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Abstract. We propose a dynamic texture feature-based algorithm for
registering two video sequences of a rigid or nonrigid scene taken from
two synchronous or asynchronous cameras. We model each video sequence
as the output of a linear dynamical system, and transform the task of
registering frames of the two sequences to that of registering the parame-
ters of the corresponding models. This allows us to perform registration
using the more classical image-based features as opposed to space-time
features, such as space-time volumes or feature trajectories. As the model
parameters are not uniquely defined, we propose a generic method to
resolve these ambiguities by jointly identifying the parameters from mul-
tiple video sequences. We finally test our algorithm on a wide variety of
challenging video sequences and show that it matches the performance of
significantly more computationally expensive existing methods.

1 Introduction

A classical problem in computer vision is aligning two images of the same scene,
taken from different viewpoints. This problem is known as image registration,
and its objective is to recover the spatial alignment between the two images.

There exists a vast amount of literature on the problem of image registration
for both rigid and nonrigid scenes (see [1] and the references therein). For example,
feature-based approaches to image registration proceed by first extracting features
such as Harris Corners [3], SIFT [2], MOPS [4], etc., from the images. The features
from the first image are then matched to the features from the second image.
The alignment between the two images is recovered from these matches using
methods such as RANSAC [5]. A homography or an affine transformation is then
computed by fitting such a model to the inliers given by RANSAC.

The last few years have seen an increasing interest in the more challenging
problem of registering video sequences. In addition to recovering the spatial
transformation, video registration also involves recovering the temporal alignment
between the two videos. Although this poses additional challenges with respect
to image registration, one can still argue that image registration algorithms
can be extended in a straightforward manner to solve the video registration
problem. When there is no temporal lag/shift between the two video sequences,
the problem reduces to aligning corresponding pairs of images from the two
video sequences. That is, one can extract features from every frame of the two
video sequences, match the features from a frame in the first sequence to the
features from the corresponding frame in the second sequence, and then recover
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a spatial transformation by applying RANSAC to all features from all pairs of
frames. When there is a temporal lag between the two videos, one could follow
the same procedure. However, the correspondence between frames of the two
video sequences is unknown. This correspondence can be found using all possible
choices of frame pairs from the two video sequences. This exhaustive search
approach will indeed lead to the optimal result. However, this comes at the price
of the computational cost involved in solving this brute force optimization.

To circumvent this problem, Caspi et al. [6, 7] use feature trajectories rather
than features from every frame. Feature points are extracted from the first
frame and tracked throughout the video. The registration problem is posed as a
trajectory matching problem between the two video sequences. An optimization
problem is then solved to jointly recover the spatial and temporal transformation
between the video sequences. In some sense the tracking algorithm performs the
matching between two consecutive frames, which is an easier problem compared
to matching features across non corresponding frames. Ukrainitz et al. [8] on the
other hand, work with dense space-time information instead of feature trajectories.
The idea here is to maximize a global similarity measure between small space-time
volumes extracted from the two videos using a costly optimization scheme.

Paper contributions. In this paper, we propose a much simpler video registra-
tion framework, which requires neither feature tracking nor a costly optimization
procedure. Instead, we reduce the spatial-temporal video registration problem to
the spatial registration of a collection of image bases extracted from the video.

Similar to [9], we model the two video sequences as the output of two linear
dynamical systems (LDSs). Since the two cameras observe the same dynamical
scene, but from a different viewpoint, we assume that the dynamics of the image
intensities in the two views are the same. Our first contribution is to propose a
simple scheme for the joint identification of the two LDSs. The proposed method
retains the sub-optimality of the original identification algorithm of Doretto et
al. [10], but at the same time enforces the criterion that the dynamics of the two
video sequences must be the same.

Since the parameters of the identified LDSs do not depend on the temporal
alignment, the spatial registration of the two videos can be obtained by applying
classical image registration techniques to the parameters of the LDSs. However,
since the parameters of the LDSs are computed only up to change of basis, they
need to be transformed to a canonical form before they can be compared. Our
second contribution is to propose the use of the Jordan canonical form (JCF),
together with a method for converting the identified parameters to the JCF.
This converts all the parameters into the same basis and makes comparing the
parameters more straightforward. The method is numerically stable, independent
of a reference sequence and scales very well for an arbitrary number of sequences.

We finally propose a feature-based method for registering multiple video
sequences using the dynamic texture model. Our approach does not work with
space-time volumes [7] or feature trajectories [8], and does not rely on heuristics
such as the appearance image [9]. Instead, we extract standard image based
features from the parameters of the LDSs to perform the registration.
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2 Video Registration using Dynamic Textures

2.1 Dynamic Textures Framework

We first briefly review the dynamic texture model. Please see [10] for more details.
Given a video sequence {I(t) ∈ Rp}F

t=1, we model it as the output of a LDS

z(t + 1) = Az(t) + Bv(t) (1)

I(t) = C0 + Cz(t) + w(t). (2)

The vector z(t) ∈ Rn represents the hidden state of the system at time t. Its
evolution is controlled by the dynamics matrix A ∈ Rn×n and the input-to-
state matrix B ∈ Rn×q. The zero-mean Gaussian processes v(t) ∼ N (0, Q) and
w(t) ∼ N (0, R) model the process noise and the measurement noise, respectively.
The appearance matrix C ∈ Rp×n maps the hidden state to the image and the
vector C0 ∈ Rp is the temporal mean of the video sequence. The order of the
system is given by n and p is the number of pixels in the image.

The advantage of using this model is that it enables us to decouple the
appearance of the video, represented by C, from the temporal evolution of
the video represented by A. This property will allow us to recover the spatial
registration independently from the temporal lag between the video sequences.

Given {I(t)}F
t=1, the first step is to identify the parameters of the LDS. There

are several choices for the identification of such systems from the classical system
identification literature, e.g., subspace identification methods such as N4SID
[11]. The problem with such methods is that, as the size of the output increases,
these methods become computationally very expensive. Hence, traditionally the
method of identification for dynamic textures has been a suboptimal solution
proposed in [10]. This method is essentially a Principal Component Analysis
(PCA) decomposition of the video sequence. Given the video sequence {I(t)}F

t=1,
the mean C0 is first calculated. The parameters of the system are then identified
using SVD to factorize the mean subtracted matrix as[

I(1)− C0, . . . , I(F )− C0
]

= U(SV >) = CZ. (3)

Given Z = [z(1) . . . z(F )], the parameter A is obtained as the least squares
solution to the system of linear equations A[z(1) . . . z(F − 1)] = [z(2) . . . z(F )].

It is well known that if one performs the SVD, the factorization is unique up to
an invertible transformation, i.e. the recovered factors are CP−1 and PZ, where
P ∈ Rn×n is an arbitrary invertible matrix. Hence the LDSs with parameters
(A,B, C) and (PAP−1, PB,CP−1) both generate the same output process. This
fact does not pose a problem when dealing with a single video sequence. However,
if one wants to compare the parameters identified from multiple sequences, each
set of identified parameters could potentially be computed with respect to a
different basis. This poses a problem when one wants to compare the parameters
say column by column. In order to address this issue, in the next section we
outline a method to account for the change of basis. We propose to do this by
converting the parameters into a canonical form. Once the parameters are in the
canonical form, the task of comparing these parameters becomes straightforward.



4

2.2 Jordan Canonical Form for Parameter Comparison

There have been a few attempts to address the basis issue in prior work. In [12],
Chan et al. used one sequence as the reference and converted the other sequence
into the basis of the reference sequence. Vidal et al. in [13] used the diagonal
form of the A matrix. The problem is that the resulting parameters in canonical
form are complex, because the eigenvalues of A can be complex. To deal with
this issue, the Reachability Canonical Form (RCF) was used in [9]. However,
the RCF form uses the pair (A,B) to convert the system into canonical form.
For applications of dynamic textures, such as registration and recognition, it is
preferable to have a canonical form based on the parameters (A,C), because they
model the appearance and the dynamics of the system. The matrix B, which
models the input noise, is not that critical to describe the appearance of the scene.
An obvious alternative is to use the Observability Canonical Form (OCF) [14]

Ac =



−an−1 1 0 · · · 0
−an−2 0 1 · · · 0

...
...

...
. . .

...

−a1 0 0
... 1

−a0 0 . . . 0 0

 ∈ Rn×n and Cc =
[
1 0 0 · · · 0

]
∈ R1×n, (4)

where An + an−1A
n−1 + . . . + a0I = 0 is the characteristic polynomial of A. How-

ever, it is well known that using the OCF can lead to numerical instabilities [14].
In order to overcome this issue, we propose to use a canonical form based

on the Jordan real form. When A has 2p complex eigenvalues and n− 2p real
eigenvalues, the Jordan Canonical Form (JCF) is given by

Ac =


σ1 ω1 0 · · · 0
−ω1 σ1 0 · · · 0

...
...

. . . 0 0
0 0 0 λ2p−n−1 0
0 0 . . . 0 λ2p−n

 and Cc =
[
1 0 1 0 . . . 1

]
, (5)

where the eigenvalues of A are given by {σ1 ± iω1, . . . , σp ± iωp, λ1, . . . , λn−2p}.
Note that the JCF is equivalent to the RCF or the OCF, but in a different basis.

Given any canonical form, we now outline the steps that we need to take in
order to convert the identified parameters into the canonical form. Assume that
we have the identified parameters (A,C). We need to find an invertible matrix P
such that (PAP−1, γ>CP−1) = (Ac, Cc), where the subscript c represents any
canonical form. The vector γ ∈ Rp is an arbitrary vector chosen to convert the
LDS (A,C) with p outputs to a canonical form, which is defined for only one
output. In our experiments we set it to be

[
1 1 . . . 1

]>, so that all rows of C are
weighted equally. Now, the relationship between the A matrix and its canonical
form Ac is a special form of the Sylvester equation

AcP − PA = 0. (6)
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Vectorizing this equation, we obtain (I ⊗ Ac − A> ⊗ I)vec(P ) = 0, where ⊗
represents the Kronecker product. If we also vectorize the equation relating the
C matrices, CcP = γ>C, we can solve for P from both equations as follows[

I ⊗Ac −A> ⊗ I
I ⊗ Cc

]
vec(P ) =

[
0

C>γ

]
. (7)

Once we have solved this equation we can convert the parameters into the
canonical form using P . It should be noted that the JCF is unique only up to a
permutation of the eigenvalues. However, if the eigenvalues are different, we can
choose a predefined way to sort the eigenvalues, and obtain a unique JCF.

2.3 Joint Identification of Dynamic Textures

In this section, we will show that using a canonical form helps us to jointly
identify the parameters of the LDSs associated with multiple video sequences of
the same rigid or nonrigid scene, but taken by multiple (asynchronous) cameras.
We will model such a collection of m video sequences {Ii(t) ∈ Rpi}i=1,...m

t=1,...,F as the
output of m LDSs whose dynamics are the same. Specifically, the LDSs share
the same A matrix and the same state z(t), modulo a temporal shift τi ∈ Z, i.e.

z(t + 1) = Az(t) + Bv(t) and Ii(t) = C0
i + Ciz(t + τi) + wi(t). (8)

One possible way of identifying the parameters these m LDSs is to apply
the identification algorithm described in §2.1 to each video sequence separately.
More specifically, we let Ĩi(t) = Ii(t)−C0

i , form the matrix Wi = [Ĩi(1) . . . Ĩi(F )],
and calculate its SVD Wi = UiSiV

>
i . The parameters of the LDSs are identified

as Ci = U(:, 1 : n) and Zi = S(1 : n, 1 : n)V (:, 1 : n)>. The matrix Ai is then
linearly obtained from Zi. An immediate problem with this scheme is that, due
to the presence of noise, viewpoint changes and the suboptimal identification,
there is no guarantee that the Ai matrices for the m videos will be the same.

In order to enforce the same dynamics, we propose a simple method where all
the videos are stacked into a single matrix W , which is factorized using the SVD as

W =

 Ĩ1(1) . . . Ĩ1(F )
...

Ĩm(1) . . . Ĩm(F )

 = USV >. (9)

Although this seems to be the intuitively obvious thing to do, we will now show
that this is indeed the correct thing to do. If for the sake of analysis we ignore
the noise terms, we obtain the state evolution as z(t) = Atz0, where z0 is the
initial state of the system. Now if we consider a temporal lag τi ∈ Z for the ith

video sequence, then the evolution of the hidden state of the ith sequence is given
by zi(t) = Aτiz(t). Therefore, we can decompose W as follows

W =


C1A

τ1z(1) . . . C1A
τ1z(F )

C2A
τ2z(1) . . . C2A

τ2z(F )
...

CmAτmz(1) . . . CmAτmz(F )

 =


C1A

τ1

C2A
τ2

...
CmAτm

 [
z(1) z(2) . . . z(F )

]
. (10)
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Note that the Ci matrix we recover from stacking all the videos is the true Ci

matrix multiplied by Aτi . The problem is that A is unknown, and so we cannot
directly compute Ci. To resolve this, consider the equation for the ith video

[Ĩi(1) . . . Ĩi(F )]=CiA
τi [z(1) . . . z(F )]=CiA

τi(Aτi)−1[z(τi+1) . . . z(F +τi)]. (11)

We can see that the parameters we estimate are the original parameters of the
system, but in a different basis. Therefore, by converting the parameters to the
canonical form, we can remove the trailing Aτi and recover the original parameters
in their canonical form. The details can be found in Algorithm 1. Having identified
a dynamic texture model for all video sequences with a common A, and all the C
matrices with respect to the same basis, in the next section we describe a method
to register multiple video sequences using the joint identification framework.

2.4 Registering Video Sequences using Dynamic Textures

Consider two video sequences I1(x, t) and I2(x, t), where x denotes the pixel
coordinates, and t = 1, . . . , F . Assume that the video sequences are related by
a spatial transformation H and a temporal lag τ , i.e. I1(x, t) = I2(H(x), t + τ).
It follows from (8) that τ = τ1 − τ2, C0

1 (x) = C0
2 (H(x)), and C1(x) = C2(H(x)).

Therefore, the joint identification algorithm described in §2.3 allows us to decouple
the recovery of the spatial alignment from the temporal lag. Based on this fact, we
now propose a straightforward method to spatially register two video sequences
using both the mean image C0 and the n columns of the C matrix, which we
will refer to as the dynamic appearance images. Once the spatial alignment has
been recovered, we temporally align the two sequences using a simple line search
in the temporal direction, i.e. τ = arg minτ

∑
t ‖I1(x, t)− I2(H(x), t + τ)‖2.

Our algorithm to spatially register the two video sequences I1(t) and I2(t)
proceeds as follows. We calculate the mean images C0

1 and C0
2 , identify the system

parameters (A,C1) and (A,C2) in the JCF, and convert every column of Ci into its
image form. We use the notation Ci

j to denote the ith column of the jth sequence
represented as an image. We use a feature-based approach to spatially register
the two set of images {C0

1 , C1
1 , . . . , Cn

1 } and {C0
2 , C1

2 . . . , Cn
2 }. We extract SIFT

features and a feature descriptor around every feature point in the two sets of n+1
images. We match the features extracted from image Ci

1 with those extracted from
image Ci

2, where i ∈ {0, . . . , n}. We then concatenate the correspondences into
the matrices X1 ∈ R3×M and X2 ∈ R3×M . The corresponding columns of X1 and
X2 are the location of the matched features in homogenous co-ordinates and M is
the total matches from the n + 1 image pairs. We then recover a homography H
such that X2 ∼ HX1. In order to recover the homography, we first run RANSAC
and obtain the inliers from the matches. We then fit a homography using the non
linear method outlined in [15]. Notice that, by following this approach, we weight
the contribution of the correspondences from every image pair equally. This is
because the best matches given by RANSAC could arise from the mean image or
the dynamic appearance images or both. Hence we do not explicitly restrict the
algorithm to use only the mean image or only the dynamic appearance images,
as done in [9]. This choice now becomes automatic.
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Algorithm 1: (Joint identification of multiple video sequences)

Given Ii(t), first calculate C0
i , the temporal image mean. Set Ĩi(t) = Ii(t)− C0

i .1

Compute C, Z using the rank n singular value decomposition of the matrix2

W =

264 Ĩ1(1), . . . , Ĩ1(F )
...

Ĩm(1), . . . , Ĩm(F )

375 = USV > Z = SV >, C = U.

Compute A = [z(2), . . . , z(F )][z(1), . . . , z(F − 1)]†.3

Let Ci ∈ Rpi×n be the matrix formed by rows
Pi−1

j=1 pj + 1 to
Pi

j=1 pj of C, and4

convert the pair (A, Ci) to canonical form.

Algorithm 2: (Registration of multiple video sequences)

Given I1(t) and I2(t), calculate the parameters A and (C0
i , Ci).1

Extract features and feature descriptors from (Ci
j), j = {1, 2}, i = 0, . . . , n.2

Match features from Ci
1 to Ci

2 and also in the reverse direction. Retain the3

matches that are consistent across both directions and concatenate the feature
point location from Ci

1 into X1 and it’s corresponding match into X2

Recover the Homography H using RANSAC such that X2 ∼ HX1.4

Calculate temporal alignment τ as τ = arg minτ

P
t ‖I1(x, t)− I2(H(x), t + τ)‖2.5

3 Experimental Results

In this section, we evaluate the different steps of our algorithm on a wide variety
of sequences and compare its performance to existing algorithms.
Evaluation of the Jordan Canonical Form. To evaluate our canonical
form, we first take a video sequence and identify the parameters of the system
using the suboptimal approach. We apply different kinds of transformations
to the parameters of the system, i.e. given (C,A) we form new parameters
(C̃, Ã) = (CP−1, PAP−1). This simulates the ambiguities we encounter using
the suboptimal approach. We then convert (C,A) and (C̃, Ã) to their canonical
form (Cc, Ac) and (C̃c, Ãc) respectively. Errors are then calculated between the
parameters before and after converting it to the canonical form. We perform the
experiment for 200 trials of each transformation and then calculate the mean
error. The transformations are randomly generated from three different classes
of transformations: an invertible matrix, an orthogonal matrix or a sign flip. By
a sign flip transformation, we refer to a diagonal matrix with entries in {−1, 1}.
The results of this experiment are summarized in Table 1. We see that for simple
transformations such as the sign flip, both the canonical forms perform very well.
However, when the transformation gets more involved, the errors from the RCF
are higher than the initial errors, while the JCF is still able to perform well.

In order to qualitatively show the difference between the canonical forms, we
show two sample columns from the C matrix of two video sequences from the
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Table 1. Parameter errors before and after converting to the canonical form.

Transformation
Errors initially Errors in JCF Errors in RCF

‖A− Ã‖F ‖C − C̃‖F ‖A− Ã‖F ‖C − C̃‖F ‖A− Ã‖F ‖C − C̃‖F

Sign flip 2.568 7.063 0 0 0 0

Invertible 1.16e+02 1.51e+02 6.79e-10 1.31e-04 2.00e+06 1.08e+08

Orthogonal 2.61e+00 7.06e+00 8.04e-14 1.31e-08 1.48e+07 6.46e+08

parking set, which we will later show registration results on. Fig. 1 shows columns
of C identified using both algorithms. One can see that the corresponding column
images are spatially transformed versions of each other when we use the JCF.
However, no such trend is observed when we use the RCF.

(a)

(b)

C14 using JCF C15 using JCF C14 using RCF C15 using RCF

Fig. 1. Sample columns of the C matrix displayed as images (a) Sequence 1 from the
parking set (b) Sequence 2 from the parking set.

Evaluation of the Registration. For our experiments on registration, we
tested our algorithm on all the sequences available at [16], one sequence from [17]
and one from [18]. These test video sequences consist of 3 pairs of sequences of
rigid scenes, 3 pairs of sequences of nonrigid scenes, and 2 other pairs of sequences.
Our last category had one pair of sequences with a relatively large zoom factor
and the other was from two non stationary cameras capturing different modalities.

We use the composite video in order to qualitatively asses the performance
of the registration. The composite video is formed by taking the red and blue
color channels from the first video and the green color channel from the second
video. We show the composite video before and after registration so as to display
both the initial and final alignments. Notice that green and purple regions in the
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composite video correspond to errors in the registration, or regions that exist in
one image, but not in the other.

We first compare the methods of [9] and [6] to ours on the common sequences
from [9] and [6], i.e. the flag, parking, and fountain sequences. We see from Fig. 2
that for all the 3 sequences the alignment we obtain is as good if not better that
that obtained by the other methods. Moreover, when compared to [9], we are
able to perform the registration with lower model orders for the LDSs. The model
order for [9] was in the range 50-75, but in our method they were in the range of
20-30. In comparision with [6], our algorithm avoids expensive optimizations and
is able to recover the same quality of alignment from much fewer images.

Initial Alignment Ravichandran [9] Caspi [6] Our Method

Fig. 2. Comparison of results from three methods: First Row: Flag sequence, Second
Row: Parking sequence and Last Row: Fountain sequence.

We now show additional results in Fig. 3. The sequences here exhibit different
kinds of variations such as, variation in intensity, shape (non-rigid objects) and
modality. We see that in all the cases we perform as well as state-of-the-art
methods. We are able to register images with a large baseline transformation as
shown in Fig. 3(d). Although we have not taken any explicit measure to account
for multi-modality, we found that by using SIFT features we are able to register
multimodal video sequences as shown in Fig. 3(e). Here, one sequence is captured
using a normal camera and the other is captured using an infrared camera. For
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this case, one can notice that our result and the result from [8] do not look the
same. This is because we do not perform any kind of fusion.

In order to further analyze our registration algorithm, we obtained the inliers
from RANSAC and then calculated the percentage of inliers from the mean image
and from the dynamic appearance images. This result can be seen in Table 2. The
interesting fact about these numbers is that our algorithm automatically adapts
the percentage of features obtained from the mean and dynamic appearance
images. Notice that the percentage of inliers from the dynamic appearance images
is 100% for the flag sequence. This is in agreement from the conclusions of [9],
where the authors reported that by using the appearance image alone they were
able to register the sequences the best. Thus we see that the algorithm performs
very well on a large variety of sequences and our results are comparable to existing
methods.

Table 2. Percentage inliers from dynamic appearance images for different sequences.

Type Rigid Non-Rigid Other

Sequence Palm Parking Light Fountain Fireworks Flag Wide Multimodal

Inlier Percentage 68.75 78.74 84.66 93.80 93.90 100.00 71.02 89.90

4 Discussion and Conclusion

We have proposed a method for registering video sequences based on the dynamic
texture model. As compared to [6], we see that we are able to recover the spatial
transformation independent of the temporal transformation. Our results show
that our method performs equivalently to theirs. However our method reduces
the number of frames we need to process. In the case of [6], they need to perform
feature extraction, tracking, and trajectory matching for two sets of F frames.
In our case, we only need feature extraction over two sets of n + 1 � F images.
In addition, we have the computations for calculating the system parameters.
Typically F/n for the sequences we have presented is in the range of 8-10, hence
using our method gives an advantage with respect to number of frames we
need to process. As compared to [9], we do not need to make the choice of
whether to register using the mean or the dynamic appearance or both. Given
the information extracted from the video sequences, the algorithm automatically
makes this choice. This gives us a generic algorithm that can be applied to both
rigid and non-rigid sequences. One other advantage is that we are able to register
the video sequences with lower system orders. In short, we have presented an
efficient method that works equally well compared to the state of the art.

The other two important contributions of this paper are the use of a joint
system identification framework together with a canonical form representation.
The joint identification and the canonical form are not only applicable to the
case of registering video sequences, but also to the entire genre of algorithms
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Initial Alignment Prior Work Our Method

Fig. 3. Comparison with [6] (a) Light (b) Palm (c) Firework Sequences. Comparison
with [7] (d) Wide Zoom Sequence. Comparison with [8] (e) Library Sequence
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based on the dynamic texture model. Our future work involves investigating the
performance gain obtained by this framework on other problems such as dynamic
texture recognition.
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