
On Sufficient Condition for Affine Sparse Subspace Clustering
Chun-Guang Li

SICE, Beijing University of Posts and Telecommunications
Beijing 100876, P.R. China

Chong You and René Vidal
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In this paper, we consider the following problem:

Problem 1 (affine subspace clustering). Let X ∈ IRD×N be a
real-valued matrix whose columns are drawn from a union of n
affine subspaces of IRD ,

∪n
ℓ=1{Aℓ}, of dimension dℓ < D, for

ℓ = 1, . . . , n. The goal of affine subspace clustering is to segment
the columns of X into their corresponding affine subspaces.

One way to approach this problem is by the Sparse Subspace
Clustering (SSC) algorithm [1], which is based on the idea that each
point xj in a linear subspace of dimension dℓ can be written as a
linear combination of (at most dℓ) other points in its own subspace.
Although primarily designed for linear subspaces, SSC has been
applied to affine subspaces by further requiring that the coefficients
add up to 1. This leads to the following optimization problem

min
cj

∥cj∥1, s.t. xj = Xcj , cjj = 0, 1⊤cj = 1, (1)

where cj ∈ IRN is the vector of coefficients and 1 is the vector of all
ones with appropriate dimension. Then spectral clustering is applied
to the induced affinity. We call this subspace clustering approach
with modified formulation (1) as Affine Sparse Subspace Clustering
(ASSC). One expects that the sparsest affine representation cj selects
only data points from the affine subspace which xj belongs to. This
property can be captured by the definition below.
Definition 1 (ℓ1 affine subspace detection property). A data point
xj ∈ X in an affine subspace Aℓ obeys the ℓ1 Affine Subspace
Detection Property (ℓ1-ASDP) if and only if it holds that the optimal
solution to problem (1) has nonzero entries corresponding only to
data points from the correct affine subspace Aℓ.

Prior work on theoretical analysis of SSC considers mostly the
case of linear subspaces and has established sufficient geometric
conditions for the optimal solution of the standard problem to be
such that its nonzero entries correspond to points in the correct sub-
space [1], [3]. However, there is a lack of theoretical understanding of
the behavior of ASSC for affine subspaces. In this paper, we present
a geometric analysis of ASSC and give a deterministic sufficient
condition under which it succeeds to meet ℓ1-ASDP. Moreover we
reveal the curse and the blessing from the affine constraint – that
might deepen our understanding of the behaviors of ASSC.

To facilitate the analysis, we reformulate ASSC as follows

min
cj

∥cj∥1, s.t. Y−jcj = 0, 1⊤cj = 1, (2)

in which cj ∈ IRN−1 and Y−j = X−j − xj1⊤ where X−j is the
matrix X with the j-th column removed. Consider a data point xj

lying in affine subspace Aℓ. We arrange data points {xi| i ̸= j,xi ∈
Aℓ} as matrix X

(ℓ)
−j , data points {xi−xj | i ̸= j,xi ∈ Aℓ} as matrix

Y
(ℓ)
−j , and data points {xi − xj | xi ∈ Aκ, κ ̸= ℓ} as matrix Y

(κ)
−j .

Note that by subtracting xj , the affine subspace Aℓ reduces to linear
subspace Sℓ, i.e., the columns of Y

(ℓ)
−j lie in linear subspace Sℓ.

Let U (ℓ) ∈ IRD×dℓ be an orthogonal basis for linear subspace Sℓ,
then we have that A(ℓ)

−j = U (ℓ)⊤Y
(ℓ)
−j . To define the affine subspace

incoherence, we consider an optimization problem as follows

min
c

∥c∥1 s.t. A
(ℓ)
−jc = 0, 1⊤c = 1. (3)

The Lagrangian dual is as follows

max
w,ν

− ν s.t. ∥A(ℓ)⊤
−j w + ν1∥∞ ≤ 1. (4)

where w ∈ IRD and ν ∈ IR are dual variables. Denote the optimal
solution of problem (4) as (w∗

j , ν
∗
j ). We define (v∗

j , ν
∗
j ) as a dual

point of data point xj where v∗
j = U (ℓ)w∗

j , and qj =
ṽ∗
j

∥ṽ∗
j ∥2

as
the augmented dual direction with respect to the dual point (v∗

j , ν
∗
j )

where qj ∈ IRD+1 and ṽ∗
j = [v∗⊤

j , ν∗
j ]

⊤.

Definition 2 (affine subspace incoherence). The affine subspace
incoherence of a point xj ∈ Aℓ vis a vis the other points x ∈
Aκ(κ ̸= ℓ) is defined as follows µ̃j

.
= max{∥Ỹ (κ)⊤

−j qj∥∞, κ =

1, · · · , n, κ ̸= ℓ} where Ỹ
(κ)
−j = [Y

(κ)⊤
−j , 1]⊤.

Theorem 1 (ℓ1 affine subspace separation theorem). Given a data
set X , if the following affine subspace incoherence condition

µ̃j < r(P̃ℓ
j ), (5)

is satisfied for all data points xj ∈ X , where P̃ℓ
j is the symmetric

convex hull of columns of Ỹ
(ℓ)
−j and r(P̃ℓ

j ) is the inradius of P̃ℓ
j .

Then, ℓ1-ASDP holds.

Note that the affine constraint in ASSC may abrogate the sparsity-
promoting property of ℓ1-norm when the feasible solution c is
nonnegative, because ∥c∥1 = 1⊤c = 1 and thus it is of no effect
to penalize the solution. Our analysis show that the affine constraint
may bring a curse and a blessing to ASSC. The curse is that ASSC
fails to meet the ℓ1-ASDP if the convex hull surrounding xj can be
formed by data points not only from the correct affine subspace. The
blessing is that the connectivity issue [2] of SSC might be partially
alleviated.
Theorem 2 (failure in intersection). ASSC fails to meet ℓ1-ASDP
for xj ∈ Aℓ if conv{Y (ℓ)

−j } and conv{Y−j \ Y (ℓ)
−j } intersect.

Theorem 3 (grouping effect for interior points). For a point xi in
Aℓ, suppose that the condition (5) is satisfied so that ℓ1-ASDP holds.
If xi is in the relative interior of conv{X(ℓ)

−i }, then there exist an
optimal solution to (1) which is subspace-dense, i.e., the coefficients
for all other points in Aℓ are nonzero.
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