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Abstract

Advanced diffusion magnetic resonance imaging (dMRI) techniques, like diffusion
spectrum imaging (DSI) and high angular resolution diffusion imaging (HARDI),
remain underutilized compared to diffusion tensor imaging because the scan
times needed to produce accurate estimations of fiber orientation are significantly
longer. To accelerate DSI and HARDI, recent methods from compressed sensing
(CS) exploit a sparse underlying representation of the data in the spatial and
angular domains to undersample in the respective k- and q-spaces. State-of-the-
art frameworks, however, impose sparsity in the spatial and angular domains
separately and involve the sum of the corresponding sparse regularizers. In
contrast, we propose a unified (k, q)-CS formulation which imposes sparsity jointly
in the spatial-angular domain to further increase sparsity of dMRI signals and
reduce the required subsampling rate. To efficiently solve this large-scale global
reconstruction problem, we introduce a novel adaptation of the FISTA algorithm
that exploits dictionary separability. We show on phantom and real HARDI data
that our approach achieves significantly more accurate signal reconstructions
than the state of the art while sampling only 2-4% of the (k, q)-space, allowing
for the potential of new levels of dMRI acceleration.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) is a non-invasive medical imaging
modality that has important uses for studying neurological disease pathology
related to the anatomical network of neuronal fibers in the brain. Advanced dMRI
protocols, like diffusion spectrum imaging (DSI) and high angular resolution
diffusion imaging (HARDI) have been proven to outperform the popularly used
diffusion tensor imaging by producing more accurate estimations of fiber tracts.
However, their utilization in the clinical setting is hampered by the increased
number of diffusion measurements that are typically required. In order to accel-
erate dMRI and maintain accurate signal reconstructions, compressed sensing
(CS) has been regularly employed in the literature. The main ingredients of the
CS framework are an appropriately chosen sampling scheme and an underlying
“sparse” representation of the data. The key idea is that, the sparser the repre-
sentation, the fewer the samples needed to reconstruct the full signal with high
accuracy.
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CS has been classically applied to MRI [6] by subsampling in the native
k-space (k-CS) while applying sparsifying transforms in the spatial image domain
like wavelets and total-variation (TV). For dMRI, diffusion signals are measured
along different angular gradient directions in q-space for every point in k-space.
Thus, to reduce the number of diffusion measurements, many methods [8] have
exploited sparse representations in the angular domain by applying CS in q-space
(q-CS). To further accelerate dMRI, more recent methods [4,12,7,9] combine
aspects of k-CS and q-CS by subsampling jointly in (k, q)-space ((k, q)-CS).
However, these methods impose sparsity on the spatial and angular domains
separately, which can lead to a less efficient representation of dMRI data and may
limit the reduction of signal measurements that can be achieved in (k, q)-CS.

In this paper, we present a new (k, q)-CS framework that subsamples jointly
in (k, q)-space while analogously imposing sparsity in the joint spatial-angular
domain. Building upon the recent findings of [10,11] which show increased levels
of dMRI sparsity using joint spatial-angular sparse coding, our proposed (k, q)-CS
has the potential to further accelerate dMRI than prior methods by exploiting
this underlying sparse representation. Our main objective in this paper is to
evaluate the advantages of imposing sparsity in the joint spatial-angular domain
versus previous formulations that involve separate spatial and angular sparsity
terms. For this reason, our focus will not yet be the optimization of sparsifying
dictionaries or sensing schemes to push the limits of subsampling but first to
compare the gains of our proposed model with respect to the state-of-the-art
formulations for a fixed setting.

2 Background and Prior Work

Compressed Sensing (CS). CS is a popular framework that allows for full
signal recovery via irregular sampling by exploiting a sparse representation of the
data [2]. In the general setting, a full signal s is reconstructed from undersampled
and noisy measurements ŝ obtained through an undersampling (or sensing) matrix
U by solving an `1 minimization program of the form:

min
s,c

1

2
||Us− ŝ||22 + λ||c||1, (1)

subject to the constraint that either s = Φc with Φ being a sparsifying dictionary
and c the coefficients (synthesis) or c = Φ>s where Φ> is an analysis operator
applied to the signal (analysis). Both formulations involve a sparsity prior ‖c‖1
in the transform domain of the signal space that is controlled by the balance
parameter λ≥ 0. Note however that in the typical scenario in which Φ is an
overcomplete dictionary, synthesis and analysis CS are not equivalent models (cf.
[?] for a thorough discussion). In the synthesis case, the optimization is done on
the coefficient vector c from which the s can be synthesized while in the analysis
case s is found directly. Conditions for guaranteeing recovery, which are based
on the sparsity level of the signal and the mutual incoherence between U and Φ,
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state that the sparser the representation and the more incoherent the sampling,
the fewer measurements are required to fully reconstruct the signal.

k-CS for MRI. One of the first applications of CS has been the acceleration
of MRI acquisition [6]. Measurements are made in the frequency domain (called
k-space) and the reconstruction is done in the image domain. If we denote by
ŝk the subsampled measurements in k-space and by sx the fully reconstructed
image, the CS problem (1) for MRI becomes:

min
sx,b

1

2
||UkFsx − ŝk||22 + λ||b||1, (2)

subject to the constraint that either sx = Ψb (synthesis) or b = Ψ>sx (analysis),
where F is the Fourier Transform, Uk ∈ RK×V is the undersampling k-space
matrix, K is the number of samples and V is the total number of voxels with
K ≤ V . Here Ψ ∈ RV×NΨ is typically a dictionary of NΨ atoms defined on the
image domain (e.g. Wavelets or Hadamard) and Ψ> is a sparsifying transform
either associated to those dictionaries or to other operators such as the gradient
in the case of total variation (TV) regularization. This last choice in the analysis
formulation (b = Ψ>sx) is a common model for sparse MRI reconstruction [6]:

min
sx

1

2
||UkFsx − ŝk||22 + λ||Ψ>sx||1. (3)

q-CS for dMRI. The structure of dMRI is significantly more complex than
that of traditional MRI, whereby for each k-space measurement, a set of G
(angular) diffusion measurements are acquired in the analogous q-space. Diffusion
signals are traditionally viewed voxel-wise in the image domain (after k-space
reconstruction) as a matrix Sx,q = [s1, . . . , sV ]> ∈ RV×G, where sv ∈ RG is the
diffusion signal in voxel v. q-CS has been used extensively in the literature [8], each
new treatment testing a new sparsifying angular dictionary or sampling scheme.
Traditionally formulated as in (1) for each voxel v, q-CS is more frequently solved
for all voxels simultaneously as:

min
Sx,q,A

1

2
||Sx,qU>q − Ŝx,q||2F + λ||A||1, (4)

subject to the constraint that either Sx,q = AΓT (synthesis) or A = Sx,qΓ

(analysis), where Ŝx,q = [ŝ1, . . . , ŝV ]> ∈ RV×Q are the measured q-space signals
ŝv ∈ RQ at each voxel v, Uq ∈ RQ×G is an undersampling matrix in q-space with
Q ≤ G, and A = [a1, . . . , aV ]> ∈ RV×NΓ is the matrix of angular coefficients
for an angular q-space dictionary Γ ∈ RG×NΓ with NΓ atoms. Prior work [8]
has explored the construction of many sparsifying dictionaries Γ related to
estimating orientation distribution functions and so the constraint Sx,q = AΓ>

is most commonly used, resulting in the synthesis formulation:

min
A

1

2
||AΓ>U>q − Ŝx,q||2F + λ||A||1. (5)
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(k, q)-CS for dMRI. A logical advancement to further accelerate dMRI is to
additionally subsample in k-space. State-of-the-art methods like [4,12,7,9] have
been applied to many dMRI protocols testing various combinations of dictionaries
and sensing schemes. Interestingly, all of them can be formulated as particular
cases of the following problem, which combine k-CS (2) and q-CS (4):

min
Sx,q,A,B

1

2
||Uk,q(FSx,q)− Ŝk,q||2F + λ1||A||1 + λ2||B||1. (6)

subject to the constraints Sx,q = AΓ> (synthesis as in (5)) and B = Ψ>Sx,q
(analysis as in (3)). The sensing scheme Uk,q is now a joint (k, q) subsampling

operator (cf. Fig. 1 and Sec. 4.1 for a discussion) and Ŝk,q ∈ RK×Q are the
subsampled measurements in (k, q)-space. As a critical point of distinction, in

Spatial Sparsity

Angular Sparsity

Joint Spatial-Angular Sparsity

Fig. 1: Diagram of k-CS, q-CS, and (k, q)-CS with domains of sensing (top left) and
sparsity (bottom right). State-of-the-art methods subsample jointly in (k, q)-space
with Uk,q but then add separate spatial, B (bottom), and angular, A (right), sparsity
combining k- and q-CS. Instead, we propose to enforce sparsity in the joint spatial-
angular domain, C (bottom-right), resulting in a natural unified framework for (k, q)-CS
that allows a reduced number of samples via increased levels of joint sparsity.
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(6) the sparsity prior is imposed on two separate domains: the angular dictionary
coefficients A ∈ RV×NΓ at each voxel and the spatial transform coefficients
B ∈ RG×NΨ for each gradient direction. The sparsity in these domains, if
measured by the `0 “norm”, is inherently limited by the size of the dMRI data
(V ,G) since, for non-zero q-space signals at all voxels ||A||0 ≥ V , and for non-zero
k-space images for each gradient direction ||B||0 ≥ G, resulting in a total spatial
plus angular sparsity of ||A||0 + ||B||0 ≥ V +G. This limitation of sparsity may
eventually impact the possible reduction in sampling rate for (k, q)-CS as we will
show empirically in our experiments in Section 4.

To overcome this limitation, we propose an alternative and unified (k, q)-CS
formulation which instead imposes sparsity on a natural joint spatial-angular
domain, which we call C, defined formally in the next section. Fig. 1 depicts a
full schematic summary of the domains of sampling in k-CS, q-CS, and the joint
(k, q)-CS, and the associated sparsity priors in the spatial domain (B), angular
domain (A) and the joint spatial-angular (C) domain. As motivated by Fig. 1,
while A is row-sparse (||A||0 ≥ V ), and B is column sparse (||B||0 ≥ G), C has
no a priori structured sparsity (||C||0 ≥ 1), meaning that our formulation has
the potential to achieve greater sparsity levels and therefore higher subsampling
rates within (k, q)-CS than the state of the art.

3 Methods

3.1 (k, q)-CS for dMRI with Joint Spatial-Angular Sparsity

We propose a new (k, q)-CS model for dMRI involving a single joint spatial-
angular sparsity prior instead of separate spatial and angular sparsity terms as in
(6). This idea stems from the spatial-angular sparse coding approach for dMRI
proposed in [10,11], which was shown to result in much sparser representations
than separate spatial and angular dictionaries. Specifically, instead of using a
voxel-wise viewpoint of a dMRI signal written in an angular dictionary for every
voxel, we consider the full global signal sx,q ∈ RV G, the stacking of each sx for
every q-space point, and a measured subsampled signal in (k, q)-space ŝk,q ∈ RKQ,
such that ŝk,q = Uk,q(Fsx,q) where the Fourier transform F is applied to each
spatial component and Uk,q ∈ RKQ×V G is the (k, q) sensing matrix. Then we can
write the global (k, q)-CS in vector form, analogous to the general setting in (1):

min
sx,q,c

1

2
||Uk,q(Fsx,q)− ŝk,q||22 + λ||c||1, (7)

subject to the constraint that either sx,q = Φc (synthesis) or c = Φ>sx,q
(analysis). Notice that (7) has a direct statistical interpretation as a reconstruction
under a sparsity prior with respect to the dictionary Φ ∈ RV G×NΦ . However,
numerically solving such an optimization problem is largely intractable due to
the size of dMRI data (|sx,q| = V G ≈ 1004) and the resulting huge size of Φ.

To overcome this difficulty, we propose to impose additional structure on Φ.
Following [10,11] one can choose Φ to be separable over the spatial and angular
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domains resulting in the Kronecker dictionary Φ = Γ ⊗ Ψ , where Ψ and Γ are,
as above, spatial and angular dictionaries, respectively. Then, we can rewrite (7)
in an equivalent matrix form as:

min
Sx,q,C

1

2
||Uk,q(FSx,q)− Ŝk,q||2F + λ||C||1, (8)

subject to the constraint that either Sx,q = ΨCΓ> (synthesis) or C = Ψ>Sx,qΓ
(analysis). In fact, substituting also the constraints from k-CS (2) and q-CS (4),
a separable spatial-angular dictionary allows us to have two additional constraint
options: (1) Sx,q = AΓ> and C = Ψ>A (analysis-synthesis) or (2) Sx,q = ΨB
and C = BΓ (synthesis-analysis).

Notice that, in contrast to the state-of-the-art formulation in (6), our for-
mulation only involves one penalty term that imposes sparsity on the joint
spatial-angular coefficient domain C ∈ RNΨ×NΓ of the global dictionary Γ ⊗ Ψ
(cf. Fig. 1). The sparsity of this domain is a priori not limited by the size of the
data and so this joint model can lead to sparser representations of typical dMRI
signals than summing separate spatial and angular terms. In the next section,
we present an algorithm to efficiently solve the proposed (k, q)-CS formulation.

3.2 Efficient Algorithm to Solve (k, q)-CS

Prior work such as [4,9,12] each solve (6) using the Split-Bregman/Alternating
Direction Method of Multipliers (ADMM) algorithm and divide the reconstruction
per voxel. Alternatively, we propose an efficient algorithm to solve (k, q)-CS
globally for large-scale dMRI data which can easily be applied to both the prior
formulation (6) and our proposed formulation (8).

We begin by taking care of the constraints to eliminate variables and simplify
the problems. For (6), we substitute the prior methods’ selected constraints
Sx,q = AΓ> and B = Ψ>Sx,q = Ψ>AΓ> to get:

min
A

1

2
||Uk,q(FAΓ>)− Ŝk,q||2F + λ1||A||1 + λ2||Ψ>AΓ>||1. (Prior)

In order to directly compare our proposed framework (8) with (Prior) in terms of
variable A, we substitute Sx,q = AΓ> and C = Ψ>A (analysis-synthesis) to get:

min
A

1

2
||Uk,q(FAΓ>)− Ŝk,q||2F + λ||Ψ>A||1. (SAAS)

We call this formulation Spatial-Angular Analysis-Synthesis (SAAS) due to
the resulting analysis formulation for the spatial domain and synthesis formulation
for the angular domain. While these substitutions mask the domains of sparsity
by using a common variable A ∈ RV×NΓ , note that the proposed formulation
(SAAS) still imposes sparsity on the joint spatial-angular domain in contrast to
the separate spatial and angular sparsity terms of (Prior).

The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [1] has been
well studied for solving `1 synthesis minimization problems such as (1), where the
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proximal operator of ||c||1 is the well-known shrinkage function. However, in the
analysis setting, the proximal operator of a linearly transformed variable such as
||Ψ>A||1 in (SAAS) and ||Ψ>AΓ>||1 in (Prior) is not directly computable. There
are multiple ways to overcome this. In particular, [13] proposes a method that
applies FISTA to a relaxed smooth problem, coined Smooth FISTA (SFISTA).
In what follows, we adapt SFISTA to the separable Kronecker matrix setting in
order to solve (SAAS) and (Prior).

First, (SAAS) is reformulated by introducing the auxiliary linear constraint
Z = Ψ>A and the unconstrained relaxed optimization becomes:

min
A,Z

1

2
||Uk,q(FAΓ>)− Ŝk,q||2F + λ||Z||1 +

ρ

2
||Z − Ψ>A||2F . (9)

Let f(A) ≡ ||Uk,q(FAΓ>) − Ŝk,q||2F . Since f does not depend on Z, we can
pass the minimization with respect to Z to the last two terms. Define gµ(X) ≡
minZ ||Z||1 + 1

2µ ||Z −X||
2
F . Then (9) is equivalent to

min
A
f(A) + λgλ

ρ
(Ψ>A). (10)

Here gµ is the Moreau envelope of the `1 norm which can be shown to equal the
Huber function given by Hµ(x) = 1

2µ2x
2 if |x| < µ and |x| − µ

2 otherwise. We can

now apply FISTA to the smooth (10) by taking an accelerated gradient descent
using

∇f(A) = F−1U∗k,q(Uk,q(FAΓ>))Γ −F−1U∗k,q(Ŝk,q)Γ (11)

∇gλ
ρ

(Ψ>A) =
ρ

λ
Ψ(Ψ>A− shrinkλ

ρ
(Ψ>A)) (12)

where U∗k,q is the operator that restores the subsampled signal to full size by
zeroing out unsampled indices of the full signal (cf. Sec. 4.1 for a discussion).
The proposed Kronecker SFISTA (Kron-SFISTA) is presented in Algorithm 1.

Algorithm 1 Kron-SFISTA for SAAS model (k, q)-CS

Choose: λ, ρ, ε.
Initialize: i = 1, Y1 = S0 = 0, n1 = 1, L ≥ λmax(Γ>Γ ) + ρλmax(ΨΨ>).
while error > ε do

1: Ai = Yi − (∇f(Yi) + λ∇gλ/ρ(Ψ>Yi))/L;

2: ni+1 = 1
2
(1 +

√
1 + 4n2

i );

3: Yi+1 = Ai + ni−1
ni+1

(Ai −Ai−1);

4: i← i+ 1;
end while
Return: Â.
Reconstruct: Ŝx,q = ÂΓ>.

According to [13], we choose stepsize L ≥ λmax(Γ>Γ ) + ρλmax(ΨΨ>) to guar-
antee convergence, where λmax(X) is the max eigenvalue of X. The parameter ρ
is gradually increased using parameter continuation [13] for ensuring convergence.
The trade-off parameter λ, dictates the level of sparsity of Ψ>A. A large value



8 Evan Schwab, René Vidal, Nicolas Charon

of λ will result in a very sparse representation at the expense of reconstruction
accuracy, while a small value of λ may result in over-fitting the sampled data
at the expense of reconstruction accuracy of unseen data. Therefore, in our
experiments we vary the level of λ and select the value that leads to a minimal
reconstruction error. The efficiency of Kron-SFISTA over the traditional SFISTA
can be viewed in the same vein as for Kron-FISTA analyzed in [11].

As an alternative to the frequently used Split-Bregman, Kron-SFISTA can
also be easily applied to (Prior) by solving:

min
A
f(A) + λ1||A||1 + λ2gλ2

ρ2

(Ψ>AΓ>). (13)

Step 1 in Alg. 1 becomes Ai = shrinkλ1
(Yi − (∇f(Yi) + λ2∇gλ2

ρ2

(Ψ>YiΓ
>))/L)

with ∇gλ2
ρ2

(Ψ>AΓ>) = ρ2
λ2
Ψ(Ψ>AΓ> − shrinkλ2

ρ2

(Ψ>AΓ>))Γ . This provides an

efficient global algorithm to solve (k, q)-CS for any large-scale dMRI data.

4 Experiments

The main objective of the current work is to directly compare the reconstruction
accuracy of (SAAS) and (Prior) for various rates of subsampling. We postpone
optimizing the amount of subsampling to future work and therefore explore
somewhat classical choices of spatial and angular dictionaries/transforms and
sensing schemes previously tested in the literature in Sec. 4.1 with experimental
results on phantom and real HARDI brain data in Sec. 4.2 and Sec. 4.3.

4.1 Spatial-Angular Transforms and (k, q) Subsampling Schemes

Spatial Transform Ψ>. For spatial transform Ψ>, we consider in our experi-
ments two popularly used transforms for k-CS: Haar wavelets and the finite dif-
ference (gradient) operator ∇ = [∂x, ∂y, ∂z]. In the case of the gradient transform,

we consider the norm given by ||∇(X)||2,1 = ||
√
|∂xX|2 + |∂yX|2 + |∂zX|2||1,

known as isotropic TV (isoTV)1. These transforms have been classically used to
sparsely represent MRI images.

Angular Dictionary Γ . The choice of angular dictionary Γ depends on the
q-space acquisition protocol of the data. For example, Γ must be chosen to model
Cartesian sampled q-space signals for DSI, and multi-shell q-space signals with a
radial component for multi-shell HARDI. It is important to note our framework
is general to any q-space acquisition protocol with appropriate choice of Γ . In
our experiments we use single-shell HARDI data and choose the over-complete
spherical ridgelet (SR) dictionary [14], which has been shown to sparsely model

1 SFISTA must be changed slightly to incorporate the || · ||2,1 proximal operator
shrink2,1

µ (X) = X
||X||2,·

max(||X||2,· − µ, 0) [5], where ||X||2,· indicates taking the

2-norm of the columns of X. Its Moreau envelope is g2,1µ (X) ≡ minZ ||Z||2,1 + 1
2µ
||Z−

X||2F = 1
2µ2 ||X||22,· if ||X||2,· < µ and ||X||2,· − µ

2
otherwise.
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HARDI signals. With this comes the spherical wavelet (SW) dictionary for
which we can estimate orientation distribution functions (ODFs) from the SR
coefficients. With our choice of parameters, this results in NΓ = 1169 atoms from
which we may choose any subset greater than G for an overcomplete dictionary.

Joint (k, q) Subsampling Scheme Uk,q. We experiment with different sub-
sampling schemes in the joint (k, q) domain. Along the lines of our separa-
ble sparsifying dictionaries, we first consider separable sensing schemes for
which Uk,q = Uk ⊗ Uq and Uk,q(FAΓ>) = UkFAΓ>U>q where Uk ∈ RK×V

and Uq ∈ RQ×G can be taken to be matrices. Algorithmically, this is straight
forward to compute and U∗k,q is simply U>k,q = U>k ⊗ U>q . In our first set of
experiments on phantom data (Sec. 4.2), we take Uk to be a random subsampling
matrix with a well-known variable radial density favoring low frequencies and Uq
a quasi-uniform random subsampling on the sphere. However, separable sensing
strategies may not fully exploit the potentialities of (k, q) subsampling as some
experiments in [7] show.

In the second set of experiments on real data (Sec. 4.3), we implement non-
separable sensing schemes Uk,q in which a different k-space sampling is used
for each sampled q-space point. In this case, U∗k,q is the operator that restores
the subsampled signal to full size by zeroing out unsampled indices of the full
signal. Our implementation of Kron-SFISTA has the benefit of being able to
easily handle this non-separable sensing operator, but this is not straight forward
in alternative algorithmic formulations such as a Kron-ADMM [11], for example.
For k-space sensing, to comply with the constraints of a physical scanner, we
choose a commonly used k-space sampling scheme of constant lines along the ky
direction. The kx location of the line samples were chosen randomly with respect
to a variable density function centered around the zero-frequency location. We
generated a different random k-space sampling for each chosen q-space point. See
Fig. 1 (top left) for a visualization of our joint (k, q) sampling Uk,q.

Intuitively, non-separable sensing increases the range of uniquely sampled
points and the level of randomness which are beneficial in CS. In preliminary
experiments comparing separable to non-separble sensing for real HARDI data,
we saw variable improvement of reconstruction accuracy for both (Prior) and
(SAAS), depending on the choices of Uk and Uq, which motivates our use of
non-separable sensing in Sec. 4.3. However, the theoretical analysis of coherence
and sparsity with respect to sensing and dictionaries in the CS paradigm is
beyond the scope of the current work.

4.2 (k, q)-CS Results for Phantom HARDI Data

First, we applied our methods on the ISBI 2013 HARDI Reconstruction Challenge
Phantom dataset2, a V = 50×50×50 volume with G= 64 gradient directions
(b = 3000 s/mm2) and SNR = 30, consisting of 20 phantom fibers crossing within
an inscribed sphere. We experimented on a middle 2D 50×50 slice of this data. In
this experiment, we vary the percentage of subsampling in both k- and q-space,

2 http://www.hardi.epfl.ch/static/events/2013_ISBI/testing_data.html

http://www.hardi.epfl.ch/static/events/2013_ISBI/testing_data.html
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Fig. 2: Residual error vs. percentage of (k, q) subsampling of the 2D Phantom HARDI
data using isoTV and SR for (SAAS) (red) and (Prior) (blue). (SAAS) provides more
accurate reconstruction, especially at lower levels of (k, q) subsampling (top left plots).

Fig. 3: Estimation of ODFs from reconstructed phantom signals compared to the original
fully sampled signal using the proposed (SAAS) and (Prior). Each is reconstructed from
4% total (k, q) measurements, keeping 20% k-space samples and 20% q-space samples.
It is apparent that the prior model is unable to accurately reconstruct crossing fiber
signal in the middle of the image. It is also evident that isoTV outperforms Haar.
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ranging from 10% to 100% of the original phantom HARDI signal in each domain,
resulting in a combined total of 1% to 100% of the full signal. Then, we compare
our reconstructed signal Ŝx,q with the original full signal, Sx,q, by calculating

residual error ||Ŝx,q − Sx,q||22/||Sx,q||22. As a note, this phantom data has been
pre-transformed to the spatial domain and so to test k-space subsampling, we
retrospectively transform the data back to k-space using the Fourier transform
prior to experiments.

In Fig. 2 are the quantitative reconstruction results of our proposed (SAAS)
(k, q)-CS compared to (Prior). Each subplot presents a fixed k-space subsampling
percentage, while the percentage of q subsampling varies along the x-axis. Kron-
SFISTA took ∼15-30 min to complete for a single run over multiple λ. We can
see improvements of reconstruction accuracy for our proposed method especially
in the desired low range of 20% k subsampling and 20% q subsampling, i.e. 500
frequency measurements and 12 gradient directions, keeping a total of 4% of
samples (see second plot in first row of Fig. 2).

We show the ODFs estimated from the reconstructed phantom signal for this
4% sampling rate in Fig. 3 comparing the results of using isoTV versus Haar
wavelets. We notice that (Prior) is unable to reconstruct the complex crossing fiber
ODFs in the middle region of the image at this low level of sampling. Alternatively
(SAAS) provides more accurate reconstructions of the entire dataset with isoTV
well outperforming Haar wavelets.

4.3 (k, q)-CS Results for Real HARDI Brain Data

We next show (k, q)-CS results on a real HARDI brain dataset with G = 256
gradient directions (b = 1500 s/mm2). For visualization we tested on a 2D 50×50
sagittal slice of the corpus callosum region known for two distinct crossing fiber
tract populations in the left-right and anterior-posterior directions. Fig. 4 shows
the results of our proposed (SAAS) vs. (Prior) first with 20% k-space and 20%
q-space (51 gradient directions) subsampling and then decreased to 20% k-space
and 10% q-space (25 gradient directions) for a total of 4% and 2% subsampling,
respectively. We can see that at 4%, (SAAS) is able reconstruct the crossing
ODFs in this region while (Prior) results in isotropic estimations. As we decrease
subsampling further to 2%, we notice that (Prior) produces a highly inaccurate
reconstruction, setting many voxels to zero (yellow spheres). (SAAS) maintains
a recognizable structure but begins to lack accuracy of crossing fibers.

As was the case for phantom data, this real data has been pre-transformed to
the spatial domain and so we retrospectively transform the data back to k-space
using the Fourier transform in order to subsample the data before experiments.
Applying our methods directly to raw data acquired in (k, q)-space will be
included in future work. These results show the limitations of subsampling for
state-of-the-art (k, q)-CS, and the promise of new levels of subsampling and
acceleration using our proposed (k, q)-CS model.
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Sagittal b0 Original Signal

Prior, isoTV-SR, 4% SAAS, isoTV-SR, 4%

Prior, isoTV-SR, 2% SAAS, isoTV-SR, 2%

Fig. 4: Reconstruction of corpus callosum in the sagittal view comparing (SAAS)
and (Prior) (k, q)-CS. Top left: whole brain b0 image with ROI. Top right: ODFs
in ROI estimated from fully sampled original signal. Middle: ODFs estimated from
reconstructed signal with only 4% of the total (k, q) measurements, keeping 20% k-space
samples and 20% q-space samples (51 grad dirs). Bottom: repeated with 2% of the
total (k, q) measurements, keeping only 10% q-space samples (25 grad dirs). (Prior)
is unable to reconstruct crossing fibers and sets many voxels to zero (yellow) while
(SAAS) maintains accurate reconstruction at these very low sampling rates.

5 Conclusion

In this work, we have proposed a unified (k, q)-CS model for dMRI that naturally
exploits sparsity in the joint spatial-angular domain. The main goal of this paper
was to demonstrate the performance gains of CS using our joint model compared
to state-of-the-art frameworks which combine k-CS and q-CS in an additive way.
We have shown that we can achieve more accurate signal reconstructions with
a greater reduction of measurements than state-of-the-art (k, q)-CS models, on
the order of 2-4% of the original data (12-25 gradient directions). Though we



(k, q)-CS with Joint Spatial-Angular Sparsity 13

experimented on single-shell HARDI, our proposed framework is applicable to
any dMRI acquisition protocol. In addition, we have derived a novel Kronecker
extension of FISTA to efficiently solve this large-scale optimization by exploiting
the separability of Kronecker dictionaries.

To make a concrete comparison of (k, q)-CS methods, we chose fixed sparsifying
transforms/dictionaries and (k, q) sensing schemes and used a spatial-angular
analysis-synthesis model to match that of state-of-the-art formulations. In our
future work, we will develop joint spatial-angular dictionary learning methods
to increase sparsity and optimize (k, q) sensing schemes to push the limits of
acquisition acceleration. We will also explore other analysis/synthesis options
and derive precise theoretical guarantees for the proposed (k, q)-CS model. Lastly,
in future work we will closely investigate the relationship between sampling
in (k, q)-space as a function of acquisition time. We hope that the preliminary
findings in this work may lead to increased levels of dMRI acceleration for greater
practical usability in the future.
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