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Abstract. The detection of white matter microstructural changes using
diffusion magnetic resonance imaging (dMRI) often involves extracting a
small set of scalar features, such as fractional anisotropy (FA) and mean
diffusivity (MD) in diffusion tensor imaging (DTI). With the advent of
more advanced dMRI techniques, such as high angular resolution diffusion
imaging (HARDI), a number of mathematically inspired new scalar
features have been proposed. However, it is unclear how to select the most
biologically informative combinations of features for biomarker discovery.
This paper proposes an automatic HARDI feature selection algorithm
which is based on registering HARDI features to feature atlases for optimal
clinical usability in population studies. We apply our framework to the
characterization of beta-amyloid (Aβ) pathology for the early detection of
Alzheimer’s disease (AD) to better understand the relationship between
Aβ pathology and degenerative changes in neuroanatomy.

1 Introduction

Over five million Americans suffer from Alzheimer’s disease (AD) today. Since the
damage to the brain caused by AD is irreversible and the first symptoms appear
when the disease is already sufficiently advanced, it is very important to establish
indicators of AD (i.e., biomarkers) during the preclinical stage that allow for
early diagnosis and intervention. Beta-amyloid (Aβ) pathology is thought to
play an important role in AD pathophysiology, but the relationship between Aβ
pathology and structural changes in brain connectivity during the preclinical
stage is not well understood. Currently, our understanding of changes in the
white matter (WM) of the brain that occur early in the course of the disease is
largely based on studies that use diffusion tensor imaging (DTI) to find changes
in fractional anisotropy (FA) and mean diffusivity (MD) [6, 19, 20]. A major
concern for DTI is its inability to resolve subvoxel crossing, bending, and twisting
fibers due to limitations inherent in the single-direction tensor model and these
limitations are observed in the ambiguity of FA and MD changes. This precludes
accurate measurement of the complex subvoxel anatomical fiber interactions,
which is important to understanding WM pathology implicated in AD.
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High angular resolution diffusion imaging (HARDI) addresses the disadvan-
tages of DTI by allowing one to estimate a multi-modal orientation distribution
function from a large number of gradient directions. On the one hand, this permits
defining new features with the hope of better characterizing WM structures and
WM pathology. Indeed, in recent years there has been an influx of methods that
generate rotation invariant HARDI features [11, 13, 14, 21, 18, 4, 15]. On the other
hand, however, with so many different types of features to choose from, it is not
clear which ones are most representative of neuroanatomical microstucture and
most important for disease classification. Also, since many of these features are
derived based on their mathematical properties, it is unclear which features are
biologically relevant.

A common approach to feature selection is to use all features to train a classifier
and let the classifier weights decide which features are most discriminative. This
approach is appropriate for brain classification whenever the spatial location of
the brain features is inconsequential. In practice, however, disease is localized
in certain anatomical structures, such as the hippocampus for AD, and it is
extremely important that these features be registered to a common coordinate
system, or atlas, before the classifier is trained. However, the construction of the
atlas and the registration algorithm are also based on the same features, and
selecting which features are most relevant for registration is also an important
problem. Indeed, errors in registration could incorrectly map the features to the
atlas and result in incorrect classification.

Paper Contributions. In this paper, rather than addressing the feature se-
lection problem only at the very end of the classification pipeline, we propose
to automatically select anatomically informative features while simultaneously
registering them and constructing a feature atlas for proper comparison of differ-
ent populations. Given a collection of HARDI features extracted from multiple
brain images of healthy individuals, we use them to build a HARDI atlas. This
atlas is built by alternating between registering all HARDI features to a current
estimate of the atlas, and recomputing the atlas by “averaging” the registered
HARDI features. This is done using a generalized multi-channel large deformation
diffeomorphism metric mapping (mcLDDMM) framework in which each HARDI
feature is given a different weight that depends on the variance of the feature.
This weight, which is estimated and updated as the atlas building algorithm
proceeds, is used to automatically determine the importance of the feature for
registration and atlas building. In this way, our approach embeds feature selection
within a HARDI registration and atlas building framework so that the selected
features, which may be important for final analysis and classification, can be opti-
mally transferred to the atlas for training a classifier. We apply our joint feature
selection, registration and atlas building framework to identify neuroanatomical
differences between Aβ positive (+) and Aβ negative (−) pathologies to investi-
gate the relationship between Aβ pathology and neuroanatomical degeneration
in order to discover new biomarkers for AD. Our results show that the features
selected automatically by our method often agree with the features that produce
the most significant differences between Aβ+ and Aβ−.
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Paper Outline. The remainder of this paper is organized as follows: In Section 2
we review the problem of HARDI registration based on rotation invariant features.
Then in Section 3 we present our joint feature selection, registration and atlas
building algorithm. Finally in Section 4 we show results of our framework on a
population study of Aβ+ and Aβ− subjects to identify promising features for
Aβ classification.

2 Multi-Channel Registration using HARDI Features

The proposed framework for feature selection is driven by registration, whose goal
is to align multiple datasets into a single coordinate system for proper comparison.
Current medical image registration algorithms work very well for scalar-valued
brain MRI volumes. However, for high-dimensional HARDI data, alignment
requires not only warping the 3D volume of the baseline (b0) MRI, but also
preserving the orientation of local diffusion information at each voxel to remain
consistent within the warped neuroanatomy. To tackle this, early methods reorient
the diffusion profiles after registration [1, 16]. However, this does not take into
account the effect of local reorientation on the global optimization. To handle this,
[8–10, 12, 24] incorporate diffusion information into the optimization. This requires
computing complicated gradients and reorienting diffusivity profiles at each
iteration, which can be time-consuming. Furthermore, different diffusivity profiles
like the orientation distribution function (ODF), fiber orientation distribution
(FOD), average ensemble propagator (EAP) or the raw signal each require a
separate registration algorithm with different schemes for reorientation.

In this paper, we adopt a HARDI registration framework based on rotation
invariant HARDI features. The proposed framework aligns diffusivity information
accurately without having to calculate gradients or needing to reorient the data.
Moreover, it can be applied to any diffusivity profile or combination thereof.
More specifically, we adopt the large deformation diffeomorphic metric mapping
(LDDMM) algorithm [2], which is a staple for the registration of scalar valued
MRI volumes. LDDMM seeks to find an optimal diffeomorphism between two
images or volumes. For registering sets of HARDI features, we use multi-channel
LDDMM (mcLDDMM), which seeks to find an optimal diffeomorphism to align
information contained in multiple volumes simultaneously. In particular, suppose
we have C rotation invariant HARDI features for each voxel of our 3D brain
volume. Let Ic denote the volume of feature c = 1, . . . , C. Then we can represent
the collection of C HARDI feature volumes by I = [I1, I2, · · · , IC ]. Now, given
two collections of feature volumes I0 = [I01 , I02 , . . . , I0C ] and I1 = [I11 , I12 , . . . , I1C ],
the goal of mcLDDMM is to find a single optimal non-linear transformation that
aligns all C feature volumes jointly. That is, we wish to find a diffeomorphism ϕ
such that I1c ≈ I0c ◦ ϕ−1 for all c = 1, . . . C. Since the transformation ϕ is the
same for all c, our shorthand notation will be I1 ≈ I0 ◦ϕ−1. The diffeomorphism
is generated by the flow of a family of smooth time-dependent vector fields
vt ∈ V, the space of vector fields, for t ∈ [0, 1], defined by the ordinary differential

equation
dφvt
dt = vt(φ

v
t ), where φ0 is the identity transformation and φv

∗

1 = ϕ∗ is a



4 Schwab, Yassa, Weiner, Vidal

(a) b0 MRI (b) GT (c) b0 (d) GFA (e) SHC (f) Schwab

Fig. 1: Qualitative results for a semi-synthetic deformation experiment. We compare
out-of-plane deformations, where blue is deformation towards the viewer and red is
away from the viewer. (a) b0 MRI of the dataset. (b) ground truth (GT) deformation.
(c) deformation obtained by single channel LDDMM using b0. (d) deformation obtained
by DTI-like mcLDDMM using b0 and GFA. (e) deformation obtained by multi-channel
LDDMM using spectral norms of spherical harmonic coefficients (SHC). (f) deformation
obtained by multi-channel LDDMM using HARDI features from [21]. Note that using
the features in (f) provides an estimate that is closer to the ground truth transformation.

diffeomorphic transformation defined as the solution to the following optimization
problem:

ϕ∗ = arg min
ϕ

(∫ 1

0

||vt(ϕ)||2Vdt+

C∑
c=1

1

σ2
c

||I0c ◦ ϕ−1 − I1c ||2L2

)
. (1)

An optimal ϕ is found by gradient descent. Note that when C = 1, Eq. (1)
reduces to the traditional single-channel LDDMM. Here the σ2

c are fixed weighting
parameters for each channel. In most formulations, σ2

c is set to 1 for all c.

To illustrate the performance of mcLDDMM using various HARDI features, we
generated a ground truth (GT) deformation g (Fig. 1b) by aligning a real HARDI
volume A (Fig. 1a) to another real HARDI volume B (not shown) using traditional
single-channel LDDMM on the b0 volumes. We then applied g to A to obtain a
new transformed volume C = A ◦ g. We compared various mcLDDMM methods
with differing features to align A and C to measure which one was closest to the
GT g. In Fig. 1 we show the qualitative results comparing: (Fig. 1c) LDDMM-b0,
the baseline single-channel registration of b0 images, (Fig. 1d) mcLDDMM-GFA,
the 2-channel registration using b0 and GFA, which is analogous to the method
of [5] that uses b0 and FA for DTI, (Fig. 1e) mcLDDMM-SHC, the 5-channel
registration using b0 and three SHC norms [3], (Fig. 1f) mcLDDMM-Schwab, the
multi-channel registration using b0 and a set of rotation invariant features for
HARDI developed in [21]. These results demonstrate that by using the features
proposed in [21] we can achieve a more accurate registration than traditional
LDDMM and LDDMM based on GFA or SHC. But most importantly, we wish to
understand which features out of the many available in the literature are important
for driving registration and which are important for disease classification. Next we
present our method for automatically selecting features based on their anatomical
information.
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3 Automatic Feature Selection using mcLDDMM

Now that we can register HARDI features using mcLDDMM, we wish to learn
which features capture the most information to drive registration and preserve
the neuroanatomy. Rather than fixing each σc, we estimate the value of these
parameters as a way of measuring their informativeness for registration. To that
end, we employ an iterative algorithm that alternates between estimating the
informativeness of a feature given a HARDI template (i.e., estimate σc) and
estimating the HARDI template given the informativeness of each feature.

Our method is derived from the Bayesian template estimation work of [17],
which estimates a 3D shape template for computational anatomy. The work of [7]
uses the same algorithm for the single-channel HARDI registration of ODFs to
build a HARDI atlas. The framework was also extended to fuse information from
multiple atlases both for computational anatomy [22] and DTI [23], but the value
of σc for each channel was kept constant. Our algorithm expands upon these prior
works by using mcLDDMM to build a HARDI feature atlas while simultaneously
learning the variance parameters σc that weight each feature channel.

More specifically, let I = {I1, I2, . . . , IN} be a collection of HARDI volumes
corresponding to N normal subjects, each volume In having C feature channels,
i.e., In = [In1 , In2 , . . . , InC ]. Let J be a template consisting of C feature volumes
J = [J1, J2, . . . , JC ] to be estimated from I. Let Θ = {θ1, θ2, . . . , θN} be a
collection of transformations from subject In to J , such that In ≈ J ◦ θ−1

n . Let
J0 = [J0

1 , J
0
2 , . . . , J

0
C ] be a set of feature volumes associated to a known HARDI

brain hypertemplate, and let µ be a transformation between the estimated
template J and the hypertemplate, such that J = J0 ◦ µ−1. Under the model
p(I,Θ, µ;σ) ∝ p(I | Θ, µ;σ)p(Θ)p(µ), the goal of atlas building is reduced to
estimating a transformation µ given the observations I and the hypertemplate
J0 (assuming latent variables Θ) by minimizing the negative log likelihood:

−log p(I,Θ, µ;σ) =

N∑
n=1

C∑
c=1

1

2σ2
c

||J0
c ◦ µ−1 ◦ θ−1

n − Inc ||22 +
1

2
SCN log σ2

c

+
1

2
||vt(µ)||2Vπ

+

N∑
n=1

1

2
||vt(θn)||2V − log(Zπ)−N log(Z),

(2)

where vt(µ) = dµt
dt and vt(θn) = dθn

dt , and Zπ and Z are normalization constants.
In theory, we could estimate σ and µ using a generalized Expectation Maxi-

mization (EM) that, at iteration k, minimizes the negative expected log likelihood:

σ2(k+1)
c =

1

SCN

N∑
n=1

Eµ(k)

{
‖J0
c ◦ µ(k)−1

◦ θ−1
n − Inc ‖22 | Inc

}
, (3)

µ(k+1) = arg min
µ

{
||vt(µ)||2Vπ

+

N∑
n=1

C∑
c=1

Eµ(k)

{
‖J0
c ◦ µ−1 ◦ θ−1

n − Inc ‖22 | Inc
}

2σ
2(k+1)
c

}
.

(4)
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Algorithm 1 (Feature Selection and Template Estimation)

Let J
(k)
c be the estimated template and σ

2(k)
c be the estimated variances for each channel

c at iteration k. For iteration (k + 1),

1. Warp each subject Inc to J
(k)
c using mcLDDMM with parameters σ

2(k)
c to obtain

Inc ◦ θ
(k)
n with Jacobian determinant |Dθ(k)n (y)| at each voxel y of the image volume.

2. Compute mean feature image

Ī(k+1)
c (y) =

∑N
n=1 I

n
c ◦ θ

(k)
n (y)|Dθ(k)n (y)|∑N

n=1 |Dθ
(k)
n (y)|

. (5)

3. Update noise variance feature weights by

σ2(k+1)
c =

1

SCN

N∑
n=1

||Inc ◦ θ(k)n − J(k)
c ||22, (6)

where S is the total number of voxels in each volume and C is the number of
channels.

4. Given σ
2(k+1)
c , update our template by finding the transformation that minimizes

the distance between Ī(k+1)
c and J0

c ,

µ(k+1) = arg min
µ

∫ 1

0

||vt(µ)||2Vdt+
C∑
c=1

1

σ
2(k+1)
c

||(Ī(k+1)
c ◦µ−1−J0

c )
√
A(k+1)||22, (7)

and write the updated template as J
(k+1)
c = J0

c ◦ µ(k+1), where the weight image is
given by A(k+1) = [α(k+1)(y)] for α(k+1)(y) :=

∑N
n=1 |Dθ

(k)
n (y)|.

5. We repeat until ||σ2(k+1)
c − σ2(k)

c || < ε for some small ε > 0 for all c.

However, the expectation Eµ(k)

(
||J0

c ◦ µ−1 ◦ θ−1
n − Inc ||22 | Inc

)
w.r.t. Θ cannot

be computed analytically due to the nonlinear dependency of this quantity in
θn. To overcome this issue, the authors of [17] utilize the Mode Approximation
Expectation Maximization (MAEM) algorithm, in which the conditional distri-
bution of the latent variables is replaced by a Dirac measure at its mode. This
leads to the MAEM Algorithm 1, where (3) and (4) are solved alternatively. To
initialize MAEM, we set J0 to be a randomly selected subject in I and set σc = 1
for all c. Based on the findings of [17], the choice of the hypertemplate does not
greatly effect the resulting template.

The MAEM algorithm results in estimated feature atlases J∗
c and weights

w∗
c = 1/σ2∗

c for each feature channel c. By analyzing the resulting channel weights
for each of our HARDI features, we are able to automatically select the most
important features that drive registration. In particular, channels with large
variance σ2

c will receive a small weight wc in each successive iteration. Since
wc = 1 is our initialization, we may identify features with w∗

c < 1 as less important
for driving registration since they have a larger error σ2

c . As an extreme example,
a feature that contains large amounts of noise (SNR very small) will result in large



Automatic HARDI Feature Selection 7

σ2
c and therefore w∗

c will be small. So, HARDI features with very low SNR will be
weighted lower since they do not carry consistent anatomical information. On the
other hand, features with w∗

c ≥ 1 are important for driving registration since they
exhibit smaller σ2

c . However, features with extremely high weights may not be
informative for registration. As an extreme example, a feature which is constant
for every voxel in a brain volume, and therefore anatomically uninformative,
will return a σ2

c = 0 and w∗
c =∞. Thus, our template estimation algorithm can

automatically select important features that drive registration by automatically
adjusting the weights. These weights can be further tuned for classification by
training a classifier for a specific disease application. In Section 4 we analyze
the relative feature weights resulting from our algorithm with respect to Aβ
pathology status.

4 Automatic Feature Selection, Registration, and Atlas
Building Applied to Characterization of Aβ Pathology

In this section we will apply our automatic registration driven feature selection
algorithm to characterize the WM neuroanatomy of Aβ pathology. Our goal
is to identify features that are useful in the classification of Aβ pathology in
order to assess novel biomarkers for the early detection of AD. To that end,
we compare anatomical features selected by our algorithm with disease-specific
features that present statistically significant differences in the presence of Aβ
pathology. Our automatic feature selection will provide us with a shortlist of
anatomically informative features from which a subset could be chosen that may
be important for classifying Aβ pathology.

4.1 Extraction of HARDI Features

In recent years there have been a number of innovative frameworks for extracting
new rotation invariant features from HARDI data. Here, we compare these
features to understand which ones have the potential to play important roles in
biomarker discovery of neurological diseases. We compare three different families
of features (from Schwab et al. [21], Ghosh et al. [14] and Gur et al. [15]) extracted
from three different diffusivity profiles: the raw HARDI signal, the ODF, and
the FOD. From [21] we extract 30 features from the 4th order SH coefficients:
25 eigenvalues, and their variance, range, median, Frobenius-norm, and 2-norm.
From [13, 14] we extract 20 features from the 4th order tensor: 12 generalized
invariants (G4), which generate 4 basic (S4) and 4 principal (J4) invariants
of homogenous polynomials. From [15] we extract 32 features of the 4th order
SH coefficients: 3 coefficients contracted with coefficients (I), 11 coefficients
contracted with tensors (J) and 18 tensors contracted with tensors (K). For each
family of features and for each spherical function, we add the baseline MRI b0
as the first channel and GFA as the second channel for comparison.
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4.2 Analysis of Selected HARDI Features Compared to Aβ
Pathology Status

For this study we use 15 Aβ− and 17 Aβ+ subjects, identified with florbetapir
(Amyvid) PET scans, from the Hippocampal Connectivity Project (HCP) at the
Center for Imaging of Neurodegenerative Diseases (CIND) at the University of
California San Francisco (UCSF). For each subject, 3 HARDI scans were acquired
on a Siemens 4T scanner (128 gradient directions, 3 b0 values, FOV: 192, number
of slices: 26, resolution: 1.5 mm isotropic, b-value: 1400 s/mm2, TR/TE: 3500/86,
3nex averaged to enhance SNR, total protocol time: 1.35 hrs).

Fig. 2: Comparison of each family of features extracted from signal, ODF, and FOD
after 3 iterations of Algorithm 1. Red: weights wc for each feature channel c. Green:
number of voxels in ROI that are statistically different between Aβ+ and Aβ−. Blue
marker: features that have statistically significant differences in means within the
ROI between Aβ+ and Aβ−. Notice that many features with high wc (important
for registration of WM) also contain statistically significant differences between Aβ+
and Aβ−.

For characterizing Aβ pathology, we focus on features within the parahip-
pocampal WM, a region of interest (ROI) that has been shown to undergo fiber
degradation in aging and mild cognitive impairment [26, 25]. We first choose one
subject at random among the 15 healthy subjects to be our hypertemplate J0.
We then build feature atlases using each one of the features and HARDI functions
described in Section 4.1. The resulting weights of each feature channel for each
experiment after 3 iterations of Algorithm 1 are shown in red in Fig. 2. (Features
whose weights were extremely high (> 20) were set to 0 in Fig. 2 only for visual
comparison.) For each family, the first channel is b0 and the second channel is
GFA. We also investigate feature differences between Aβ+ and Aβ− groups after
registering all subjects to the template. We ran a voxel-wise two sample paired
t-test in the parahippocampal WM ROI. The number of voxels with statistically
significant differences between groups is plotted in green for each feature. We
also ran a two sample paired t-test on the means of the voxel values in each ROI
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(left and right brain separately) and plotted features which have statistically
significant mean differences as blue markers (see legend of Fig. 2).

In Fig. 3 we display a sample of feature maps for each family and function
(same 3×3 grid as Fig. 2) to show the reader the types of feature maps associated
to high and low weights in Fig. 2. Notice that a number of the selected features
from Ghosh and Gur are not very informative, as they are either very sparse
or close to a constant mask. In addition, it so happens that the methods of
Ghosh and Gur produce duplicate features for different functions, as can be
seen in the repeated peaks of Ghosh (channels 4 and 16 for Signal, ODF, and
FOD) and Gur for ODF in Fig. 2. By looking at the results, it is evident that
there is a pattern between features with weights greater than one and those
with statistically significant ROI differences. However, some of the homogeneous
features from Gur and Ghosh can be identified by having a peak of the number
of statistically significant voxels and also have statistically significant means over
the entire ROI since there is little variability. In particular, the plots of Schwab
for ODF and FOD show interesting correlations and variability.

Fig. 3: Display of a subset of the feature maps obtained by each method (Schwab,
Ghosh and Gur in the left, central and right columns, resp.) for each function (signals,
ODF and FOD in the top, middle and bottom rows, resp.). The numbers next to each
feature map correspond to the feature channel c as ordered on the x-axes in Fig. 2.

In Fig. 4 we show a subset of these statistically significant features, where the
left column shows Aβ− and the right one Aβ+, compared along the sagittal view
of the ROI (long shaded region in black box). Common to each of these features,
we notice a decrease in the intensity of each feature crossing perpendicular
through the ROI. Unlike GFA, which is predominantly isotropic (blue) in the
ROI, revealing little diffusivity information, some of the other selected features are
able to reveal microstructural information directly crossing the parahippocampal
ROI. Admittedly, when we say that a certain HARDI feature has decreased in
value between Aβ+ and Aβ−, physical interpretations are somewhat abstract
(unlike for the well defined GFA). This is definitely the case for many of the
features from Ghosh and Gur which are derived mathematically. For the features
from Schwab [21], it is proven that these features follow the physical distribution
of the spherical function they were extracted from. Therefore, one can characterize
differences in diffusivity information or physical shapes of the signal, ODF or FOD
by analyzing changes in the entire set of features together instead of individual
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features alone. The first row of Fig. 4 shows feature 13 of the FOD as a striking
example of the differences between Aβ+/−. Additionally, features 10 through 27
(not shown) vary slightly from one another and all include diverse information
crossing along our ROI for Aβ+/−.

Fig. 4: Comparison of average features after registered to feature atlases. We show
the sagittal view of the parahippocampal WM ROI (elongated shaded area in black
box). Red: High, Blue: low. We notice a decrease in feature values crossing over ROI in
Schwab, Ghosh and Gur. GFA shows little diffusivity information in ROI.

5 Conclusion

We have presented an algorithm for the joint selection, registration, and atlas
building of HARDI features applied to the analysis of Aβ WM pathology. This
method provides an automatic way to select features that may be important for
disease classification based on an anatomical criteria of registration accuracy
which is not specific to a particular disease study. Then given the selected features,
researchers can identify a subset based on disease classifiers. We have shown
that many of the features important for registration may be useful for Aβ+/−
classification by showing statistically significant differences within a known ROI.
We have found that the presence of Aβ pathology (Aβ+) may be associated
with feature decreases in the parahippocampal WM ROI, indicating levels of
degradation in comparison to a healthy average (Aβ−). Our future efforts will
be to incorporate these significant features into a unified classification algorithm
for Aβ pathology to identify potential biomarkers for the early detection of
Alzheimer’s Disease.
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