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Abstract

We consider the problems of 3D reconstruction, pose
estimation and object classification, from a single 2D im-
age. In sharp contrast with state of the art methods that
solve each of these problems separately or iteratively, we
propose a mathematical framework that solves these prob-
lems jointly and simultaneously. Since the joint problem is
ill posed unless “prior knowledge” is considered, the pro-
posed framework incorporates “prior knowledge” about
the 3D shapes of different object classes. This knowledge
is used to define a function L(H) that encodes how well
each hypothesis H (object class and pose) “explains” the
input image. To efficiently maximize L(H) without having
to exactly evaluate it for each hypothesis H , we propose a
H&B algorithm that computes and refines upper and lower
bounds for L(H) at a much lower cost. In this way sub-
optimal hypotheses are disregarded with little computation.
The resulting algorithm integrates information from the 2D
image and the 3D prior, is efficient, and is guaranteed to
find the optimal solution.

1. Introduction
It is in general easy for humans to “perceive” three di-

mensional (3D) objects, even when presented with a single
two dimensional (2D) image alone. This ability to “per-
ceive” the world in 3D is essential to interact with the envi-
ronment and arguably to “understand” the observed scenes.
By trying to replicate this ability we come to appreciate the
tremendous complexity of this problem, and the marvelous
proficiency of our own visual system, capable of “under-
standing” scenes containing large numbers of objects, ex-
hibiting great variability in shape and appearance.

To tackle this problem, namely 3D reconstruction from a
single 2D image, we propose a method that exploits:

Shape cues. For many object classes, shape (rather than
appearance) is a very good indicator of object class. For

instance, consider how you would describe a ‘mug’. In ad-
dition, the shapes of objects in the foreground can often be
extracted reliably from videos using existing background
modeling techniques (e.g., [6, 5]).

3D knowledge. In 3D representations, as opposed to
2D ones, the “knowledge” is not tied to a particular view-
point. Consequently, there is no need to acquire/store dif-
ferent training examples, and/or learn different parameters,
for each viewpoint: The resulting methods can in principle
handle any viewpoint. In addition, 3D representations al-
low us to easily impose 3D constraints (e.g., that an object
is resting on a supporting plane, not “flying” above it).

Synergy. To use “3D knowledge” about an object in its
3D reconstruction, we need to know its class (e.g., if an ob-
ject is a ‘mug’ it must have a handle somewhere, even if we
do not see it). Moreover, to incorporate our knowledge in
the right spatial locations, we need to know the object’s lo-
cation/pose (e.g., if the mug is in a known pose, its handle
must be in a certain position). To classify the object and
estimate its pose, on the other hand, the information in the
3D reconstruction is helpful. Therefore we solve the tasks
of 3D reconstruction, object classification and pose estima-
tion, simultaneously, rather than in any particular order.

1.1. The general approach

To solve the aforementioned tasks simultaneously, while
exploiting shape cues and prior 3D knowledge about the ob-
ject classes, we define a probabilistic graphical model that
encodes the relationships among the variables: class K,
pose T , input image f , and 3D reconstruction v (described
in detail in §3). Because of the large number of variables
in this graphical model (the dimensions of f and v are very
high), and due to the existence of a huge number of loops
in the graph, standard inference methods are either very in-
efficient or not guaranteed to find the optimal solution.

For this reason, we use the hypothesize-and-verify para-
digm to solve our problem: one hypothesis H is defined for
every possible “state of the world,” and our goal is to select
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the hypothesis that best “explains” the input image. In other
words, our goal is to select the hypothesis H∗ that solves

H∗ = argmax
H∈H

L(H), (1)

where H is the set of all possible hypotheses, referred to
as the hypothesis space, and L(H) is a function, referred
to as the evidence, that quantifies how well each hypothesis
“explains” the input.

In the specific problem addressed in this article, the hy-
pothesis space H contains every hypothesis Hij defined by
each possible object class Ki and each possible object pose
Tj (i.e., Hij , (Ki, Tj)). By selecting the hypothesis Hij

that solves (1), the hypothesize-and-verify approach simul-
taneously estimates the class Ki and the pose Tj of the ob-
ject in the image. As we shall later see, the 3D reconstruc-
tion v is estimated during the computation of the evidence.
The evidence L(H) for a hypothesis H , on the other hand,
is derived from the system’s joint probability, which is ob-
tained from the graphical model mentioned above.

Since the number of hypotheses in the set H is poten-
tially very large, it is essential to evaluate L(H) very ef-
ficiently. For this purpose, we exploit an algorithm of
the class hypothesize-and-bound (H&B) introduced in [10].
This class of algorithms is described next.

1.2. Hypothesize-and-bound algorithms

H&B algorithms have two parts. The first part consists
of a bounding mechanism (BM) to compute lower and up-
per bounds, L(H) and L(H), respectively, for the evidence
L(H) of a hypothesis H . These bounds are much cheaper
to compute than the evidence itself, and are often enough
to discard hypotheses (a hypothesis H1 can be safely dis-
carded if L(H1) < L(H2) for some hypothesis H2). On
the other hand, these bounds are not as “precise” as the ev-
idence itself, since they only define an interval where the
evidence for a hypothesis is guaranteed to be. Nonetheless,
the interval’s width can be made arbitrarily small by invest-
ing additional computational cycles into the refinement of
its bounds. In other words, the BM can dynamically trade
computation for precision.

The second part of a H&B algorithm is a focus of atten-
tion mechanism (FoAM) to sensibly and dynamically allo-
cate the available computational cycles among the different
hypotheses whose bounds are to be refined [10, §3]. Initially
the FoAM “orders” the BM to compute rough and inexpen-
sive bounds for each hypothesis. Then, during each itera-
tion, the FoAM selects one hypothesis and calls the BM to
refine its bounds. This process continues until either a hy-
pothesis is proved optimal, or a group of hypotheses cannot
be further refined or discarded. Such hypothesis or group of
hypotheses maximize the evidence, regardless of the exact
values of the evidences (which do not need to be computed).

At each iteration, hypotheses are carefully selected to min-
imize the total number of cycles spent.

In principle H&B algorithms can be applied to any opti-
mization problem in which it is possible to efficiently bound
the evidence. Thus, the key contributions of this article are:
1) to define an evidence function for solving several vision
tasks; and 2) to derive tight bounds on the evidence using
the theory of semi-discrete shapes of [10]. In what follows
we review related work (§2), formally define the problem
(§3), describe the BM (§4), show experimental results (§5),
and conclude with a discussion (§6).

2. Prior work
The problem of simultaneous 3D reconstruction, pose

estimation, and object classification from an image has only
recently been approached. To the best of our knowledge, the
work in [9] is the only one that uses H&B algorithms for
solving exactly the same problem. There are, however, two
main differences between our work and that of [9]. First,
we use the mathematical theory of shapes and summaries
described in [10] to compute much tighter bounds for the
evidence L(H), and hence reduce the computational load.
Second, the present model corrects a bias in [9]. Namely
that given two similar 3D shapes with equal projection on
the camera plane, the framework in [9] “prefers” the shape
located further away from the camera, while the current
framework has no preference for either shape.

There are a number of works in related areas. [12], for
example, proposed a method to simultaneously categorize
an object, estimate its pose, and obtain a crude 3D recon-
struction from a single image. The reconstruction consists
of a few planar faces (or “parts”) linked together by homo-
graphic transformations. [13] and [4], on the other hand,
focus on the related problem of scene reconstruction from
an image. In these works the reconstructed surface contains
a planar patch for each superpixel in the input image. The
3D orientation of these patches is inferred from the super-
pixels’ appearance using a probabilistic graphical model.

Since the early days of computer vision many methods
have been proposed to reconstruct and estimate the pose of
specific object classes from an image. These methods, how-
ever, only handled somewhat artificial object classes not fre-
quently found in the real world (e.g., polyhedral shapes [7]
and generalized cylinders [1]). More recently a number of
methods have been proposed to deal with more realistic, but
still very specific, object classes (e.g., trees/grasses [3] and
people [16, 14]). In general these methods consist of a para-
metric model of a class, and a procedure to fit the projection
of the model to an image. These approaches are best suited
to reconstruct objects from the class they were designed for,
and are in general difficult to extend to other classes.

In contrast, more general representations that can learn
about an object class from exemplars (as our approach
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does), can be trained on new classes without having to re-
design the representation anew each time. One example
of such a general representation is found in [11], which
uses a level set formulation and 3D shape priors in order
to simultaneously segment an object in an image and esti-
mate its pose (they do not, however, address classification
or reconstruction). The shape prior model is a set of princi-
pal components learned from the signed distance functions
computed from each 3D shape in the training set.

3. Problem formulation

In this section we formally define our problem of inter-
est. Let f : Θ → Rc (c ∈ N) be an image produced as the
noisy projection onto 2D of a single 3D object (Fig. 1a).
This object is assumed to belong to a known set of classes.
Given this input image and the 3D shape priors (defined
later), the problem is to estimate the class K of the object,
its 3D pose T , recover a 2D segmentation q of the object in
the image, and estimate a 3D reconstruction v of the object
in 3D space. The relationships among these variables are
depicted in the factor graph of Fig. 1b.
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Figure 1. (a) Problem setup. The camera is defined by its center ~c
and a patch Θ ⊂ S2 in the unit sphere. The set Φ consists of the
points ~X ∈ R3 that project to Θ and satisfy Rmin ≤ ‖ ~X − ~c‖ ≤
Rmax. A single object (represented by the blue cylinder) is as-
sumed to be in Φ. (b) Factor graph [2] proposed to solve the prob-
lem. Circles represent variables and squares represent factors in
the system’s joint probability. Factors are connected to the vari-
ables they contain. Observed variables are shaded. Variables and
factors inside a plate are instantiated for each element in the set
indicated in the lower right corner of the plate.

It follows from the independence assumptions depicted
in the graph that the joint probability of f , q, v, and H ,
(K,T ), is given by

p (f, q, v,H) = p(f |q)p(q|v)p(v|H)p(H). (2)

Thus, given f , our goal is to find the values of H , q, and v,
that maximize (2). In doing so we will be estimating K, T ,
q, and v, simultaneously. Each term in (2) will be formally
defined in §3.2-3.4. In order to do this, in the next section
we briefly review the required concepts from [10].

3.1. Review: Shape representations and likelihoods

We represent the shapes q and v as instances of what we
call continuous shapes, as defined next.

Continuous shape. Given a set Ω ⊂ Rd, a set S ∈ Ω is a
continuous shape if: 1) it is open, and 2) its boundary has
zero measure. Alternatively, a continuous shape S can also
be regarded as the function S : Ω → {0, 1} defined as the
indicator function of the set S (i.e., S(~x) = 1 ⇐⇒ ~x ∈ S).

In order to define the terms p(f |q) and p(v|H) involving
the continuous shapes q and v in (2), we define the likeli-
hood of a continuous shape S by extending the definition of
the likelihood of a discrete shape Ŝ, defined next.

Discrete shape. Given a partition Π(Ω) = {Ω1, . . . ,Ωn}
of a set Ω ⊂ Rd (i.e., a collection of sets such that

⋃
i Ωi =

Ω, and Ωi 6= Ωj for i 6= j), the discrete shape Ŝ is defined
as the function Ŝ : Π(Ω) → {0, 1}. A continuous shape S
can be produced from a discrete shape Ŝ (denoted S ∼ Ŝ)
as S(~x) = Ŝ(Ωi) ∀~x ∈ Ωi, for i = 1, . . . , n.

Let B̂ = {B̂1, . . . , B̂n} be a family of independent
Bernoulli random variables characterized by the success
rates pB̂(i) , P (B̂i = 1). We call this a discrete Bernoulli
Field (BF). The log-likelihood logP (B̂= Ŝ) of the discrete
shape Ŝ according to the discrete BF B̂ is computed as

n∑
i=1

logP (B̂i = Ŝ(Ωi)) = ZB̂ +
n∑
i=1

Ŝ(Ωi)δB̂(i), (3)

where ZB̂ ,
n∑
i=1

log (1−pB̂(i)) and δB̂(i) , log
( pB̂(i)

1−pB̂(i)

)
.

To compute the likelihood of a continuous shape, we first
define continuous BFs by analogy with discrete BFs. A con-
tinuous BF is a collection of independent Bernoulli random
variables {B~x}, where a variable B~x is defined for each
point ~x ∈ Ω (rather than for each index i ∈ {1, . . . , n}).
The success rates of the BF are given by the function
pB(~x) , P (B~x = 1). A continuous BF B can be produced
from a discrete BF B̂ (denoted B ∼ B̂), by defining its
success rates as pB(~x) = pB̂(Ωi) ∀~x ∈ Ωi, for i=1, . . . , n.

The log-likelihood logP (B = S) of a continuous shape
S according to a continuous BF B, is then defined to be

1

uΩ

∫
Ω

logP (B~x=S(~x)) d~x =
1

uΩ

[
ZB+

∫
Ω

S(~x)δB(~x)
]
,

(4)

where ZB,
∫

Ω
log (1−pB(~x)) d~x, δB(~x), log

(
pB(~x)

1−pB(~x)

)
and uΩ is a constant referred to as the equivalent unit size
(explained below).

The following proposition shows that, under certain con-
ditions, continuous and discrete log-likelihoods (in (4) and
(3), respectively) coincide. For this reason we said that (4)
extends (3).
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Proposition 3.1 (Rationale for continuous likelihoods)
Let Π(Ω) be a partition of a set Ω such that ∀ω ∈ Π(Ω),
|ω| = uΩ, and let B̂ and Ŝ be a discrete BF and a discrete
shape, respectively, defined on Π(Ω). Finally, let B be
a continuous BF and let S be a continuous shape such
that B ∼ B̂ and S ∼ Ŝ. Then, the log-likelihoods of the
continuous and the discrete shapes are equal, i.e.,

logP (B = S) = logP (B̂ = Ŝ). (5)

Proof. Immediate from the definitions.

Note that the equivalent unit size uΩ “scales” the value
in brackets in (4) according to the resolution of the partition
Π(Ω), making it comparable to (3). We are now ready to
define the terms on the right hand side of (2).

3.2. Image term: p(f |q)

The 2D segmentation q that we want to estimate (level 5
of Fig. 1b) is represented as a 2D continuous shape defined
on the image domain Θ. This segmentation q states whether
each point ~x ∈ Θ is deemed to be in the Background (if
q(~x) = 0), or in the Foreground (if q(~x) = 1).

We assume that the state q(~x) of a point ~x ∈ Θ cannot
be observed directly, but rather it defines the pdf of a feature
f(~x) at ~x that is observed (level 7 of Fig. 1b). For example,
f(~x) could simply indicate color, depth, texture class, or
in general any feature directly observed at ~x, or computed
from other features observed in the neighborhood of ~x.

We also suppose that if a point ~x belongs to the
Background, its feature f(~x) is distributed accord-
ing to the pdf p~x(f(~x)|q(~x) = 0), while if it belongs
to the Foreground, f(~x) is distributed according to
p~x(f(~x)|q(~x) = 1). This feature f(~x) is assumed to be
independent of the feature f(~y) and the state q(~y) in every
other point ~y ∈ Θ, given q(~x). In the experiments in §5,
a different pdf was learned for each point ~x in the back-
ground (through background subtraction), and a single pdf
was learned for all the points in the foreground.

The image term, log p(f |q) (level 6 of Fig. 1b), is thus
given by

log p(f |q) , 1

uΘ

∫
Θ

log p~x(f(~x)|q(~x)) d~x, (6)

where the equivalent unit size in Θ, uΘ, is a constant to be
defined. If we define a continuous BFBf with success rates

pBf
(~x) ,

p~x (f(~x)|q(~x) = 1)

p~x(f(~x)|q(~x) = 0) + p~x(f(~x)|q(~x) = 1)
, (7)

it follows that (6) is equal, up to a constant, to the log-
likelihood of the shape q according to the BF Bf , i.e.,
log p(f |q) = logP (Bf = q) + C1. Therefore, using (4),
the image term can be written as

log p(f |q) =
1

uΘ

[
ZBf

+

∫
Θ

q(~x)δBf
(~x) d~x

]
+ C1. (8)

3.3. 3D shape prior term: P (v|H)

While the segmentation q is a 2D continuous shape on
the 2D image domain Θ, the reconstruction v (level 3 of Fig.
1b) is a 3D continuous shape on the set Φ ⊂ R3. Hence v
states whether each point ~X ∈ Φ is deemed to be In the
reconstruction (if v( ~X) = 1), or Out of it (if v( ~X) = 0).
The 3D point ~X is expressed in the world coordinate system
(WCS) defined on the set Φ.

Since our problem of interest is ill posed unless some
form of prior knowledge about the shape of the objects is
incorporated, we assume that the object class K (level 1 of
Fig. 1b) is one out of NK distinct possible object classes,
each one characterized by a 3D shape prior BK encoding
our prior geometric knowledge about the object class. This
knowledge is stated with respect to an intrinsic 3D coordi-
nate system (ICS) defined for each class. In other words,
all the objects of the class are assumed to be in a canonical
pose (i.e., normalized) in this ICS.

Each shape prior BK is encoded as a BF, such that for
each point ~X ′ in the ICS of the class, the success rates
pBK

( ~X ′) , P (v′( ~X ′) = 1|K) indicate the probability that
the point ~X ′ would be In the 3D reconstruction v′ defined
in the ICS, given the class K of the object (Fig. 2).

(a) (b) (c)

Figure 2. Vertical cuts
through the 3D BFs cor-
responding to the object
classes mugs (a), cups
(b), and bottles (c). Col-
ors indicate the success
rates pBK ( ~X ′).

In order to translate the quantities v′ and pBK
(defined

in the ICS), to the corresponding quantities v and pBH
(de-

fined in the WCS), we define the transformation T that maps
each point ~X ′ in the ICS to the point ~X , T ( ~X ′) in the
WCS (level 1 of Fig. 1b). This transformation, referred to
as the pose, is an unknown to be estimated. Thus, we can
now write the entities in the WCS in terms of those in the
ICS, as v( ~X) = v′(T−1( ~X)) and pBH

( ~X) , P (v( ~X) =

1|K,T ) = pBK
(T−1( ~X)) (level 2 of Fig. 1b).

Therefore, from (4), the shape prior term, log p(v|H), is
given by

log p(v|H) ,
1

uΦ(T )

∫
Φ

log pBH
( ~X) d ~X =

1

uΦ(T )

[
ZBH

+

∫
Φ

v( ~X)δBH
( ~X) d ~X

]
, (9)

where uΦ(T ) is the equivalent unit size in Φ. We define
this quantity to be uΦ(T ) , |J(T )|/λ, where |J(T )| is the
Jacobian of the transformation T , and λ > 0 is an arbitrary
constant. This will prevent the system from having a bias
towards either smaller objects closer to the camera, or big-
ger objects farther from the camera (see details in [8]).
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3.4. Projection term: P (q|v)

The segmentation q and the reconstruction v are certainly
related, as we expect q to be (at least) “close” to the projec-
tion of v on Θ. Thus, the projection term p(q|v) (level 4
of Fig. 1b) encodes the probability of obtaining a segmen-
tation q in Θ, given that a reconstruction v is present in Φ.
In order to define this term, we first need to understand the
relationship between the sets Θ and Φ (Fig. 1a).

Points in the 3D space Φ are mapped by the camera
transformation into the 2D camera retina Θ (we consider
a spherical retina, i.e., Θ ⊂ S2). Given a point ~c ∈ R3,
referred to as the camera center, and a point ~x ∈ Θ, the set
of points R(~x) , { ~X ∈ Φ : ~X = ~c + r~x, r ∈ [0,∞)}
projects to ~x and is referred to as the ray of ~x. We will often
refer to points ~X ∈ Φ by their projection ~x in Θ and their
distance r from the camera center, as in ~X = (~x, r). The
set Φ can thus be formally defined as Φ , {(~x, r) ∈ R3 :
~x ∈ Θ, Rmin ≤ r ≤ Rmax}.

We can now define the projection term. To reflect our
intuition, we want it to have the following properties:

1. p(q(~x)|v) should depend only on the state of v in R(~x),
denoted as vR(~x), and not on the state of v in other points
of Φ. This follows from the camera projection model.

2. p(q(~x) = 1|vR(~x)) should be higher when the measure
of the set vR(~x) is greater. This property says that recon-
structions that are intuitively “better” will be assigned
higher probabilities.

3. The projection term should be scale invariant, meaning
that it remains agnostic as to whether the object in the
scene is small and close or large and far. This simply
reflects the fact that (standard) cameras cannot estimate
absolute size.

These properties are satisfied by the following projection
term (see a formal derivation of this term in [8]),

log p(q(~x)|v) , log p(q(~x)|`v(~x)) ={
α`v(~x), if q(~x) = 0,

log
(
1− eα`v(~x)

)
, if q(~x) = 1,

(10)

where
`v(~x) ,

∫ ∞
0

v(~c+ r~x)

r
dr (11)

is a measure of the “mass” in the ray R(~x), and α < 0 is a
constant to be determined. Therefore, the projection term is
given by

log p(q|v) ,
1

uΘ

∫
Θ

log p (q(~x)|`v(~x)) d~x, (12)

where uΘ is the equivalent unit size in (8).

3.5. Definition of the evidence: L(H)

In this section we put together the image term, the shape
prior term and the projection term, derived in previous sec-
tions, to obtain an expression for the evidence L(H) of a
hypothesis H . Substituting (8), (9), and (12) into (2), we
get an expression for the joint log-probability of the system,
log p(f, q, v,H). Our goal can now be formally stated as
to solve supq,v,H log p(f, q, v,H), which is equivalent to
solving maxH L

′(H) with

L′(H) , sup
q,v

[
log p(f, q, v,H)

]
. (13)

Instead of computing (13) directly, however, we will first
derive an expression that is equal to it (up to a constant and
a change of scale), but is simpler to work with.

Hence, we disregard the terms C1 and ZBf
/uΘ in

log p(f, q, v,H) that do not depend on H , q, or v, disre-
gard the term logP (H) that is assumed to be equal for all
hypotheses, rearrange terms, multiply by uΘ, and substitute
the result in (13), to arrive at the final expression for L(H),

L(H) , sup
q,v

{∫
Θ

[
q(~x)δBf

(~x)+logP (q(~x)|`v(~x)) (14)

+
uΘ

uΦ(T )

∫ Rmax

Rmin

r2v(~x, r)δBH
(~x, r) dr

]
d~x+

uΘZBH

uΦ(T )

}
.

In the process of finding the hypothesis H = (K,T )
that maximizes L(H) in (14), a segmentation q and a re-
construction v are also obtained. Such a reconstruction v is
“a compromise” between the shape prior of the estimated
class K transformed by the estimated pose T , and the ob-
served features in the image f . As explained before, how-
ever, computing the evidence L(H) for each hypothesis H
using (14) would be prohibitively expensive. For this rea-
son we compute bounds for it and use a H&B algorithm,
instead, to select the best hypothesis. In the next section we
describe the mechanism to compute those bounds.

4. Bounding mechanism
We will now show how to efficiently compute bounds for

L(H) in (14). To compute these bounds we will rely on a
special type of partition, the standard partition, and the con-
cept of summaries introduced in [10]. Before deriving the
bounds, we define these two concepts and prove a lemma.

4.1. Pre-requisites
Standard partition. Let Θ ⊂ S2, R , [Rmin, Rmax] and
Φ = Θ × R ⊂ R3. Let Π(Θ) = {Θ1, . . . ,ΘNΘ

} be a
partition of Θ and let Π(R) = {[r0, r1), . . . , [rNr−1, rNr

)}
be a partition ofR with r0 , Rmin, rNr , Rmax and ri ,
βri−1 = βir0 (β > 1). The standard partition for (Θ,Φ) is
defined as (Π (Θ) ,Π (Φ)), where Π(Φ) , Π(Θ)×Π(R) =
{Φ1,1,Φ1,2, ...,ΦNΘ,Nr

} and Φj,i,Θj×[ri−1, ri) (Fig. 3).
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Figure 3. Example of
a standard partition for
(Θ,Φ), with Π(Θ) =
{Θ1,Θ2,Θ3,Θ4} and
Π(R) = {[Rmin, r1),
[r1, Rmax)}. For clar-
ity only the voxels
Φ1,1, Φ2,2, Φ3,1 ∈
Π(Φ) are shown.

 

   

     

   

      

     

     

   

Mean-summary. Given a BF B defined on a set Ω and a
partition Π(Ω) of this set, the mean-summary is the func-
tional ŶB = {ŶB,ω}ω∈Π(Ω) that assigns the value

ŶB,ω ,
∫
ω

δB(~x) d~x (15)

to each set ω ∈ Π(Ω). The “infinite dimensional” BF is
thus “summarized” by just n , |Π(Ω)| values.

Mean-summaries have two important properties: 1) for
certain kinds of sets ω ∈ Π(Ω), the values ŶB,ω in the sum-
mary can be computed in constant time, regardless of the
“size” of the sets ω (using integral images [15]); and 2) they
can be used to obtain a lower bound for the evidence. We
prove next a result needed to obtain this lower bound.

Lemma 4.1 (Mean-summary identity) Let Π(Ω) be a
partition of a set Ω, let Ŝ be a discrete shape defined
on Π(Ω), let B be a BF on Ω, and let ŶB = {ŶB,ω}
(ω ∈ Π(Ω)) be the mean-summary of B in Π(Ω). Then,
for any continuous shape S ∼ Ŝ, it holds that∫

Ω

δB(~x)S(~x) d~x =
∑

ω∈Π(Ω)

Ŝ(ω)ŶB,ω. (16)

Proof. Immediate from the definitions.

4.2. Derivation of the lower bound

In the next theorem we derive an expression to bound
L(H) from below. This derivation is based on the obser-
vation that the set of continuous shapes that are equivalent
to any discrete shape defined on a partition Π, denoted as
SΠ, is a subset of the set of all continuous shapes S (i.e.,
SΠ ⊂ S). Hence, the supremum in (14) for q, v ∈ SΠ, is
less than the supremum for q, v ∈ S. Moreover, since the
continuous shapes in SΠ are constant inside each partition
element, evaluating this new supremum is easier.

Theorem 4.2 (Lower bound for L(H)) Let Π , (Π(Θ),

Π(Φ)) be a standard partition, and let Ŷf =
{
Ŷf,θ

}
θ∈Π(Θ)

and ŶH =
{
ŶH,φ

}
φ∈Π(Φ)

be the mean-summaries of

two unknown BFs in Π(Θ) and Π(Φ), respectively. Let
ψj,k be the set of the indices of the k largest elements of{
ŶH,Φj,1 , ŶH,Φj,2 , . . . , ŶH,Φj,Nr

}
, and let Ψj,k be the sum

of these elements, i.e., Ψj,k ,
∑
i∈ψj,k

ŶH,Φj,i . Then, for

all BFs Bf with summary Yf , denoted Bf ∼ Ŷf , and for
all BFs BH ∼ ŶH , it holds that L(H) ≥ LΠ(H), where

LΠ(H) ,
uΘZBH

uΦ(T )
+

NΘ∑
j=1

LΘj
(H), and (17)

LΘj
(H) , max

0≤nj≤Nr

{
max

q∈{0,1}

[
qŶf,Θj

+

|Θj | logP (q|nj log β)

]
+

uΘ

uΦ(T )
Ψj,nj

}
. (18)

Moreover, the 3D reconstruction and the 2D segmentation
corresponding to this bound are given by the discrete shapes
v̂ and q̂, respectively, defined by

v̂(Φj,i),

{
1, if i ∈ ψj,n∗j ,
0, otherwise,

and (19)

q̂(Θj),arg max
q∈{0,1}

[
qŶf,Θj +|Θj | logP

(
q|n∗j log β

)]
, (20)

where n∗j is the solution to (18).

Proof. Since the sets of continuous shapes q and v that are,
respectively, equivalent to the discrete shapes q̂ and v̂ are
subsets of the sets of all continuous shapes, it holds that
L(H) (defined in (14)) is greater than or equal to

uΘZBH

uΦ(T )
+ sup

q̂,v̂

{
sup
q∼q̂

v∼v̂

∫
Θ

[
δBf

(~x)q(~x)+

+
uΘ

uΦ(T )

∫ Rmax

Rmin

r2v(~x, r)δBH
(~x, r) dr+

+ logP (q(~x)|`v(~x))

]
d~x

}
. (21)

Since q ∼ q̂ and v ∼ v̂, it follows from Lemma 4.1 that∫
Θ

δBf
(~x)q(~x) d~x =

NΘ∑
j=1

q̂ (Θj) Ŷf,Θj
, and (22)

∫
Θ

∫ Rmax

Rmin

r2v(~x, r)δBH
(~x, r) dr d~x =

NΘ∑
j=1

Nr∑
i=1

v̂ (Φj,i) ŶH,Φj,i . (23)

On the other hand, `v(~x) is constant inside each element of
Π(Θ), because ∀~x ∈ Θj ,

`v(~x) =

∫ rNr

r0

v(~x, r)

r
dr =

Nr∑
i=1

v̂ (Φj,i) log

(
ri
ri−1

)
=

= log (β)

Nr∑
i=1

v̂ (Φj,i). (24)
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Then, substituting (22), (23) and (24) into (21) yields

uΘZBH

uΦ(T )
+ max

q̂,v̂

NΘ∑
j=1

[
q̂ (Θj) Ŷf,Θj

+

+ |Θj | logP

(
q̂ (Θj) | log (β)

Nr∑
i=1

v̂ (Φj,i)

)
+

+
uΘ

uΦ(T )

Nr∑
i=1

v̂ (Φj,i) ŶH,Φj,i

]
. (25)

Note that the first (leftmost) term inside the square brack-
ets in (25) does not depend on the states of the voxels
v̂ (Φj,i), the third term does not depend on the state of the
pixel q̂ (Θj), and the second term does not depend on which
particular voxels are full, but on the number of full voxels
nj ,

∑Nr

i=1 v̂ (Φj,i). In contrast, the third term does de-
pend on which voxels are full, and given the number nj of
full voxels, the third term will be maximum when the nj vox-
els with the largest summary ŶH,Φj,i are full, i.e., it will be
equal to Ψj,nj . Therefore (25) is equal to,

uΘZBH

uΦ(T )
+

NΘ∑
j=1

max
0≤nj≤Nr

{
max

q∈{0,1}

[
qŶf,Θj

+

|Θj | logP (q|nj log β)

]
+

uΘ

uΦ(T )
Ψj,nj

}
, (26)

which can be rearranged to yield (17) and (18). It is then
easy to see that the discrete shapes v̂ and q̂ (defined respec-
tively in (19) and (20)) maximize (18).

Note that this lower bound can be computed in order
O(NΘNr logNr), and that it can be refined by refining the
corresponding standard partition.

4.3. Derivation of the upper bound

A formula to compute an upper bound for L(H) is de-
rived following a path similar to that in Theorem 4.2: a stan-
dard partition is defined, summaries of the BFs Bf and BH
are computed inside each partition element, and these sum-
maries are then used to compute the upper bound. How-
ever, a different kind of summaries, namely m-summaries,
is used to derive the upper bound. Since the derivation of
the upper bound is longer and much more involved than the
one for the lower bound, we refer the reader to [8] for the
derivation and proofs.

5. Experimental results
In this section we show results obtained with the frame-

work described in previous sections. To demonstrate its
unique characteristics, we start with a simple experiment
where a known object (a bottle) is present in the input image

(a) (b) (c) (d) (e)

xy

z

Figure 4. (a) Coordinate axes in the WCS: axes start at the origin
and are 10cm long. (b-e) Four hypotheses proposed to “explain”
the (same) input image. The support of pBH ( ~X) is indicated in
each case by the overlaid 3D box.

and our goal is only to estimate its pose. For this purpose
we define a set H1 containing 6771 hypotheses around the
true hypothesis, produced by combining 61 translations tx
in the x direction with 111 translations ty in the y direction,
sampled every 0.5cm (see the 3D coordinate axes in Fig.
4a). Fig. 4b-e shows 4 hypotheses from H1.

We then use the proposed framework to find the hypothe-
ses that maximize L(H). The evolution of the bounds for
the four hypotheses of Fig. 4b-e only are depicted in Fig. 5.

Fig. 5 shows that after 22 refinement cycles the red hy-
pothesis is proved to be optimal. When we run the frame-
work on the whole set H1, however, the set of optimal hy-
potheses, denoted as A, contained 19 hypotheses. To quan-
tify the quality of this set we define, for each parameter t of
the transformations, the bias of t and the standard deviation
of t, respectively as

µt,
1

|A|
∑
H∈A

tH − tT and σt,

√
1

|A|
∑
H∈A

(tH − tT )2,

(27)

where tH is the parameter corresponding to H ∈ A, and
tT is the true value of the parameter. The results for this
experiment are summarized in Table 1.

Table 1. Pose estimation results for a known, symmetric object.
|A| µtx (cm) σtx (cm) µty (cm) σty (cm)
19 -0.24 0.34 0.61 1.54

Fig. 6 shows how the computation is distributed among
the hypotheses. It can be seen in Fig. 6a that most hypothe-
ses (92.2%) only require 0/1 refinement cycles, while only
a few (0.41%) had to be fully refined. This is the source of
the computational gain of our algorithm. Fig. 6b shows that

In
iti

al
iz

at
io

n
cy

cl
es Discarded

Discarded

Discarded

Prooved Optimal

Figure 5. Evolution of the bounds of the four hypotheses shown
in Fig. 4b-e. The bounds of one hypothesis are represented by
the two lines of the same color, which is also the color of the hy-
pothesis in Fig. 4b-e. Cycles in which a hypothesis is selected for
refinement or discarded are indicated by ‘◦’ and ‘×’, respectively.
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Figure 6. (a) Histogram of refinement cycles allocated per hypoth-
esis. (b) Refinement cycles allocated to each hypothesis in H1

(note the logarithmic scale).

the hypotheses that require most computation surround the
ground truth, however, not isotropically: hypotheses in the
ground truth’s line of sight are harder to distinguish from it
(compare σtx and σty in Table 1).

Next we look at the average perfromance of the frame-
work on a set of images. These images contained objects
from one of five classes: mugs, glasses, cups, bottles or
plates. The hypothesis space for this experiment, H2, con-
tained 45, 675 hypotheses, obtained by combining 5 dif-
ferent classes, translations tx and ty in the x and y direc-
tions, respectively, rotations φz around the vertical z axis
(for the non-rotationally symmetric class ‘mugs’ only), uni-
form scalings sxy in the x− y directions, and scalings sz in
the z direction. The pose estimation errors for this experi-
ment are summarized in Table 2.

Table 2. Pose estimation results for unknown objects.
|A| µtx σtx µty σty µφ σφ µsxy

σsxy
µsz σsz

(cm) (cm) (cm) (cm) (◦) (◦) (%) (%) (%) (%)
43 0.1 0.3 0.9 2.0 19 48 4.8 8.4 5.7 9.3

In this experiment the class of the object was estimated
as well as the pose. In all cases the correct class was in-
cluded in the set A. Apart from hypotheses of this class,
the set A contained 7% of hypotheses from other classes
(in 97% of these confusions the class ‘glasses,’ the one
with least training exemplars, was confused with the classes
‘mugs’ or ‘bottles’). Some examples of the 3D reconstruc-
tions obtained for the best hypotheses are shown in Fig. 7.
The last column shows one case where the best hypothe-
sis is of the wrong class (a bottle instead of a glass). This
concludes the presentation of the experiments.

6. Conclusions
This article presented an inference framework to simul-

taneously tackle the problems of 3D reconstruction, pose
estimation and object classification, from a single input im-
age. We showed preliminary results indicating that it is pos-
sible to accurately estimate the class and pose of unknown
objects, and obtain their 3D reconstructions. Moreover, by
deriving tighter bounds than in [9], we were able to reduce
the running time of the method and thus handle hypothesis
spaces with more degrees of freedom.

Figure 7. 3D reconstructions obtained for the best hypothesis: (1st

row) input images; (2nd and 3rd rows) two views of each recon-
struction, from two orthogonal directions.
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