , n, j = 1, . . . , p, such that for allx1, . . . , xn ∈ R, Qi(Z0, x1, . . . , xn) and
Pj(Z0, x1, . . . , xn) are non-zero polynomials overZ0; if Qi(z, x1, . . . , xn) = 0, then
z = χi,l(x1, . . . , xn) for a uniquel = 1, . . . , di, and ifPj(z, x1, . . . , xn) = 0, then
z = ψj,k(x1, . . . , xn) for a uniquek = 1, . . . , rj . We can then defineSAH(Pp) as
in (2), with the system parameters defined as follows. Let the set of discrete modes
of SAH(Pp) be the setQ of all n + p tuples(α1, . . . , αp, β1, . . . , βn), whereαj =
1, . . . , rj , andβi = 1, . . . , di, for all j = 1, . . . , p, i = 1, . . . , n. For each discrete
modeq ∈ Q of the formq = (α1, . . . , αp, β1, . . . , βn) define

fq(x1, . . . , xn)=
[
χ1,β1(x1, . . . , xn) χ2,β2(x1, . . . , xn) · · · χn,βn

(x1, . . . , xn)
]>

hq(x1, . . . , xn)=
[
ψ1,α1(x1, . . . , xn) ψ2,α2(x1, . . . , xn) · · · ψp,αp

(x1, . . . , xn)
]> (10)

It is easy to see thatfq and hq are semi-algebraic functions for all discrete modes
q ∈ Q. It is left to define the initial state and the switching signal ofSAH(Pp). Recall
that (x(k))k∈N and(y(k))k∈N are, respectively, the state and output trajectory ofPp.
It follows from the discussion above and Assumption 1 that for each time instantk ∈
N there exist indicesβi(k) ∈ {1, . . . , di}, i = 1, . . . , n andαj(k) ∈ {1, . . . , rj},



j = 1, . . . , p, such thatxi(k + 1) equalsχi,βi(k)(x1(k), . . . ,xn(k)) andyj(k) equals
ψj,αj(k)(x1(k), . . . ,xn(k)). Choose the switching signalw = (q(k))k∈N asq(k) =
(α1(k), . . . , αp(k), β1(k), . . . , βn(k)) ∈ Q and the initial state asx(0) = x0. We get
that (x(k))k∈N and (y(k))k∈N are the state and output trajectories ofSAH(Pp). In
particular, this implies thatSAH(Pp) is a realization of(ỹ(k))k∈N. It is easy to see
from the construction ofSAH(Pp) thatdimSAH(Pp) = dimPp.

4.2 Proof of Theorems 2-4

Theorems 3 and 4 follow easily from Theorems 1 and 2. Therefore, it is enough to prove
Theorem 2. We divide the proof of Theorem 2 into the following three parts.

Necessity.Assume thatY = (ỹ(k))k∈N has an IPS realizationPp of the form (3) satis-
fying Assumption 1. Notice that the time-series(xi(k))k∈N ∈ R, i = 1, . . . , n, formed
by the components of the state trajectory belong toR∞. In addition, for eachj =
1, . . . , p the time-series(ỹj(k))k∈N ∈ R, coincides with the time-series(yj(k))k∈N
formed by thejth coordinates of the output trajectory ofPp. For eachN denote by
BPp,N the sub-algebra ofR∞ generated by the rows ofHY,N and by the time-series
(xi(k + l))k∈N, i = 1, . . . , n and l = 0, . . . , N . It is easy to see that theN -Hankel-
algebraAY,N is a sub-algebra ofBPp,N . Moreover, using Corollary 3.7 of [22] we see
that for eachN , dimAY,N ≤ dimBPp,N . If we can show thatdimBPp,N ≤ n, then it
follows that alg-rankHY ≤ n < +∞. To that end, consider any minimal prime idealP
of BPp,N (see [22] for the definition of a minimal prime ideal of an algebra) and the sub-
algebraAx = R[(x1(k))k∈N, . . . , (xn(k))k∈N] of BPp,N . Using Assumption 1 it can be
shown thatBPp,N/P is algebraic overAx/(Ax∩P ), and hencedimBPp,N/P ≤ n for
any minimal primeP . SincedimBPp,N = max{dimBPp,N/P | P is a minimal prime}
we get thatdimBPp,N ≤ n.

Sufficiency. Assume that alg-rankHY = n < +∞. It follows that there existsN∗

such that for allk > 0, n = dimAY,N∗ = dimAY,N∗+k. Choose a Noether Nor-
malization (see [22])(zi(k))k∈N ∈ R, i = 1, . . . , n, of AY,N∗ . Then the time-series
(z1(k))k∈N, . . . , (zn(k))k∈N are algebraically independent andAY,N∗+1 is algebraic
over the algebraR[(z1(k))k∈N, . . . , (zn(k))k∈N]. Therefore, there exist polynomials
Qi(T0, Z1, . . . , Zn) andPj(T0, Z1, . . . , Zn), i = 1, . . . , n, j = 1, . . . , p such that

Qi(zi(k + 1), z1(k), . . . , zn(k)) = 0 for all i = 1, . . . , n, k ∈ N
Pj(ỹj(k), z1(k), . . . , zn(k)) = 0 for all j = 1, . . . , p, k ∈ N.

(11)

It is then easy to see that (11) defines an IPS realization ofY with the state trajec-
tory (z(k))k∈N, z(k) = (z1(k), . . . , zn(k)) ∈ Rn, k ∈ N, and output trajectory
(ỹ(k))k∈N ∈ Rp. We will call this IPS thefree realizationof Y and we will denote
it by Pey. Notice thatPey need not satisfy Assumption 1.

Minimality. The proof of the statement of Theorem 2 is now rather simple. First,
from the proof of necessity of the finite algebraic rank of the Hankel-matrix, it fol-
lows that ifPp is an IPS realization of(ỹ(k))k∈N andPp satisfies Assumption 1, then
alg-rankHY ≤ dimPp. From the proof of sufficiency it follows that the free realization
Pey is an IPS realization of(ỹ(k))k∈N anddimPey = alg-rankHY .



4.3 Realization Algorithms

In this section, we present realization algorithms for constructing an almost minimal
IPS, SAS and SAHS realization of a time series. We first present a realization algorithm
that returns the polynomials of an IPS realizationPp of the measured data along with
a finite portion of the state trajectory. We then discuss how to use this algorithm for
computing a minimal SAHS and SAS realization of the same series.

Throughout the section we will assume that the first2M elements of the time series
Y = (ỹ(k))k∈N are measured for someM ∈ N.

Realization algorithm for IPSs. The main idea behind the realization algorithm we
are about to present is that each Hankel-algebraAY,N ,N ∈ N, can be represented as a
quotient of a polynomial ring with a suitable idealIN . Then, given a Gr̈obner basis for
IN , the computation of the polynomials definingPp can be done using Gröbner-basis
techniques. The following paragraphs describe the algorithm in more detail.

For eachN , let R[TN ] be the ring of polynomialsR[T1, . . . , T(N+1)p] in the vari-
ablesT1, . . . , T(N+1)p. Also let IN be the ideal ofR[TN ] generated by all the polyno-
mials that vanish on the set

VN = {(ỹ(k)>, . . . , ỹ(k +N)>)> ∈ Rp(N+1) | k ∈ N}. (12)

Then, it is easy to see thatAY,N is isomorphic to the quotientAY,N
∼= R[TN ]/IN .

Denote byGN the Gr̈obner-basis ofIN . Choose a numberD > 0 representing our
guess on the maximal degree of polynomials generating the idealsIN . We are now
ready to formulate the partial realization algorithmIPPartReal(M,D) for IPSs.

IPPartReal(M,D)
1: SetN := 0.
2: Compute the Gr̈obner basis ofIN andIN+1

GN := ApproxIdeal(M,D,N),GN+1 := ApproxIdeal(M,D,N + 1).
3: Compute the Noether Normalization ofGN andGN+1

({Y l
1 , . . . , Y

l
dl
}, dl) = NoetherNorm(l, Gl) for l = N,N + 1.

4: If (dN+1 > dN ) and(N + 2 ≤M), then go back to Step 2 withN := N + 1.
5: Compute the polynomials of the free IPS realizationPey as follows.

Let d := dN = dN+1.
For eachi = 1, . . . , d, letZi(T1, . . . , T(N+2)p) := Y N

i (Tp+1, Tp+2, . . . , T(N+2)p).
For eachi = 1, . . . , d, letQi := DepPoly(N + 1, Y N

1 , . . . , Y N
d , Zi, GN+1).

For eachj = 1, . . . , p, letPj := DepPoly(N + 1, Y N
1 , . . . , Y N

d , Tj , GN+1).
For eachi = 1, . . . , d, definezi(k) := Y N

i ((ỹ(k)>, . . . , ỹ(k +N)>)>).
6: Return the IPSPey defined as

Pey
{
Qi(zi(k + 1), z1(k), . . . , zd(k)) = 0 for all i = 1, . . . , d

Pj(ỹj(k), z1(k), . . . , zd(k)) = 0 for all j = 1, . . . , p
(13)

Notice that the algorithmIPPartReal depends on several other algorithms, such
asApproxIdeal, NoetherNorm andComputeDepPoly. Each one of these algorithms
can be implemented using techniques from commutative algebra, as we describe next.



The algorithmApproxIdeal(D,M,N) computes an approximation of the Gröbner-
basis ofIN and proceeds as follows.

ApproxIdeal(D,M,N)
1: For eachl = 0, . . . ,M , let Il,N be the ideal generated by the polynomialsTkp+j −

ỹj(k + l) for eachk = 0, . . . , N , andj = 1, . . . , p.
2: Compute the Gr̈obner-basisGN,M of the idealIN,M =

⋂
l=0,...,M Il,N using the

grlex ordering (see [23]). Return a Gröbner-basis of the ideal generated by those
elements ofGN,M that are of degree less thanD.

The algorithmNoetherNorm(N,GN ) returnsd = dimAY,N and a set of polyno-
mialsY1, . . . , Yd in R[TN ] such that the substitutions

zi = Yi((ỹ1(k))k∈N, . . . , (ỹp(N + k))k∈N) ∈ R∞ for eachi = 1, . . . , d

yield aNoether Normalizationz1, . . . , zd ofAY,N . This algorithm is known to be com-
putable from any finite basisGN of the idealIN , as can be seen from the proof of the
Noether Normalization Theorem (see [22]).

The algorithmDepPoly(N,Y1, . . . , Yd, Z,GN ) returns a nontrivial polynomialQ
in d + 1 variables such thatQ(Z, Y1, . . . , Yd) ∈ IN for polynomialsZ, Y1, . . . , Yd ∈
R[TN ], provided that such a polynomialQ exists. The algorithm proceeds as follows.

ComputeDepPoly(N,Y1, . . . , Yd, Z,GN )
1: Introduce new variablesS0, S1, . . . , Sd and define the idealJ of the polynomial

ring R[S0, . . . , Sd, T1 . . . T(N+1)p] as the ideal generated by the elements of the
Gröbner-basis ofGN and the polynomialsS0 − Z andSi − Yi, i = 1, . . . , d.

2: Compute the Gr̈obner-basiŝG of the intersectionJ ∩ R[S0, S1, . . . , Sd], see [23]
for an algorithm. Return an elementQ of Ĝ.

From the Algebraic Sampling Theorem stated in [28] it follows that ifM andD are
large enough, thenApproxIdeal(D,M,N) returns a Gr̈obner-basis ofIN . Hence, we
get the following.

Lemma 1 (Partial realization) Assume alg-rankHY < +∞. Then, ifM andD are
large enough, then the IPSPey returned byIPPartReal(M,D) is a realization ofY =
(ỹ(k))k∈N, and the dimension ofPey is at most alg-rankHY . If Pey satisfies Assumption
1, thendimPey = alg-rankHY .

The question that arises is how to check if the output ofIPPartReal satisfies As-
sumption 1. To this end, we can assume without loss of generality that the polynomi-
als from (13) are of the formPj =

∑K
r=0 Z

r
0Pj,r andQi =

∑K
l=0 Z

l
0Qi,l for some

K > 0, wherePj,r andQi,l are polynomials inZ1, . . . , Zn for all i = 1, . . . , n, and
j = 1, . . . , p. Assume that the Groebner-basisGN of IN is known. Denote bŷQi,l and
P̂j,r the polynomials inR[TN ] obtained fromQi,l andPj,r by substitutingYm for Zm,
m = 1, . . . , n. It is easy to see that the IPSPp returned byIPPartReal satisfies As-
sumption 1 if the zero set inR(N+1)p of the idealSa generated by the set of polynomials
GN ∪ {Q̂i,l, P̂j,r | i = 1, . . . , n, j = 1, . . . , p, l, r = 0, . . . ,K} is empty. Checking



emptiness ofSa can be done using techniques from algebraic geometry, for example,
by using procedures for deciding emptiness of semi-algebraic sets, see [26].

Realization algorithm for SAHSs. Assume thatPp is the IPS returned by the algo-
rithm IPPartReal. Assume thatPp satisfies Assumption 1 and it is a realization of
Y. Then, it follows thatSAH(Pp) is an almost minimal SAH system realization ofY
anddimSAH(Pp) = alg-rankHY . If the equations of the IPSPp are known, then
the equations ofSAH(Pp) can be computed. However, in order to compute the initial
state and the switching sequence ofSAH(Pp) the knowledge of the states ofPp is
required. Notice thatIPPartReal also computes the state variables for time instances
k = 0, . . . ,M .

Realization algorithm for SASs. We can proceed as follows. UseIPPartReal an IPS
realizationPp of Y. If Pp satisfies Assumption 1, we can use the procedure above to
compute the equations and possibly the state ofHp = SAH(Pp). It is easy to see that
the knowledge of the equations ofHp allows us to compute the equations ofSA(Hp).
Unfortunately, the computation of the initial state ofSA(Hp) is problematic, as it re-
quires the knowledge of the whole infinite switching sequence. It follows thatSA(Hp)
is a realization ofY anddimSA(Hp) = alg-rankHY + 1.

5 Discussion and Future Work

We have presented necessary and an almost sufficient conditions for existence of a
realization for implicit polynomial systems, semi-algebraic systems, and semi-algebraic
hybrid systems, along with a characterization of minimality and a realization algorithm.

There are several potential directions for future research. To begin with, it would
be desirable to find a sufficient condition for existence of a semi-algebraic realization.
In addition, the relationship between minimality and such important properties as ob-
servability and reachability are not well-understood for semi-algebraic hybrid systems.
Another potential research direction is to extend the results of the paper to systems with
inputs, possibly stochastic. A third research direction could be to explore further the re-
lationship between the approach presented in this paper and the works on identification
using GPCA, see [19–21]. Extending the results of the paper to the continuous-time
case represents a potential research direction as well. Investigating the computation
complexity of the presented realization algorithm, remains a topic of future research.
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