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1Center for Imaging Science, Johns Hopkins University
2Department of Psychological and Brain Sciences, Johns Hopkins University
3Imaging and Computer Vision, Siemens Corporation, Corporate Technology

Abstract. Reducing the amount of information stored in diffusion MRI
(dMRI) data to a set of meaningful and representative scalar values
is a goal of much interest in medical imaging. Such features can have
far reaching applications in segmentation, registration, and statistical
characterization of regions of interest in the brain, as in comparing
features between control and diseased patients. Currently, however, the
number of biologically relevant features in dMRI is very limited. Moreover,
existing features discard much of the information inherent in dMRI
and embody several theoretical shortcomings. This paper proposes a
new family of rotation invariant scalar features for dMRI based on the
spherical harmonic (SH) representation of high angular resolution diffusion
images (HARDI). These features describe the shape of the orientation
distribution function extracted from HARDI data and are applicable
to any reconstruction method that represents HARDI signals in terms
of an SH basis. We further illustrate their significance in white matter
characterization of synthetic, phantom and real HARDI brain datasets.

Keywords: rotation invariance, spherical functions, feature extraction,
diffusion magnetic resonance imaging, orientation distribution functions.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) is a non-invasive imaging technique
that can be used to characterize the white matter (WM) architecture of the brain
in normal and diseased patients [1]. In particular, extracting scalar features (or
biomarkers) from dMRI data has become an integral part of group/longitudinal
studies of WM changes in brain connectivity related to development, neurodegen-
eration, or disease [2]. Since diffusion tensor imaging (DTI) is currently the de
facto standard in clinical neuroimaging, the vast majority of the studies assessing
WM connectivity and its impairment employ features derived from DTI, e.g.,
mean diffusivity (MD), fractional anisotropy (FA), relative anisotropy (RA),
linear/planar/spherical anisotropies (LA/PA/SA) [3, 4]. However, DTI is limited
by its inability to resolve intra-voxel complexities like fiber crossings. This causes
DTI-based features to severely lack specificity [5]. Hence, there is a strong need
for deriving new scalar measures for characterizing the WM integrity, especially
from more generic and versatile diffusion representations such as higher-order
tensors [6, 7] and orientation distribution functions (ODFs) [8–10], which describe
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the tissue microstructure with greater accuracy and detail.
Few scalar features have been derived from the aforementioned representa-

tions [11], with the most popular ones being the fractional multifiber index (FMI)
[12], generalized anisotropy (GA) [13] and generalized fractional anisotropy (GFA)
[8]. Recently, [14] used a polynomial approach to extract geometric characteristics
from spherical functions (e.g., ODFs) and proposed new scalar measures such
as peak fractional anisotropy (PFA) and Total-PFA. Furthermore, [5] presented
the concept of the integrity basis for 2nd and 4th order tensors, as well as two
standard bases called the basic and principal invariants, expanding the works of
[15] and [16] on the principal invariants of the 4th order tensor.

In this paper we propose a new framework for extracting a large set of rotation
invariant features from the spherical harmonic (SH) representation of HARDI
signals and ODFs. The advantage of this framework is its generality. In fact,
we derive a family of rotation invariant features that can be extracted from
any spherical function written in an SH basis. Numerous HARDI reconstruction
methods [11] such as Spherical Deconvolution (SD), Diffusion Orientation Trans-
form (DOT), Spherical Polar Fourier Imaging (SPFI), Bessel Fourier Orientation
Reconstruction (BFOR) model spherical functions like the Ensemble Average
Propagator (EAP), Fiber Orientation Distribution (FOD), and Apparent Dif-
fusion Coefficient (ADC) using an SH basis. Our framework can be applied to
any of these spherical functions to extract a new set of scalar values. In addition,
any continuous function of these scalar values can be used to generate additional
features that can be significant for a specific experiment or application.

The remainder of the paper is organized as follows. Section 2 lays the theoret-
ical groundwork for spherical functions and provides the derivation of a new set
of rotation invariant features. Section 3 applies our theory to HARDI signals and
ODFs and Section 4 evaluates our features on synthetic, phantom and real data.

2 Rotation Invariant Features for Spherical Functions

2.1 Spherical Harmonic Representation of Spherical Functions

Our framework for extracting features from HARDI signals is based on a theorem
first proved for functions represented by a Fourier basis [17]. This theorem was
recently extended to continuous spherical functions represented in an SH basis
[18, 19]. The (standard) SH basis are complex-valued functions defined as

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ , l = 0, 1, 2, . . . , −l ≤ m ≤ l, (1)

where Pml is the associated Legendre polynomial of degree l and orderm, θ ∈ [0, π],
and φ ∈ [0, 2π). For a real continuous spherical function f : S2 → R, we can write

f =
∑∞
l=0

∑l
m=−l f̂l,mY

m
l , where f̂l,m are the SH coefficients that parametrize f .

We can approximate f using a finite SH basis representation of degree up to
L, giving us (L+1)2 basis elements. Given the vector of SH coefficients f̂ = [f̂l,m],
[19] constructed an (L+ 1)2 × (L+ 1)2 matrix TL, which is an analogue to the
Toeplitz matrix of the Fourier representation. The matrix TL is constructed as



Rotation Invariant Features for HARDI 3

follows. Let g(u) =
∑L
l=0

∑m=l
m=−l ĝlmYlm(u) be a spherical function and let ĝ be

its vector of SH coefficients of length (L+1)2. Then [19] shows that the coefficients

f̂g of the product of two spherical functions, f(u)g(u), can be obtained as

TL(f)ĝ = f̂g. (2)

Here, TL(f) is a matrix whose rows and columns are indexed by the pair
(l1m1, l2m2) = (l1(l1 + 1) + m1, l2(l2 + 1) + m2), where li = 0, 1, 2, . . . , L and
−li ≤ mi ≤ li, for i = 1, 2. The entry of TL(f) at index (l1m1, l2m2) is defined as

TL(f)l1m1;l2m2 =

l1+l2∑
l=|l1−l2|

f̂l,m1−m2G(l, l2, l1;m1 −m2,m2,m1), (3)

where G(l1, l2, l3;m1,m2,m3) is a real constant Gaunt Coefficient (See [19] Ap-
pendix A). As an important note, TL(f) is not Toeplitz. However its structure
embodies many of the same properties of the Toeplitz form for the Fourier case.

We can rewrite TL as a linear combination of matrices of Gaunt Coefficients

TL(f) =
L∑
l=0

m=l∑
m=−l

f̂lmGlm, (4)

where Glm(l1(l1 + 1) +m1, l2(l2 + 1) +m2) = G(ll2l1;mm2m1). Note that the
Gaunt coefficient matrices Glm are sparse since G(ll2l1;mm2m1) is zero unless
m = m1−m2, so this formulation is more computationally efficient and intuitive.

With the above notation, we have the following extension of the Eigenvalue
Distribution Theorem to continuous spherical functions [17, 18], which asserts
that the eigenvalues of TL(f) are distributed as the function f itself.

Theorem 1. (Eigenvalue Distribution Theorem on S2) Let f(u) be a con-
tinuous spherical function and let TL(f) be the Toeplitz-like matrix defined in (4).
Furthermore let F be any continuous function defined on the range of f . Then

lim
L→∞

F (λ
(L)
1 ) + · · ·+ F (λ

(L)
(L+1)2)

(L+ 1)2
=

1

4π

∫
S2
F (f(u))dσ(u), (5)

where {λ(L)k }
(L+1)2

k=1 are the real eigenvalues of TL with λ
(L)
1 ≤ λ

(L)
2 ≤· · ·≤ λ

(L)
(L+1)2

and dσ(u) is the area element in S2.

2.2 Spherical Harmonic Coefficients of Rotated Spherical Functions

Let R = R(α, β, γ) = Rz(γ)Ry(β)Rz(α) be an element of the rotation group
SO(3), parameterized by the Euler angles α, γ ∈ [0, 2π), β ∈ [0, π], where Rz and
Ry represent rotations about the z and y axes respectively. To understand the

effect of R on the SH coefficients f̂lk of a spherical function f , let us define

Alkm(R(α, β, γ)) = e−ikγP lkm(cos(β))e−imα, (6)

where P lkm are the generalizations of the associated Legrendre polynomials,
computed by a recurrence relation of Jacobi polynomials. As shown in [20], the

SH coefficient f̂Rlm of the rotated function fR(u) = f(Ru) is a linear combination
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of the SH coefficients f̂lk, for k = −l, . . . , l, of the function f , which is given by

f̂Rlm =

l∑
k=−l

f̂lkA
l
km(R). (7)

We can see that the rotation of f̂ is localized to each set of coefficients of degree
l. Therefore we can write the (L + 1)2 × (L + 1)2 matrix A(R) as a block
diagonal matrix where each block is of the form [Al]km = Alw(k,l)w(m,l)(R) with

w(k, l) = k+ l+ 1, l = 0, 2, . . . L and |k| ≤ l. Furthermore, it is shown in [21] that
each block Al is unitary, i.e., (Al)>Al = I(2l+1)×(2l+1), hence the entire block
matrix A(R) is also unitary. Rewriting equation (7) in matrix form leads to

f̂R = A>(R)f̂ . (8)

In other words, a 3D rotation of the domain of the spherical function f by R
induces an (L+ 1)2-dimensional rotation of its SH coefficients by A>(R).

2.3 Invariance of the Eigenvalues of TL under a Rotation on S2

Let f(u) =
∑L
l=0

∑m=l
m=−l f̂lmYlm(u) and g(u) =

∑L
l=0

∑m=l
m=−l ĝlmYlm(u) be two

continuous spherical functions with vectors of SH coefficients f̂ = [f̂lm] and
ĝ = [ĝlm], respectively. Using the definition of TL in (2), [19] shows that

ĝ∗TL(f)ĝ =

∫
S2
f(u)|g(u)|2dσ(u). (9)

Let ĝR> = A>(R>)ĝ be the SH coefficient vector of gR>(u) = g(R>u) and let
ĝ∗R = ĝ∗A(R>) be the SH coefficient vector of gR(u) = g(Ru). We have that

ĝ∗RTL(f)ĝR> =

∫
S2
f(u)|gR>(u)|2dσ(u) =

∫
S2
f(u)|g(R>u)|2dσ(u) (10)

=

∫
S2
f(Ru′)|g(u′)|2dσ(u′)=

∫
S2
fR(u′)|g(u′)|2dσ(u′)= ĝ∗TL(fR)ĝ,

where u′
.
= R>u =⇒ dσ(u′) = |R>|dσ(u) and |R>| = 1. Since in addition

ĝ∗ATL(f)A>ĝ = ĝ∗RTL(f)ĝR> , we have proved the following important relation:

ATL(f)A> = TL(fR). (11)

This implies that the eigenvalues of TL(f) are equal to the eigenvalues of TL(fR).
Furthermore, using the spectral decomposition of TL(f) = UΛU∗ = A>VΛV∗A
we have U∗ = V∗A, hence A = VU∗, where U and V are the sorted matrices
of eigenvectors for TL(f) and TL(fR), respectively, and Λ is the diagonal matrix
of sorted eigenvalues. This result is equivalent to the following statement:

For a continuous spherical function f of degree L, the eigenvalues of TL(f)
are invariant under rotation of the domain of f on S2.

Notice that this result holds only for spherical functions of degree L. In the
case HARDI reconstruction, where the signals are approximated by a spherical
function of degree L, the eigenvalues of TL will be approximately equal to the
eigenvalues of TL after rotation. We will discuss this in more detail in Section 3.2.
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3 Invariant Features for HARDI Signals and ODFs

In Section 2 we developed a framework for extracting a large set of rotation
invariant scalar features from any continuous spherical function. In this section,
we apply this framework to the case of HARDI signals and ODFs.

3.1 Spherical Harmonic Representation of HARDI Signals and ODFs

Let S0 be the baseline MRI signal and let S(θ, φ) be the continuous HARDI
signal along (θ, φ). Following [10], we define the continuous ODF, p, as:

p(ϑ, ϕ) =
1

4π
+

1

16π2
FRT{∇2

b ln(− ln(
S(θ, φ)

S0
))}, (12)

where FRT is the Funk-Radon transform, ∇2
b is the Laplace-Beltrami operator

on S2, ϑ ∈ [0, π] and ϕ ∈ [0, 2π). Since the HARDI signals are real and symmetric,
we will use the modified SH basis to represent ODFs. This basis is defined as:

Yj =


√

2Re(Y
|m|
l ) if − l ≤ m < 0,

Y 0
l if m = 0,√
2(−1)m+1Im(Y ml ) if 0 < m ≤ l,

(13)

where Re(·) and Im(·) are the real and imaginary parts, respectively, and j
.
=

j(l,m) = l2+l+2
2 + m for l = 0, 2, 4, . . . and −l ≤ m ≤ l. For degree up to L,

there are R = (L+1)(L+2)
2 basis elements. It is important to note that when

constructing our TL matrices we must first convert to the equivalent complex
standard basis. To express p in terms of the modified SH basis, let

s(θ, φ)
.
= ln(− ln(

S(θ, φ)

S0
)) =

∞∑
j=1

cjYj(θ, φ). (14)

Since ∇2
b(Yj(θ, φ)) = −lj(lj + 1)Yj(θ, φ), and FRT (Yj(θ, φ)) = 2πPlj (0)Yj(ϑ, ϕ),

where Plj (0) is the Legendre polynomial of degree lj at 0, we have

p(ϑ, ϕ) =
1

4π
+

1

16π2

∞∑
j=1

(−2πPlj (0))lj(lj + 1)cjYj(ϑ, ϕ) =

∞∑
j=1

c̃jYj(ϑ, ϕ), (15)

where c̃1 = 1
2
√
π

and c̃j = − 1
8πPlj (0)lj(lj + 1)cj for j > 1.

We can see that HARDI data gives us two particular spherical functions that
encode biological information of dMRI: the HARDI signal, s, and the ODF, p.
In the above formulation, both of these functions are continuous. In practice, the
HARDI signals are measured at a finite number, G, of fixed gradient directions
(θi, φi)

G
i=1, usually in the range of 30 to 200 points, and p is estimated from s

using another set of M discrete points on the sphere, (ϑi, ϕi)
M
i=1. Using discrete

approximations of s and p, with an R-dimensional SH basis of degree L, we have

s = Bc, (16)

where s
.
= [ln(− ln(S(θ1,φ1)

S0
)), . . . , ln(− ln(S(θG,φG)

S0
))]>, B ∈ RG×R is a matrix

whose i-th row is Bi = [Y1(θi, φi), . . . , YR(θi, φi)], and c = [c1, c2, . . . , cR]> ∈ RR.
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Then

p =
1

4π
1 +

1

16π2
CLPc = Cc̃, (17)

where 1 is the M × 1 vector of ones, C is the M × R SH basis matrix whose
i-th row is Ci = [Y1(ϑi, ϕi), . . . , YR(ϑi, ϕi)], L is the R × R diagonal matrix of
Laplace-Beltrami eigenvalues with Ljj = −lj(lj + 1), P is the R × R diagonal
Funk-Radon transform matrix with Pjj = 2πPlj (0) and c̃ is defined as in (15).

3.2 Approximate Rotation Invariance using a Finite SH Basis

In Section 2.3 we showed that, for a continuous spherical function f of degree L,
the eigenvalues of the matrix TL(f) are invariant with respect to a rotation of the
domain of f . In Section 3.1 we showed how to approximate HARDI signals and
their ODFs, s and p, respectively, by continuous spherical functions of degree L.
Notice, however, that the eigenvalues of TL(s) and TL(p) need not be invariant
with respect to rotations of the raw HARDI signals. This is because the raw
HARDI signals may not admit an expansion of degree L in terms of the SH basis.

In practice, however, we expect the HARDI signals to be well approximated
by low-degree models, hence the eigenvalues of TL(s) and TL(p) should be
approximately invariant with respect to rotations for large enough L. To verify
this, we used the multi-tensor model in [22] to generate three noiseless HARDI
signals of 1-, 2-, and 3-fiber ODFs. We applied two different rotations to each
one of these HARDI signals and approximated the resulting nine HARDI signals
by an SH expansion of degree L = 4. The two plots in column 1 of Fig. 1 show
the 25 eigenvalues of TL(s) and TL(p), respectively, in increasing order. Notice
that the three curves of eigenvalues corresponding to 1-, 2-, or 3-fibers align
almost perfectly, showing that the eigenvalues of TL are approximately invariant
to rotations in spite of the finite approximation by an SH basis of degree L = 4.

Now, since the eigenvalues of TL give only approximately invariant features due
to the use of a finite degree L, we might wonder why not using other approximately
invariant features instead. For example, the maximum and minimum values of s
are invariant to rotations. More generally, if we look at the entries of s, which
correspond to samples of s at different directions on a fixed grid on S2, then the
sorted entries of s should be approximately invariant to rotations. To verify this,
we plot in column 2 of Fig. 1 the sorted entries of s and p (in increasing order)
for the same nine HARDI signals described before. Notice that the three curves
of 1-, 2-, or 3-fibers do not align as well as the corresponding curves in column 1.
This shows that the sorted discrete values of s and p are not as invariant to
rotations as are the eigenvalues of TL(s) and TL(p), respectively.

Given the (approximate) invariance of the eigenvalues of TL(s) and TL(p), we
can use Theorem 1 to generate a large number of rotation invariant features for
describing HARDI signals. For example, we can use the minimum and maximum
eigenvalues, λmin and λmax, respectively, which approximate the minimum and
maximum of the spherical function. We can also use the range of the eigenvalues,
λmax − λmin, as another feature. In addition, the variance of the eigenvalues will
be closely related to the variance of the spherical function values and can be
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Fig. 1: Comparing the rotational invariance of the eigenvalues (first column) to that of
the spherical function values (second column) using a discretization of the continuous
function. The first row is the HARDI signal and the second row is the ODF. The plots
show the sorted eigenvalues and sorted function values for nine different signals and
ODFs, obtained by rotating three different signals with 1, 2, and 3 fibers, respectively.
Observe the almost perfect overlap of the curves corresponding to 1-, 2-, or 3-fiber
ODFs in the first column and the misalignment of the curves in the second column.

used as another feature. We also considered features such as the mean, median
and mode of the eigenvalues as well as the determinant, trace, 2-norm and
Frobenius norm of TL. But the beauty of this framework is that one can use
any continuous function of the eigenvalues, which provides a very rich set of
features for a particular application. Furthermore, the choice of which spherical
function to use (s, p or another) is also up to the user and can be determined
based on the application or experiment. For different experiments (Section 4)
we use the eigenvalues associated to both the HARDI signal, s and the ODF
p. Furthermore, we can even extend L by zeropadding the coefficient vector of
our spherical function using the method in [23] to extract a larger number of
features, of which the values such as minimum, maximum, range and variance of
eigenvalues will better approximate the distribution of the function values.

4 Validation

Synthetic Data. We first test the proposed HARDI features on synthetic data
of isotropic, 1-, 2-, and 3-fiber ODFs generated using the multi-tensor model in
[22]. For the synthetic ODF field in Fig. 2(a) we plot the variance and range
of the eigenvalues of TL(s) in Fig. 2(b). Observe from the constant height of
the bars in each color of the bar graph that these values are rotation invariant,
as predicted. Observe also from the distribution of the bar graphs in Fig. 2(b)
that these features give information about the shape of each ODF. In particular,
notice that the maximum eigenvalue of the 1-fiber ODFs is greater than that for
the 2- and 3-fiber ODFs. This is also apparent from Fig. 1. We can also see that
the minimum eigenvalue of the 3-fiber ODFs is greater than that of the 2-fiber
and 1-fiber ODFs, also as seen in Fig. 1. When interpreting the results for ODFs,
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(a)

(b)

Fig. 2: Synthetic ODF field of 0-, 1-, 2-, and 3-fiber ODFs with various rotations and no
noise. The graphs in 2(b) are colorcoded by the color bar in 2(a) to indicate each column
of the ODF field while each row is a different rotation of each ODF. The constant height
of each color in the bar graphs indicate the invariance of the eigenvalues under rotation
and the relative differences in values for ODFs with varying number of crossing fibers.

we can additionally use the fact that p is a probability distribution. Thus, if the
variances of each peak in our ODF are the same, as was the case in our synthetic
experiments, we know that the maximum of a 1-fiber ODF will be greater than
that for the 2- and 3-fiber ODFs since the area under the curve must sum to 1.
This information is also encoded in the range of the eigenvalues. Furthermore,
the variance of the eigenvalues indicate how the values are spread out, revealing
information about the relative roundedness of the ODF, where a lower variance
indicates a rounder shape and a higher variance indicates a thinner shape.

Phantom Data. We also evaluate our method on two different phantom
datasets. The first one is taken from the ISBI 2013 HARDI Reconstruction
Challenge, which consists of 20 fiber bundles crossing at various angles within a
50× 50× 50 spherical volume.1 We used a subset of the dataset imaged at 64
gradient directions with b = 3000s/mm2 and SNR of 30. We selected z slice 38
to demonstrate our method on the intricate crossing region shown in Fig. 3. In
the top left we present an approximate ground truth segmentation of the fibers
by using the given center and radius information for each fiber in the dataset.
The image in the top right is a count of the number of fibers that cross in a single
voxel based on the ground truth segmentation. The two figures in the second
row compare the GFA to the variance of the eigenvalues of TL(p). Notice that
the GFA mostly distinguishes isotropic regions from anisotropic ones, while the
variance is able to discern regions with 0, 1, 2, or 3 crossing fibers, approximately

1 http://hardi.epfl.ch/static/events/2013 ISBI/download.html
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Fig. 3: ISBI 2013 HARDI Phantom. First Row: The left image is the ground truth
fiber segmentation of a slice of the phantom dataset, where we’ve identified an intricate
region of crossing fibers. The right image is a count of the number of fibers that cross
in a given voxel, ranging from 0 to 3. Second Row: GFA and eigenvalue variance of
the phantom slice. We notice here the stricking similarity between the plot of crossing
fibers and the eigenvalue variance whereas the GFA is unable to reveal this information.
Third/Fourth Row: Close up of the ROI with ODFs.

matching the ground truth. The remaining two rows show a more detailed view
of the central region, with the ODF estimates at each voxel.

Secondly, in Fig. 4, we experimented on the Neurospin MR phantom dataset
provided for the MICCAI 2009 Fiber Cup [24, 25]. Analyzing our new scalar maps
of eigenvalue range and variance of the Fiber Cup dataset we notice a higher
degree of detail. We see more variety of values along the fiber travelling from top
right to bottom left. Also very importantly, each new map reveals more details
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about the shape of the topmost U-shaped kissing fiber, over and above the GFA
maps. Furthermore we show each individual eigenvalue and display a progression
of values. In particular, the minimum and maximum eigenvalues, Eval 1 and Eval
25, respectively, reveal more detail in the crossing fiber regions. In Eval 1 the
crossing regions show up greenish-blue, on the lower end of the spectrum. The
same regions in Eval 25 also show lower values with color yellow. As noticed in
the synthetic experiments, crossing fibers exhibit a lower range of eigenvalues
when compared to single fiber ODFs.

Real HARDI Data. The optic chiasm is the location where two fibers leading
from the right and left hemispheres intersect as they travel from the optic tract to
the optic nerve. It has been identified as a unique region of two fiber crossing as
well as kissing on either side using DTI tractography [26]. In Fig. 5 we analyze the
fiber crossing of the optic chiasm and calculate the GFA and minimum eigenvalue
feature for this ROI in a 112×112×64 real human brain HARDI dataset acquired
with 127 gradient directions and b = 1000s/mm2. The minimum eigenvalue map
is able to more concretely distinguish the crossing center red region from the
yellow region of the optic tract extending from left and right.

5 Conclusion

We have developed a general framework for extracting rotation invariant features
from any spherical function using an SH basis. In particular, we extracted features
from ODFs of HARDI signals, but any other spherical function used in the
numerous methods of HARDI reconstruction and fiber orientation estimation can
be substituted here to obtain features valuable for a particular application. These
features reduce the complexity of dMRI data to measurable and comparable scalar
values that could be used as biomarkers in the detection of neurological diseases.

Acknowledgements. This work was supported by NIH grants 5T32EB010021-
03, R01 EB008432 and P50 AG05146.
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