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Diffusion MRI (dMRI) provides the ability to reconstruct neuronal fibers in the brain, in vivo, by measur-
ing water diffusion along angular gradient directions in g-space. High angular resolution diffusion imag-
ing (HARDI) can produce better estimates of fiber orientation than the popularly used diffusion tensor
imaging, but the high number of samples needed to estimate diffusivity requires longer patient scan
times. To accelerate dMRI, compressed sensing (CS) has been utilized by exploiting a sparse dictionary
representation of the data, discovered through sparse coding. The sparser the representation, the fewer
samples are needed to reconstruct a high resolution signal with limited information loss, and so an im-
portant area of research has focused on finding the sparsest possible representation of dMRI. Current
reconstruction methods however, rely on an angular representation per voxel with added spatial regular-
ization, and so, for non-zero signals, one is required to have at least one non-zero coefficient per voxel.
This means that the global level of sparsity must be greater than the number of voxels. In contrast, we
propose a joint spatial-angular representation of dMRI that will allow us to achieve levels of global spar-
sity that are below the number of voxels. A major challenge, however, is the computational complexity
of solving a global sparse coding problem over large-scale dMRI. In this work, we present novel adap-
tations of popular sparse coding algorithms that become better suited for solving large-scale problems
by exploiting spatial-angular separability. Our experiments show that our method achieves significantly
sparser representations of HARDI than is possible by the state of the art.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) is a medical
imaging modality used to analyze neuroanatomical biomarkers for
brain diseases such as Alzheimer’s. dMRI are 6D signals consist-
ing of a set of 3D spatial MRI volumes acquired in k-space that
are each weighted with a different diffusion signal measured in
g-space. In each voxel of a brain dMRI, the g-space diffusion sig-
nals are reconstructed to estimate orientations and integrity of
neuronal fiber tracts, in vivo. Different dMRI protocols measure g-
space in different ways. For example, diffusion spectrum imaging
(DSI) (Wedeen et al., 2005) measures g-space densely on a 3D grid.
Alternatively, diffusion tensor imaging (DTI) (Basser et al., 1994)
simplifies acquisition by modeling a Gaussian distribution on the
unit g-sphere. High angular resolution diffusion imaging (HARDI)
(Tuch, 2004) also restricts measurements to the unit sphere, but
increases the angular resolution from that of DTI. Multi-Shell
HARDI (MS-HARDI) (Wu and Alexander, 2007) expands its radial
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range to include multiple spheres, or shells. Since DTI collects the
fewest number of measurements, it has become the most widely
used clinical dMRI protocol. However, its simple tensor model is
unable to capture the complex diffusion profiles in each voxel. On
the other hand, protocols like HARDI, MS-HARDI, and especially
DSI, collect a higher number of g-space measurements to esti-
mate more accurate diffusion profiles at the expense of longer scan
times, making them currently unsuitable for clinical studies.

An ongoing research goal has been to find ways to reduce
acquisition times of HARDI, MS-HARDI, or DSI, while maintain-
ing accurate estimations of diffusion. One avenue is from a hard-
ware perspective: maintain dense signal measurement configura-
tions while devising faster physical acquisition techniques like si-
multaneous multi-slice acquisition (Setsompop et al., 2012) and si-
multaneous image refocusing (Reese et al., 2009). The other is from
a signal processing perspective: maintain accurate signal recon-
structions while devising methods to exploit redundancies in the
data and reduce the number of required measurements to accel-
erate acquisition. This paradigm is known as Compressed Sensing
(CS) (Donoho et al., 2006).

CS is a class of mathematical results and algorithms that ex-
ploits sparse representations of signals, discovered through sparse
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coding, to obtain extremely accurate reconstructions at sub-
Nyquist rates. A classical application of CS has been to acceler-
ate structural MRI by subsampling the spatial frequency domain,
k-space (Lustig et al., 2007), known as k-space CS or k-CS. These
ideas have also been previously applied to dMRI by subsampling
the angular frequency domain, g-space, (Ning and et al, 2015)
(analogously called g-CS) and more recently, to subsample both
k- and g-space (Cheng et al., 2015a; Sun et al., 2015), commonly
called (k, g)-space CS or (k, q)-CS, to further increase acceleration.
However, because the goal of dMRI reconstruction is to estimate
diffusivity profiles at each voxel, dMRI signals are traditionally rep-
resented as a set of voxel-wise g-space signals in the angular do-
main. Spatial regularization is an important technique used to im-
prove these estimations over an entire dMRI volume (Goh et al.,
2009), but the underlying data representation of dMRI is still angu-
lar and local to each voxel. Therefore, when applying sparse coding
for dMRI, the sparsest possible global representation over an entire
volume can be no less than the number of voxels since at least
one dictionary atom would be required to model g-space signals
in each voxel.

To overcome this fundamental limitation, we propose a global
spatial-angular representation of dMRI that allows global sparsity
levels to fall below one atom per voxel by exploiting redundan-
cies in the spatial and angular domains, jointly with a global dic-
tionary. A major challenge, however, of optimizing over a global
dictionary is the computational complexity of solving a massive
global sparse coding problem over large-scale dMRI data. Yet, by
imposing that our global dictionary is separable over the spatial
and angular domains we can greatly improve computational effi-
ciency while preserving good sparsity levels for typical signals. One
of our main contributions in this paper is a set of novel adapta-
tions of popular sparse coding algorithms to solve general large-
scale sparse coding problems using separable dictionaries. Our ex-
periments on phantom and real HARDI brain data show that it is
possible to achieve accurate global HARDI reconstructions with a
sparse representation of less than one dictionary atom per voxel,
exceeding the theoretical limit of the state of the art in sparse cod-
ing. Sparse coding has many important applications like de-noising
(Ouyang et al., 2013), dictionary learning (Cheng et al., 2015b) and
super-resolution (Yoldemir et al., 2014), and, in particular, apply-
ing our joint spatial-angular sparse coding framework within the
application of (k, q)-CS will be the subject of future work.

The remainder of this paper is organized as follows: In
Section 2, we review state-of-the-art sparse coding methods for
dMRI and illustrate the limitations of their performance on a phan-
tom HARDI dataset. In Section 3, we present our joint spatial-
angular dMRI representation and formalize the global spatial-
angular sparse coding problem. Then, in Section 4, we develop and
compare a set of novel sparse coding algorithms using separable
dictionaries to efficiently solve our large-scale global optimization.
Finally, in Section 5 we provide experimental results showing the
performance of our method over the state-of-the-art and conclude
with a discussion in Section 6.

2. State of the art
2.1. Angular (voxel-wise) reconstruction

A dMRI can be modeled as a 6D signal S(v, q), where ve Q C
RR3 is the location of a voxel in the 3D spatial domain  and g € R3
is a point in the so-called g-space.! A dMRI signal is measured
at a discrete number of voxels, V, and a discrete number of g-
space points, G. While dMRI signals can be viewed as a set of

1 The g-space is the frequency domain associated with the angular domain, while
the k-space is the frequency domain associated with the spatial domain.

G diffusion weighted images (DWIs) or volumes, the most com-
mon view-point for dMRI processing and analysis is voxel-wise,
i.e.for each voxel v e 2, we acquire a vector of G diffusion measure-
ments S(v, qg)gz1 = sv(qg)g:] =5, at points gg in 3D g-space. The
latter interpretation is most common for modeling because a ma-
jor goal of dMRI reconstruction is to estimate 3D probability dis-
tribution functions (PDFs) of fiber tract orientation at each voxel.
Accordingly, the signal vector s, is represented by a g-space basis,
I'= [F,-(q)][.\’:T], with Np atoms, such that

1

sy =lay. (1)

where a, is the vector of angular coefficients at voxel v. (See
Fig. 1). The dMRI literature has produced a wide array of dMRI
reconstruction algorithms for different acquisition protocols, an ar-
tillery of g-space bases and varying models for estimating orien-
tation distributions. The vast majority of research reconstructs g-
space signals in each voxel with a g-space basis (see the dMRI
challenge (Daducci et al, 2014) for a comprehensive summary
and comparison of state of the art reconstruction frameworks).
To enforce or exploit desirable properties of dMRI signals, many
methods will add a set of constraints C on the angular coeffi-
cients such as angular smoothing (Ye, 2016), non-negativity of PDFs
(Schwab et al., 2012; Wolfers et al., 2014), or orientational symme-
try (Gramfort et al., 2014), solving:

1
a;:argmmjlll‘av—syH% st ay,eC. 2)
ay

The constraint of particular interest in our paper is that of en-
forcing sparsity on the coefficients of the reconstruction, known as
Sparse Coding.

2.2. Angular (voxel-wise) sparse coding

Sparse coding is a reconstruction problem which seeks a sparse
representation, i.e. a coefficient vector with few nonzero elements.
Given a sparsifying g-space basis I for which the dMRI signal in
each voxel is expected to have a sparse representation, the angular
(voxel-wise) sparse coding problem can be formulated as:

.1
a; =argmin 5 ||ITa, —sll3 st [lavllo < K, 3)
ay

where ||ay||p counts the number of nonzero elements of vector ay,
and K, is the sparsity level at voxel v. This problem is known to
be NP-hard, and therefore the two main methodologies to tackle
(3) are to a) approximate a solution using greedy algorithms such
as Orthogonal Matching Pursuit (OMP) (Tropp, 2004) or b) replace
the Ly semi-norm by its convex relaxation, the L; norm, and solve
either the Basis Pursuit or LASSO problem given by:

.1
a; = argmin 5 ||Ta, — s[5 + Al (4)
ay

using algorithms such as Alternating Direction Method of Multipli-
ers (ADMM) (Boyd et al., 2010) or Fast Iterative Thresholding Algo-
rithm (FISTA) (Beck and Teboulle, 2009), where A is the trade-off
parameter between data fidelity and sparsity.

An important application of sparse coding in the dMRI com-
munity is that of CS. Angular sparse coding and g-CS have been
widely researched for dMRI to reduce long acquisition times.
Many groups have done extensive work choosing sparsifying q-
space bases (Merlet et al., 2011; Ning and et al., 2015; Aranda
et al., 2015), developing dictionary learning methods (Bilgic et al.,
2012; Cheng et al., 2013; 2015b; Gramfort et al., 2012; 2014;
Merlet et al., 2012; 2013; Sun et al., 2013), and testing g-space
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Fig. 1. Illlustration of voxel-wise angular HARDI representation a, using a sparsifying dictionary I'".

subsampling schemes for DSI (Gramfort et al., 2014; Merlet and
Deriche, 2010; Menzel et al., 2011; Merlet and Deriche, 2013; Pa-
quette et al., 2015), MS-HARDI (Cheng et al., 2011; Rathi et al.,
2011; Merlet et al., 2013; Duarte-Carvajalino et al., 2014; Daducci
et al., 2015), HARDI (Michailovich and Rathi, 2010a; 2010b; Tristan-
Vega and Westin, 2011; Duarte-Carvajalino et al., 2012; Alaya et al.,
2016) and DTI (Landman et al, 2012) with promising results
in sparsity and measurement reduction for clinical tractography
(Kuhnt et al., 2013a; 2013b). However, a major limitation for this
family of methods is that the sparsest possible representation of an
entire dMRI dataset can be no less than the number of voxels since
[lavllo =1V ve . In CS applications, this induces fundamental lim-
itations in the amount of subsampling factors that may be achiev-
able in g-space. In practice, the spatial-angular sparsity level will
be much greater than the number of voxels, to account for noise.
For example the work of Michailovich and Rathi (2008, 2010b) re-
port an average sparsity level of 6-10 atoms per voxel. The meth-
ods presented in the next section attempt to improve upon these
results by exploiting spatial redundancies and reducing measure-
ments in k-space.

2.3. Angular sparse coding with spatial regularization

Incorporating spatial information into voxel-wise reconstruction
is a well utilized technique for increasing the accuracy of recon-
struction. The following is a general formulation for including spa-
tial regularization into the angular sparse coding problem:

A*:arg;nin||FA—S||§+)x||A||1+R(A), (5)
where S =[s;...sy] e RS%V is the concatenation of signals s, € R®
sampled at G gradient directions over V voxels, A=[a;...ay] e
RNrxV is the concatenation of angular coefficients and R(A) is a
spatial regularizer that depends on the angular representation A.
Here [[X||F = /2> ; [X; jI?> is the Frobenius norm and ||X||; =
>-i > ;X ;jl is the 1-norm taken over all elements of the matrix.
In particular when R =0, this reduces to solving (4) for each
voxel. When A =0 and R(A) = ;3. lla; — a;]|? (Laplacian reg-
ularization), where A is a local spatiaf neighborhood of voxel i,
this is the general non-sparse reconstruction with spatial coher-
ence (Goh et al., 2009). Some have found incorporating both the
angular sparsity constraint A||A||; and spatial coherence R(A) ben-
eficial for applications such as de-noising (Ye et al., 2012; Ouyang
et al., 2013; 2014; Ye, 2016) and tractography (Ye and Prince, 2017).

Spatial regularization within sparse coding is more promi-
nently used for the application of reducing redundancies for CS.
For example, (Michailovich et al., 2011; Rathi et al, 2014; Au-
ria et al, 2015) enforce spatial smoothing for g-CS while (Ning
et al., 2016; Yin et al., 2016) combine g-CS with super-resolution
reconstruction of the spatial domain. To further accelerate dMRI,
the recent work of Chao et al. (2017) combines CS with paral-
lel imaging but reconstructs the signals in k-space and g-space
separately in sequence. A joint (k, g)-space reconstruction is im-
portant for maintaining coherence throughout the dataset. As
such, the works of Awate and DiBella (2013), Shi et al. (2015),
Cheng et al. (2015a), Sun et al. (2015), McClymont et al. (2015) and

Mani et al. (2015) combine k- and g-CS by adding a data fidelity
term for k-space subsampling and an additional spatial sparsity
term. In total, however, while each of these works may be applied
to different diffusion models and acquisition protocols testing var-
ious subsampling schemes, sparsifying transforms and dictionaries,
each are based on an angular representation of dMRI data, A. In
fact, they stem from the same optimization problem formulation
(5) with

R(A) = | [T(TA 1. (6)

where o >0 is an additional trade-off weighting parameter, and
T (-) is a sparsifying transform (or dictionary) applied to the spatial
domain such as wavelets or the finite difference gradient operator,
leading to the usual total variation (TV) norm. In (6), I'A is a re-
construction of the signal S based on the angular representation
A.

While adding these spatial and angular sparsity terms may ex-
ploit redundancies in both the spatial and angular domains, be-
cause they are separate disjoint terms the minimal global sparsity
level will be still limited by the size of the data since ||A||o should
be greater than V and ||W(I"A)||g should be greater than G. Indeed,
when [|A]|p <V, there must exist voxels v such that a, =0, lead-
ing to a zero valued signal s, (column of S) in that voxel. Likewise,
when [|W(T"A)||p <G, there must exist some gradient directions, qg,
such that the signal in the entire volume s4 (rows of S) equals zero.
This becomes a problem because zero valued signals are not phys-
ically representative of real dMRI data. This also becomes a heuris-
tic limitation of prior methods for appropriately choosing trade-off
parameters A and & that result in a physically accurate sparsity
level.

In the next section we will explicitly show the limitation of
sparsity on phantom HARDI data. Table 1 organizes the recent lit-
erature’s usages of sparse coding and CS for dMRI and places the
proposed work in context compared to the state of the art. There
we use the term “Spatial + Angular” Sparse Coding to emphasize
that the state of the art perform both spatial and angular sparse
coding, but not jointly. As an important note, though we frame our
proposed sparse coding method in Table 1 with the backdrop of
CS, we do not propose or implement CS in the current manuscript.

2.4. Limitations of angular representations for sparse coding

We illustrate the limitations of sparse coding using a per-voxel
angular representation on a HARDI phantom dataset with V=50 x
50 and G = 64 gradient directions (the same data is used in our ex-
periments in Section 5). First, we solve (5) with R(A) = 0, showing
qualitative reconstruction results in Fig. 2, for various sparsity lev-
els given by the value of A. Our second result considers the effect
of spatial regularization R(A) # 0 on the amount of angular spar-
sity as a function of the reconstruction error in Fig. 4.

For this setting, we choose angular basis I' to be the
well performing overcomplete spherical ridglet (SR) dictionary
(Michailovich and Rathi, 2008; 2010a; Tristan-Vega and Westin,
2011). Fig. 2 shows the ODF estimations (computed using the
spherical wavelets (Tristan-Vega and Westin, 2011)) from the
sparse signal reconstruction for various sparsity levels compared
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Table 1

Summary of the state-of-the-art dMRI sparse reconstruction methods organized by domains of sparsity (spatial,angular) and CS
subsampling (k, q). The literature has provided a natural extension from k-CS in MRI using spatial sparse coding to g-CS in dMRI
angular sparse coding. However, for (k, q)-CS, the state of the art enforce sparsity in the spatial and angular domains separately,
(called “Spatial + Angular” Sparse Coding) with a purely angular representation. In contrast, the proposed work considers a joint
spatial-angular representation for sparse coding which is a more natural model for joint (k, q)-CS. (fThough our proposed spatial-
angular sparse coding framework is intended for the application of (k, q)-CS as illustrated by this table, the work presented in this

paper is only for sparse coding.)

Sparse coding

Spatial Angular

Spatial + Angular Joint Spatial-Angular

k (Lustig et al., 2007)

Paquette et al., 2015)
Auria et al., 2015)
Ning and et al., 2015)
Cheng et al., 2015b)

(&

Aranda et al., 2015)

Alaya et al., 2016)
Ning et al., 2016)
Yin et al., 2016)

(
(
(
(
q (Daducci et al., 2015)
(
(
(
(

(k, q)

(Shi et al., 2015)
(Cheng et al., 2015a)
(Sun et al., 2015) Proposedf
(McClymont et al., 2015)

(

Mani et al., 2015)

to the ODFs estimated from the original signal, as well as close-
ups of a region of interest (ROI) containing ODFs with complex
crossings of 2, 3 and 4 fibers. In order to compare spatial-angular
sparsity levels we are interested in the average number of active
dictionary atoms over all voxels, i.e. ||A|lo/V. We use 5 different
values of A which gives us average spatial-angular sparsity levels
of 0.246, 0.485, 1.11, 2.07, and 3.84 atoms per voxel. As expected,
when [|A|[p/V <1 (see top left/middle), many voxels are forced to
zero (as indicated by yellow spheres in Fig. 2). This is especially
true for isotropic signals surrounding the fiber tracts. Also as ex-
pected, when [|A||o/V~1, (see top right) many of the complex sig-
nals in the fiber crossing ROI are pushed to zero. This model re-
quires close to ||A||o/V =4 average atoms per voxel to achieve
nearly accurate signal reconstruction (bottom middle). In fact, the
actual number of coefficients per voxel to accurately represent typ-
ical dMRI data with angular bases is substantially higher. We il-
lustrate this in Fig. 3 which shows the number of atoms used to
represent the HARDI signals in each voxel for the reconstructions
in Fig. 2. The bottom right image shows the ground truth number
of fibers crossing in each voxel. This experiment demonstrates that
voxels containing crossing fibers are forced to zero atoms when
the average number of atoms per voxel is very small and tend to
6-12 atoms for accurate reconstruction when the sparsity level is
decreased. This is consistent with the reports of Michailovich and
Rathi (2008, 2010b) for the SR dictionary.

Next, we explore the effect of adding spatial regularization R
to the angular sparsity penalty, as a function of the reconstruction
error. As a common spatial regularizer used in the literature, we
consider for 7 in (6) the finite difference (gradient) operator 7 =
V :=[0x, dy, 9;] and the corresponding isotropic TV norm given by
IVCO!21 = ||\/|8,<X|2 + [9yX|2 + |3:X|2||;. This leads to the new
optimization problem

At = arg/:ﬂinllm = SIZ +AllAll + ol [V(TA) |21, (7)

for various A and o >0, the relative weight of spatial reg-
ularization. This can be solved using Split-Bregman as in
Michailovich et al. (2011). Fig. 4 shows the effect of nonzero « on
angular sparsity compared to the case of « =0 (R = 0) on a small
30 x 30 segment of the phantom HARDI data. As we can see, in all
cases, the minimal sparsity for accurate reconstruction does not go
below the limit of 5 atoms per voxel. In addition, increasing the

relative weight of the TV norm spatial regularization actually re-
sults in an increase in angular sparsity for a given reconstruction
error. In a sense, this is not surprising since the additional regular-
izer R will enforce spatial smoothness of the reconstructed signal
(which can be beneficial for noisy data and in compressed sensing
scenarios) but cannot improve the resulting sparsity of the solu-
tion which is still represented by a set of coefficients per voxel in
the angular basis I'. As the goal of this paper is sparse coding, i.e
finding sparsest possible representations of full HARDI data, in our
later experimental comparisons, we will be using R = 0 when re-
ferring to state-of-the-art reconstruction.

In the following section, we present our global spatial-angular
representation of dMRI which allows for spatial regularization with
the possibility to achieve accurate reconstruction at sparsity levels
below the number of voxels, unachievable with an angular repre-
sentation alone.

3. Joint spatial-angular dMRI representation

To overcome the sparsity limits of an angular representation,
we propose to model a dMRI signal S : Q x R3 — R globally with
a joint spatial-angular dictionary, say ¢(v, q), such that

Sw,q) =) ap(v,q) (8)
Kk

with a single set of global coefficients c = [¢;]. A global dictionary
allows us to find global representations with sparsity levels below
the number of voxels without forcing some voxels to have zero sig-
nal. In fact, the sparsest possible representation would be the ab-
solute limit of 1 nonzero coefficient ¢;, and so we find ourselves
in a unrestricted setting for global sparse coding. To set up the
spatial-angular sparse coding problem, we let s € R& be the vec-
torization of S(v, q) where for v=1...V we stack the g-space sig-
nals, sy € R¢, and @, € R be the vectorization ¢(v, q) to build
the global dictionary @ = [®;... Py, ] € RY*Ne  with Ng atoms.
Then, to find a globally sparse c, we can solve the Ly minimization
problem:

.1
c* =argm1n§||d>c—s||§ s.t. |Icllo <K, (POvec)
Cc
for a sparsity level K or the LASSO problem:
.1
c*=argmm§||<l>c—s||§+A||c||1, (P1vec)
Cc
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Fig. 2. Qualitative demonstration of state-of-the-art sparse coding limitations (5) with the spherical ridgelets (SR) dictionary for 5 different spatial-angular sparsity levels
compared to the original signal (bottom right) with ROI closeups underneath. For high spatial-angular sparsity levels (top left, middle), voxels with complex signals are
forced to zero (yellow spheres). Regions with crossing fibers are unable to be accurately reconstructed even when using an average of 2.07 atoms/voxel. The label I-SR refers
to Identity-SR, explained in the next section. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where A >0 is the sparsity trade-off parameter. However, typical
dMRI contains on the order of V1003 voxels each with G~ 100 g-
space measurements for a total of 1004 = 100 million signal mea-
surements (|s| ~ 108). Since many sparse coding applications often
utilize dictionaries that are over-redundant, this leads to a mas-
sive matrix ® with 100* rows and over 100* columns (|®|~ 1016),

For some datasets, even committing ® to memory is prohibitive.
Therefore solving this large-scale global dMRI sparse coding prob-
lem using traditional solvers like OMP to approximate (POvec) or
ADMM and FISTA to solve (P1vec), prove intractable.

To address this challenge, we introduce additional structure on
the dictionary atoms by considering separable functions over
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Fig. 3. Number of atoms found in each voxel corresponding to the 5 levels of spatial-angular sparsity in Fig. 2. The bottom right figure shows the ground truth number of
fibers crossing in each voxel to illustrate the complexity of each angular signal in relation to how many atoms are needed to sparsely model them. Crossing fiber signals are
either forced to zero for high spatial-angular sparsity levels (see: top row) or require between 3-5 atoms for single fiber signals (see: avg. sparsity 1.11 and 2.07) and 6-12
for double and triple crossing fiber signals (see: avg. sparsity 3.83). The label I-SR refers to Identity-SR, explained in the experiments Section 5.

Angular Sparse Coding with TV on 2D Phantom HARDI
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Fig. 4. Reconstruction error vs. the average number of angular dictionary atoms per voxel using spatial regularization for the HARDI phantom data. As «, the relative weight
of spatial regularization (TV) in (7), increases, the average number of angular atoms increases for a given reconstruction error. This suggests that sparser solutions for angular
sparse coding can be achieved without spatial regularization, although using adequate spatial regularizers can improve the qualitative aspect of the reconstructed signal, in

particular for noisy inputs.

and R3, namely a set of atoms of the form {¢,(v,q)} = (Vi) ®
vi(q)}, where {;(v)} is a spatial basis for the space of functions
from 2 — R and {y;(q)} is an angular basis for the space of func-
tions from R?® — R and ® is the Kronecker product. In discretized
form for V voxels and G gradient directions, with ¥ ¢ RV*Ne and
' € R*Nr | the matrix ® = W ® I' is of the form:

S1 \IJMF \I/]Vzr "IJT,N\DF C1
S2 ‘-112,1 r \I—’z,zr “DZ,NW r C
s=|.|= . . . . = Pc.
Sv Wy I Wy Wyn, T/ \Cngnr
(9)

Fig. 5 illustrates the Kronecker structure of spatial-angular atom
®,. We can see that by representing a dMRI signal with this type
of global spatial-angular atom, one can model an entire region of

the brain with as few as a single atom instead of angular atoms at
every voxel.

A motivating model for this separable structure for dMRI is
as follows: first, as is traditionally done, the signal at each voxel
ve Q2 is written as a linear combination of angular basis functions

{Ti(q)}:

Nr
Sw,q) =) aWTi(q). (10)

i=1

Then, we notice that each spherical coefficient a;(v) forms a 3D
volume and so can be written as a linear combination of spatial
basis functions {W;(v)}:

Ny
a;(v) :ZC,‘J\PJ‘(U). (11)

j=1
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Fig. 5. Top: A separable spatial-angular dictionary composed of the Kronecker product between curvelets W and spherical ridgelets I". A pair of spatial and angular atoms
are highlighted in red and zoomed in below. Bottom: An example construction of a single spatial-angular basis atom ®; (right) by taking the Kronecker product of W; (left)
and I'; (middle), i.e. ¥; ® I'; = ®,. With this particular combination of spatial (curvelet (Candés et al., 2006)) and angular (spherical wavelet (Tristan-Vega and Westin, 2011))
atoms, we can see that it may be possible to represent an entire fiber tract with very few spatial-angular atoms. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 2

Sparse coding variable dimensions, where G (~100) is the number of gradient directions
in g-space, V (2 1003) is the number of voxels in the volume, Nr (= 100) is the number of
atoms of the angular dictionary ', and Ny (= 1003) is the number of atoms of the spatial

dictionary W.

Signal Coefficients

Dictionaries

Variable s S c
Dimensions GV GxV  NrNy

O] r v

Nr x Ny GV x NNy G x Np V x Ny

Combining (10) and (11) we arrive at our proposed separable
spatial-angular dictionary

Nr Ny

Sw,q) =) cj¥wIiq), (12)

i=1 j=1

When stacking each s, in a large vector, (12) results in the Kro-
necker product in (9), s= (¥ ® I')c. Alternatively, when writing
S=1s1,...,5y] as a matrix, (12) results in the equivalent matrix
form:

S=TCyT. (13)

Table 2 summaries the dimensions of the vector and matrix vari-
ables and Fig. 6 illustrates the Kronecker decompositions in the
vector and matrix forms.

Decomposing signals into Kronecker (or more general multi-
tensor) structures has been well researched to increase algorith-
mic efficiency by reducing computations to the smaller, separate
domains. Many research groups have exploited properties of the
Kronecker product, when solving problem types of the form of
(POvec) and (P1vec) for computational efficiency of larger sparse
coding (Caiafa and Cichocki, 2013), dictionary learning (Hawe et al.,
2013) and CS (Duarte and Baraniuk, 2012) applications. The work
of Caiafa and Pestilli (2015) has applied multi-tensor sparse cod-
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Fig. 6. Equivalent vector form (top) and matrix form (bottom) for the Kronecker
decomposition of a signal. We propose to use the matrix form which provides a
more compact representation for signals of large size and exploits the full sepa-
rability of the Kronecker product, reducing matrix multiplication complexity from
O(GVNrNy) to O(GVNr).

ing methods on dMRI data for the application of fiber tract data
compression. In particular, a Kronecker Orthogonal Matching Pur-
suit (Kron-OMP) (Rivenson and S., 2009) has been utilized to solve
(POvec). Although Kron-OMP becomes much more efficient than
the classical OMP (Tropp, 2004), the problem is not entirely sep-
arated into smaller domains, and the computationally expensive @
matrix is still built explicitly. For large-scale problems like that of
dMRI reconstruction, solving (POvec) or (Plvec) even with a Kro-
necker structure dictionary remains largely intractable/expensive
for memory and computation time.

In this chapter, we use the matrix form (13) which allows us
to avoid the expensive uses of @ and fully reduce computational
complexity to the smaller separable basis domains of I" and W. In
particular, we develop efficient algorithms to solve the completely
separable spatial-angular sparse coding problems:

Cr= argmin%HFC\Iﬂ —S|I2 st ||Cllo <K (POmat)
C

and

C*=argmin%||FC\IJT—S||§+k||C||1. (P1mat)
C

This becomes a general optimization to solve large-scale sparse
coding problems with separable dictionaries and can also be ex-
tended to the tensor setting.

As an important note, this matrix formulation is a general-
ization of the voxel-wise angular sparse coding problem (5) in
the special case of W = Iy, the V x V identity matrix, with C=A.
We use the identity as a choice for W in the experiments of
Section 5 when comparing the performance of purely angular
sparse coding with our proposed framework.? Note that the op-
timization problem (P1mat) is on the coefficient matrix C of size
Nr x Ny in comparison to the matrix A of size N x V of state-
of-the-art sparse coding (5). This leads to a slight increase in the
dimension of the problem proportional to the redundancy factor
of the spatial dictionary W (i.e the ratio Ny /V). On the other hand,

2 Using W = Iy identity with spherical ridgelets (SR) we adopt the notation I-SR
for the dictionary used in the state-of-the-art illustration Fig. 2 and Section 5.

our formulation only involves a single sparsity penalty in compari-
son to a sum of angular and spatial terms, thus reducing the num-
ber of weighting parameters to select.

4. Efficient kronecker sparse coding algorithms

In what follows we present three novel adaptations of exist-
ing sparse coding algorithms for solving large-scale sparse cod-
ing problems with a Kronecker dictionary structure. These are
Kronecker extensions of OMP (Section 4.2), ADMM (Section 4.3),
and FISTA (Section 4.5). We compare these to existing Kronecker
sparse coding algorithms, a Kronecker OMP (Rivenson and S., 2009)
(Section 4.1) as well as Kronecker Dual ADMM (Section 4.4), de-
veloped in our prior work Schwab et al. (2016) and derived in a
new formulation for comparison in this paper. We compare these
algorithms in terms of complexity for various types of bases in
Section 4.6 and show experimental time comparisons in Section 5.

4.1. Kronecker OMP

To approximate a solution to the Ly problem (POvec), Orthogo-
nal Matching Pursuit (OMP) (Tropp, 2004) is a popular greedy al-
gorithm that iteratively selects the atom that is most correlated
with the signal, orthogonalizes it to the previously selected atoms
by solving a least squares optimization, and selects the next atom
that is most correlated with the resulting residual. For the case of
a Kronecker structured basis, a Kronecker OMP (Kron-OMP) algo-
rithm has been previously proposed (Rivenson and S., 2009; Ca-
iafa and Cichocki, 2013) that reduces computations of solving the
least squares subproblem in each iteration by exploiting properties
of the Kronecker product. This form of Kron-OMP, however, repre-
sents the signal, coefficients, and basis atoms in vector form pro-
viding a solution to (POvec).

In Algorithm 1 we rewrite the Kron-OMP algorithm adapted

Algorithm 1 Kron-OMP.
Choose: K, €.
Initialize: k=1, 70=9, J° =0, Ry =S, s = vec(S).
while k < K and error > € do
1: [i*, j¥] = argmax;; j; T R ¥ ;
A e O e VAR i P L CARVAO
3: ¢ = argmine 5|[(Tp © W i) —s[3;
4: Ry =mat(s — (T © W 1)¢);
5:k < k+1;
end while
Return: AK, ¢

to the structure of our problem, where vec(-) and mat(-) convert
matrices to vectors and vice versa. The main complexity gain of
Kron-OMP over the vector OMP is obtained by separating the ef-
fects of I' and ¥ when computing the maximally correlated atoms
with the residual, [ TRY| (See Algorithm 1 Step 1) with complex-
ity O(NGV + GNrNy,) instead of computing |® T r| with complexity
O(NrNgGV). The other gain is in solving the least squares prob-
lem (See Algorithm 1 Step 3) by exploiting properties of the Kro-
necker product A®B=[a; ®bq,..., ay ® By]) to compute a rank-
1 update. However, the only real improvement on complexity is
in memory since ® can be built atom by atom from columns of
I' and W instead of storing the entire matrix. The rank-1 update
remains O(k?) for both vector and Kron-OMP. In the next section
we present an alternative Kron-OMP algorithm that reduces com-
plexity further by exploiting the full separability of the dictionary.
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4.2. Kronecker OMP with projected gradient descent (PGD)

In what follows, we develop a novel form of Kronecker OMP
which solves the separable (POmat) instead of (POvec). This allows
us to reduce computation by not building columns of & and not
repeating individual atoms of I' or W. Instead, indices of I and
W are updated only when they each have not been chosen before,
fully exploiting the separability of the dictionary. Given the previ-
ous sets of respective of indices Z¥~1 and 7*-1, we update sets by
following ZF = [z~ i¥] if i ¢ Z*-1 and 7K = 7% otherwise. Like-
wise, 7k = [7%1 j¥] if j* ¢ 751 and g% = 7% otherwise. With
the selected indices, the size of C, will be |Z¥| x | 7¥| instead of
k x k. To find Cy, it seems natural to solve:

1
G = argénm §||szcqgk —S||2. (14)

But the solution C, will contain possible nonzero coefficients that
do not coincide with the chosen selection of indices since addi-
tional indices in all combinations of pairs between 7 and 7% will
be updated in each iteration. This is problematic for the correct-
ness of the algorithm when choosing the next single most corre-
lated coefficient. Therefore we must enforce that these coefficients
are zero:

1 .
G = arg min §||FI,(cw;k —S||2s.t. Gj =0V, j) € O (15)

where OF := (Zk, 7%). To solve this problem, we can use projected
gradient descent (PGD). The gradient of f(C) = %||FZ,<C\P},( - S||§
at iteration k is

VF(C) = T} TnCW W — TLSW . (16)

To save on computation we precompute G=TTT, P=VwTy,
and S=TTSW¥ and can access their entries at each iteration:
Gk 7k P sk gk SAI,(J,(. Then setting Z' = C, we iteratively project the
update in the gradient direction to the space of feasible solutions:

Zt+1 _ P (Z' — €V f(ZY)), (17)

where the projection P, sets all elements in Ok to 0 and step-
size € is estimated each iteration using a line search. Once the
procedure has converged to Z*, we set C, =Z* and compute the
residual Ry =S — I‘Ika\IJ;k. Then, for iteration k + 1 we must find

(i*+1, jk+1) = argmax; ;j| TR, W;]. To save significantly on compu-
tation we can instead use our precomputed G and P to instead

find argmax[i.j][ﬁ,(],-vj, where R, = |§—gIka7>;k| where G, Pk

respectively access the 7¥, 7% columns and all rows. Maintain-
ing matrix forms throughout allows us to combine computing the
residual and the next atoms for a large reduction in computation
at each iteration k. Our proposed Kronecker OMP with projected
gradient descent (Kron-OMP-PGD) is outlined in Algorithm 2.

We show a comparison of time per iteration for a small V =
50 x 50, G = 64 phantom dataset in Fig. 7. The steeper time in-
crease for Kron-OMP is due to the fact that at iteration k there
is a complexity of O(k? + kGV) that comes from Steps 3 (rank-
1 update) and 4 of Algorithm 1. On the other hand, Kron-OMP-
PGD has complexity involving |Z¥|, |.7%| < k which are in practice
significantly less than k. Even though a PGD sub-routine must be
performed at each iteration k, we found that by incorporating Nes-
terov acceleration with a line search, the time per iteration re-
mains lower than Kron-OMP as the number of iterations k in-
creases.

However, for dMRI data, typical sparsity levels are K = O(V). So
for V~1003 the number of iterations as well as the time per it-
eration of both Kron-OMP and Kron-OMP-PGD when k approaches
K becomes astronomical. Even on a relatively small 3D phantom
dataset of spatial size V = 50 x 50, for example, one iteration takes

Algorithm 2 Kron-OMP-PGD.
Choose: K, €1, €;.
Precompute: S=TTS¥, ¢=TTT, P=VTU.
Initialize: k=1, CGo=1, 7°=0, J°=0, Ry =S.
while k < K and error > €; do
1: [i%, j*] = argmaxy; jj[Ry]; j:
2: 7k — k=1 {i"}; jk — jk—l U {jk}; Ak = (I", jk); ok — Ak:
3: Z},Hlkil =GCG_1; m=0; t=1,
while error > €, do
1: § = linesearch(Z!);
2: X = Py (Z8 = (G pZ'P i i = Sy )3
4y = 31+ /1 +4nd);
5: Zt+1 :Xt+1 + 7:{;1(Xr+1 —Xt);
t+1
6:t<—t+1;
end while
4: Ck =7%
5: Ry = 1S — G GeP ul:
6: k< k+1;
end while
Return: AKX, Cg.

i Time per Iteration of Kron-OMP on 50x50 Phantom
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Fig. 7. Comparison of time per iteration for Kron-OMP and the proposed Kron-
OMP-PGD. The total time to choose K = 7000 = 2.8V atoms for this V =50 x 50
slice of a phantom dataset, is 68 min for Kron-OMP and 40 min for Kron-OMP-PGD.
We can see that as the number of atoms grows, the time per iteration of Kron-OMP
continues to grow at a much higher rate than Kron-OMP-PGD.

on the order of a few seconds which results in over 34hrs for
these greedy algorithms to reach 1 atom/voxel atoms (K =V). In
this way, greedy algorithms such as OMP are not suitable for large-
scale problems that require hundreds of thousands of iterations.
Instead, optimizing the LASSO problem (P1mat) can be accom-
plished with significantly less iterations, as we examine in the fol-
lowing section.

4.3. Kronecker ADMM

The Alternating Direction Method of Multipliers (ADMM)
(Boyd et al., 2010) is a popular method for solving the LASSO prob-
lem (P1vec). However, its application in the case of a large dictio-
nary ® remains prohibitive, requiring computations involving ® s
of order O(GVNrNy). Instead, we apply ADMM to the separable
LASSO problem (P1mat) to reduce computations by solving

ngizn%HFC\IJT—SlI%-i-MIZII] st. C=2Z (18)
The augmented Lagrangian writes:

1
£u(CZ.T) = 5|[PCWT = S|[F + Al1Z]

+<7’,C—Z>+%||C—Z||%, (19)
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and:

a[’M T T

T:F Trey' - SYv+7+u(C-2)=0 (20)
=T TCVW + uC=puZ-7+IL7S¥ :=Q. (21)

In principle, one can solve for C by solving a linear sys-
tem of equations h(C) = Q, where h(C) =T'"T'C¥ "W + uC. How-
ever, solving this linear system directly is computationally chal-
lenging due to the size of the matrices involved. Therefore, to
solve for C efficiently, we begin by taking the SVDs of I' and
V. With FZUI‘EI‘VI—T and \I/=U\1;E\I;VT, rr =V1'*AI‘VI:r and
W =VyAyVy, where Up,Uy are the matrices of eigenvectors
and Ap = £ Xr, Ay = £}, Zy are the diagonal matrices of eigen-
values for I' and W respectively. Then:

Vi A[‘Vl—ch\p A\pv\; + /_LC =Q (22)

= ArCAy + uC=0 (23)

where we introduced the notation X = VFTXV\I,. Since Ar and Ay
are diagonal with elements ér, and 8\1,]., respectively, we can solve

for C by:

Qj

ok 24
31“,-3\11,- +un (24)

8r,Ci 0w, + uGj=Qij =G =

To write this in matrix form we define [A,]; j£ 1/(8[‘i5\pj + ) and

have € = (Apo Q) where o stands for element-wise matrix multi-
plication. Finally, we can recover C = VFCVJ and the complete up-
date for C is:

s = Vr(Ap o (VFQiVa))Vy (25)

where Q = uZ — 7 + I'"SW. When minimizing £, with respect to
Z, we end up with the usual proximal operator of the L; norm
that is given by the shrinkage operator, shrink, (X) = max(0,X —
k) —max(0, —X — k), applied element-wise to matrix X, giving
Zy41 = shrink, (G q + Tp). Similarly with respect to 7, we have
the usual Lagrange multiplier gradient ascent update 7, 1 = T +
Ck+1 *Zk+1-

The formal updates for Kron-ADMM are presented in
Algorithm 3. The update for C in (25) works well when T

Algorithm 3 Kron-ADMM (for undercomplete dictionaries).

Choose: W, A, €.
Precompute: Vr, Ar, Vg, Ay, Ay
Initialize: k=0,Zy=0,75=0,5 = [ TSW.
while error > € do
1: Q=S+uz - Ty
2: Gy =Vr(Ap o (VEQVe))Vy;
3t Zy1 = shrink; ) (Geyr + T
4 Terr = Te + G — Ziy1s
5:k «—k+1;
end while
Return: C.

and W are under-complete and the eigen-decompositions of I''T"
and WTW are easily computable. However, dictionaries most
commonly used for sparse coding and the application to CS are
over-complete i.e. G < Nr and V < Ny making these SVDs poten-
tially expensive to compute. In the case of an over-complete ®, for
traditional vector ADMM, the matrix inversion lemma (Boyd et al.,
2010) is involved in order to compute SVDs of the smaller ®®T
instead of ®T®. In the following proposition, we derive the
equivalent result for the update of C in (25).

Proposition 1. For over-complete dictionaries I' and W, update
(25) is equivalent to the more compact

C=Q/u—TTUr(Ay o (ULITQWTUL))ULW /1. (26)

Proof. For over-complete dictionaries I' = Up[Zp, O]V and ¥ =
Uy[Zy. 0V,

I'r=Vvp (AF 0>VFT and UTW =V (A‘P °>v;.

0 0 0 0
For G<i§NI‘,V<j§N\I;, 5]‘i,8\1;j=0, SO C’]:m:%
For i <G and j <V, we can rewrite
oo G Q@b Gy R,
b dr.dw; + 1 u o pw(rdy, + @) w pw(8rdy; + 1)
— @ — 0O Gri@'jawj o
TR TY T PRET) R

=C=Q/u -2l (Auo(ErQTy))Zy/u
C=Q/1—VrE[(Auo (BrVEQVeZy))TeVy /1
C=Q/u - FTUF(AM o (UFTFQ\I/TUW))U\;W/M.
O

Letting I'" = U/ T and W' = Uy W, which can be precomputed,
we have a final efficient update

Cer1 = Q/it =TT (A o (NQY )Y /1. (27)
This allows us to compute the SVDs of I'T'T and WW ' instead of
the larger I''T" and WTW and work with smaller matrices within
each iteration. We present Kron-ADMM for over-complete dictio-
naries in Algorithm 4.

Algorithm 4 Kron-ADMM (for overcomplete dictionaries).

Choose: W, A, €.
Precompute: Up, A, Uy, Ay, TV, W/ Ay
Initialize: k=0,Zy =0,75 =0.
while error > € do
1: Q=T7SV +uzy - T
2: oy = Qu/pt — T (A o (D'QU TN /1t
3t Zyyq = shrink; , (Geyq + Ti):
4 Tepr = Te + Ceyr — Ziy1s
5:k <~ k+1;
end while
Return: C.

4.4. Kronecker dual ADMM

As an alternative to ADMM, Dual ADMM, which applies ADMM
to the dual of [1 problem (Plvec), has been shown to be more effi-
cient than ADMM for over-complete dictionaries (Goncalves, 2015)
by allowing one to compute SVDs of the more affordable ®®T
instead of ®T®. In our previous work Schwab et al. (2016) we
proposed a Kronecker Dual ADMM (Kron-DADMM) that efficiently
solves the spatial-angular sparse coding problem. Below, we give
an alternative derivation of this algorithm directly based on the
matrix formulation of (P1mat). The dual of (P1mat) is:

1
mAax—jllAllﬁ +ATS st |[TTAY||x < A, (28)
where ||X||o = max;;|X;;|. To apply ADMM to this optimization
problem, we replace I'TAW with auxiliary variable v and add the

additional constraint I'TAY —V =0 to get:

n/}eix—%||A||§+ATS st. |Vl <A and V=TTAW. (29
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Then the augmented Lagrangian is

1
Ly(AV.0) = =3I} +ATS+ <CV-TTAV >

+gIIV—FTA‘I/||§+5,\(V) (30)
where
_fo i [Vile=n
‘SA(V)—{OO if Vil > 2 (31)

and the Lagrange multiplier C corresponds to the primal variable C
in (P1mat), which is our variable of interest. We then have

W — A+S-TCYT —yI'(V—TTAW)WT =0 (32)

=2A-nITTAVYT =S_T(C+npV)¥T :=P. (33)

Now with eigen-decompositions I''" =UrApUl and W¥T =
Uy AyUJ, and letting X = Ul XUy,

A+ nUrArULAUy AyUy, = P (34)

= A+ nArAAy =P. (35)

Then, A can be found element-wise by:

B

Ay ndrAide, =P = Aij=
i i

(36)
Defining [Ay];; £ 1/(1+1ér,8y,). the update is A=A, oP. As
shown in Goncalves (2015) we can keep the update in terms of
A instead of A since the variable we are interested in is C. We
can then precompute §' =T'TSW’, T" =U/T and ¥’ =Uj V. The
updates of V and C are as in Schwab et al. (2016) and presented
in Algorithm 5, where PX*(X) sets all entries of matrix X that are

Algorithm 5 Kron-DADMM.

Choose: n, A, €.

Precompute: S, TV, W/, A,.

Initialize: k=0,Cy =0,V = 0.

while Duality Gap > € do
1 A =Apo (S =T (G — Vi)W’ ):
2: Vi1 = PG+ T T A W)
3: Gyyq = shrinky,, (G + T/ TAL W)
4: k< k+1;

end while

Return: C.

greater than A to A.
4.5. Kronecker FISTA

The Fast Iterative Thresholding Algorithm (FISTA) (Beck and
Teboulle, 2009) is another well-known method for solving LASSO.
However, just as before, applying FISTA to (Plvec) for large-scale
dMRI data is largely intractable. So here we adapt FISTA to (P1mat)
in order to exploit the separability of our spatial-angular basis.
FISTA is a proximal gradient descent

Ci1 = shrink; ; (G, — Vf(G)/L), (37)

where the proximal operator is the soft-thresholding shrinkage op-
erator associated with the I1 norm and 1/L is a chosen step size.
The gradient is simply computed as:

VO =TT (IC¥")¥ —TTSWy. (38)

Table 3
Comparison of algorithms complexity at iteration k. For Kron-OMP-PGD, T is the
number of sub-iterations of PGD.

Algorithm  Standard Kronecker

OMP k? + kGV + GVNrNy k? + kGV + GVNr + VNrNy
OMP-PGD - TG|Z*|| 7| + TGV|T¥| + | 7¥|Nr Ny
ADMM (GV)2NrNy + GV (NprNy )? (GNrNy + GVNy ) + GV

DADMM (GV)?NrNy (GNrNy + GVNy) + GV

FISTA (NrNy)? + GVNpNy (GNrNy + GVNy)

To help speed convergence, we use a line search subroutine to up-
date L at each iteration in addition to the usual Nesterov acceler-
ation. By Beck and Teboulle (2009), FISTA will converge for any L
greater than the Lipschitz constant of Vf, which can be estimated
by bounding

IVF©) = VOIlr = ITTT(C€ = OWTW[If < ApadmaxlIC — Cll
(39)
where AL.. and AY,, are the maximum eigenvalues of I''T" and

WTW respectively. Therefore we initialize L = AL, AY... The Kro-

necker FISTA (Kron-FISTA) is presented in Algorithm 6. This natural

Algorithm 6 Kron-FISTA.
Choose: €.
Precompute: S = I'TSW
Initialize: Z; =G =0, ny =1,L = AL A
while error > € do
1: L = linesearch(Z;);
:VF(Z) =TTTZ¥)W -,
. Ck = Shril’lk)\/L (Zk — Vf(Zk)/L),

2
3
4:myyy =3+ J1+4nd);
5

1
: Zgr = Gy + 7 (Geyr — G

M1

6: k< k+1;
end while
Return: C.

Kronecker extension to FISTA has also been recently presented in
Qi et al. (2016), but has not been adapted and tested on data of
our scale.

4.6. Complexity analysis

To evaluate the efficiency of each algorithm and the gains of
Kronecker separability compared to the original algorithms we
summarize the complexity of each algorithm for general ¥ and
I' in Table 3. We notice that classical LASSO algorithms have
complexity on the order of the size of the ® matrix, including
terms that multiply all four dimensions GVNpNy. When applying
the Kronecker LASSO algorithms, the complexity is reduced to a
summation that includes only 3 of the dimensions GVNy, a re-
duction on the order of N (~200 for some of our dictionary
choices). We compare the Kronecker LASSO algorithms empirically
in Section 5 to identify which is fastest for our regime. Next we
address the fact that the dimensions of I' € R&Nr and ¥ e RV*Nw
will be orders of magnitude different since G~100 and V~1003.
We consider a few specific assumptions on the structure of spa-
tial dictionary W which can decrease the complexity and simplify
computations of some of the proposed algorithms:

W Tight Frame. In the case that W is a tight frame, ie. YW =
I, which is commonly an assumption in compressed sensing the-
orems, our method can still be simplified. In Kron-ADMM (over-
complete) and Kron-DADMM, we may avoid the SVD of W and
respective updates (23) and (35) can be simplified.
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W Fast Transform. In the case that W corresponds to a well-studied
transform such as wavelets, curvelets, etc., fast transform imple-
mentations can be utilized to reduce complexity further. For the
case of FISTA, for example, matrix multiplications of ['T('Z, ¥ )W
(See Algorithm 6 Step 2) involve fast transform reconstructions
(WT) of each DWI (I'Z;) and then deconstructions (W) which we
parallelize over all DWI in our implementation.

W Orthonormal. In the case that W is orthonormal, i.e. VT =
WWT = [ then (P1mat) can be simplified to (5) after noticing:

[ICWT —S|[7 = [[FCWTW — SW||2 = ||TC - ]| (40)

This optimization can be solved using traditional methods after
precomputing S = SW.

W Separable Tensor Product. In the case that W can be separated
into a 3D tensor product ¥ =Wy ¥, ® ¥,, the complexity of
multiplication can be simplified by another degree, in the same
vein as the decrease in complexity we gained from using & =
W @ I'. In this case, instead of the matrix multiplication, S = ['CW¥T
can be written using n-mode products of tensors S =C xx Wx xy
Wy, x; W; xq I'. Furthermore, if we consider DSI acquisition where
g-space measurements are acquired in a grid over R?, and assume
we can represent these measurements over a separable basis over
each dimension, then we can take I' = ', ® I'q, ® ['g, and @ be-
comes a 6-tensor.

5. Experiments
5.1. Data

We perform our experiments on single-shell HARDI data,
though as we emphasized earlier, our framework and algorithms
can be applied to any dMRI acquisition protocol with a suitable
choice of the angular basis I". We experimented on a phantom and
a real HARDI brain dataset. Specifically, we applied our methods to
the ISBI 2013 HARDI Reconstruction Challenge Phantom dataset,’
a V=50x50x50 volume consisting of 20 phantom fibers crossing
intricately within an inscribed sphere, measured with G=64 gra-
dient directions (SNR = 30). Our initial experiments test on a 2D
50 x 50 slice of this data for simplification. The real HARDI brain
dataset consists of a V=112x112x 65 volume with G = 127 gradi-
ent directions. We conducted experiments on the core white mat-
ter brain region of size V=60x60 x 30.

5.2. Kronecker algorithm comparison

In this section we compare the computational time perfor-
mance of each of the proposed Kronecker LASSO algorithms, (Kron-
ADMM, Kron-DADMM, and Kron-FISTA) on a 2D 50 x 50 slice of
phantom data for various values of A using Haar-SR. For our ex-
periment, we ran Kron-FISTA until we reached a very small mean
squared error of € = 10-8. The objective value obtained was then
taken to be a rough ground truth minimum. We then tested each
of Kron-ADMM, Kron-DADMM, and Kron-FISTA and recorded the
time it took to reach a relative error of 10~# from the known min-
imum. Fig. 8 reports the objective value of each algorithm as a
function of computing time for various sparsity levels associated to
choices of A. Table 8 gives the number of iterations until comple-
tion for each method and sparsity level. For our experiments, Kron-
FISTA appears to be the fastest algorithm in all cases, followed by
Kron-DADMM. The superior performance of DADMM over ADMM
is consistent with the findings of Goncalves (2015). With these re-
sults, we henceforth use Kron-FISTA for subsequent experiments.

3 http://www.hardi.epfl.ch/static/events/2013_ISBI/

Table 4

Number of iterations to completion for Kron-ADMM, Kron-DADMM,
Kron-FISTA on a 2D 50 x 50 phantom HARDI data using Haar-SR. Kron-
FISTA converges in the fewest number of iterations. For computation
time, see Fig. 8.

Atoms/Voxel 009 024 0.60 172 3.67 6.75
A 14! 1471 1473 1473 1477 1.47°

Kron-ADMM 797 1462 2096 3660 4365 4667
Kron-DADMM 357 597 1060 1722 1928 1953
Kron-FISTA 161 219 288 346 584 611

5.3. Choice of spatial-angular dictionaries

The experiments in this section are conducted using fixed spa-
tial and angular dictionaries. For the choice of the angular dic-
tionary I', we consider the over-complete Spherical Ridgelet (SR)
basis (Tristan-Vega and Westin, 2011), which has been shown to
sparsely model HARDI signals. The corresponding dictionary in the
space of ODFs is the set of spherical wavelets (SW) (see Fig. 5 for
an example of one spherical wavelet atom). With order L =2 and
4, the SR dictionary contains N = 210 and N = 1169 atoms, re-
spectively. We used both amounts of atoms for the small 2D
50 x 50 phantom dataset and found roughly identical results sug-
gesting that a basis of order L =2 contains enough atoms if the
number of gradients is below 210. This reduces computation signif-
icantly. In comparison, the spherical harmonic (SH) basis has been
shown in prior work Tristan-Vega and Westin (2011) to not exude
sparse signals and so we do not repeat this comparison in the cur-
rent work.

For the choice of spatial dictionary W, the spatial wavelet trans-
form is a popular sparsifying basis for natural images and struc-
tural MRI volumes. In our previous work Schwab et al. (2016) we
compared the performance of Daubechies wavelets and Haar
wavelets and concluded that Daubechies wavelets resulted in a
smoothing of the boundaries between isotropic and anisotropic re-
gions which was not indicative of the more abrupt boundaries that
real HARDI data exhibits. Haar wavelets outperformed Daubechies
wavelets in terms of reconstruction error arguably due to the fact
that HARDI data exhibits more rigid boundaries and piece-wise
consistencies, a spatial feature that has motivated the use of total-
variation penalties in many other reconstruction methods. For this
reason, we do not consider Daubechies wavelets in this work.

In addition to Haar wavelets, we consider the spatial curvelets
dictionary (Candes et al., 2006) (featured as the spatial atom in
Fig. 5) which, in addition to variations in position and scale, of-
fers directional variations which may be useful for sparsely mod-
eling the naturally directional HARDI fiber tracts regions. An im-
portant criteria for choosing our spatial basis is that they be tight
frames as this choice has important theoretical implications for
compressed sensing and offers computational advantages (as dis-
cussed in Section 4.6). They additionally have fast transform imple-
mentations which also reduce computational complexity. Finally,
to compare our formulation to state-of-the-art voxel-wise angular
sparse coding, we can simply choose W to be the V x V identity
Iy. For ease of notation, we use a spatial-angular W — I' labeling:
Haar-SR, Curve-SR, I-SR for Haar wavelets, curvelets, and the iden-
tity, respectively, for the spatial domain with SR for the angular
domain.

5.4. Sparsity results

In this section we compare the performance of our spatial-
angular sparse coding method to the state-of-the-art angular
sparse coding by analyzing reconstruction accuracy using very few
nonzero coefficients. The first experiment is tested on the 50 x 50
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Fig. 8. Comparison of time for completion of Kron-ADMM, Kron-DADMM, and Kron-FISTA on a 2D 50 x 50 phantom HARDI data using Haar-SR for various sparsity levels.
Kron-FISTA consistently reaches the minimum objective in the least amount of time. For number of iterations and lambda values, see Table 4.

Error vs. Sparsity of 2D HARDI Phantom

0.05
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0.03

Residual Error

= [-SR
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Fig. 9. Quantitative results of residual error vs. spatial-angular sparsity levels for I-SR, Haar-SR, and Curve-SR on 2D phantom data for various values of A. Curve-SR out
performs Haar-SR for low sparsity levels while I-SR has very high relative reconstruction error. The reconstruction of I-SR data points are displayed in Fig. 2 and Haar-
SR/Curve-SR in Fig. 10. Our finding of I-SR requiring 6-8 atoms per voxel for accurate reconstruction is consistent with previous findings (Michailovich and Rathi, 2008;

2010b).

phantom data slice. We ran Kron-FISTA for various values of A for
Haar-SR, Curve-SR and I-SR. In Fig. 9 we show the results of resid-
ual reconstruction error %IIS* — Sorigl|F vs. spatial-angular spar-
sity levels in terms of the average number of atoms per voxel
(1IC*]lo/V). The ideal reconstruction will have a very low average
number of atoms per voxel with low residual error, which hap-
pens in the lower left-hand corner of our plot. We can see that
in this range, Curve-SR outperforms Haar-SR while I-SR is unable
to perform at this level. Reconstruction of I-SR for various spar-
sity levels are visualized in Fig. 2. In comparison, Fig. 10 displays
the sparse reconstruction of Haar-SR and Curve-SR with an aver-
age of 0.25 atoms/voxel. Notice that Curve-SR leads to a some-
how smoother and more accurate reconstruction than the expect-
edly boxy reconstruction of Haar-SR at this very high sparsity level.
Still, in both cases, the proposed joint spatial-angular sparse coding
can reconstruct accurate signals with much fewer number of atoms

than angular sparse coding, which as seen again from Fig. 2 can
be achieved with an average of around 4 atoms per voxel. More
strikingly, in cases of high signal complexity for crossing fibers, the
sparse code requires on the order of 6-12 atoms per voxel (see
Fig. 3).

We repeat this same analysis on real HARDI data. First, as was
investigated for the phantom data in Section 2, we analyze the ef-
fect of adding TV regularization to the angular sparse coding with
different weighting « in (7), with @ = 0 being equivalent to the
purely angular I-SR model. The algorithm used to solve the re-
sulting optimization problem is the Split Bregman procedure out-
lined in Michailovich et al. (2011). Consistent with the phantom
experiment of Fig. 4, we observe from Fig. 11 that adding spa-
tial regularization again increases the total number of atoms for
a given reconstruction error compared to the o =0 case. While
the reconstructed signals may have a qualitatively spatial regular-
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0 as the results of Fig. 11 suggest)

0
-0

SR. The plot shows again that

We finally validate the approach in the case of a full 3D HARDI

volume for a very sparse number of atoms. Fig. 12 presents the
curvelets outperforms Haar for high sparsity levels in the range of

reconstruction error vs. sparsity results for the state

framework (in which we set o

FISTA for Haar-SR and Curve-SR using an average of ~0.25 atoms/voxel compared to original
versus the joint Haar-SR and Curve

signal. Curve-SR outperforms Haar-SR in this regime due to its additional directionality. We can see a drastically better reconstruction compared to the state-

the same sparsity level in the top left of Fig. 2. This clearly shows that we can achieve accurate reconstruction with less than 1 atom/voxel.

son, the joint model we propose achieves better sparsity levels for
comparable reconstruction errors. Note also that both algorithms

displayed very similar performances in terms of running time for

ity which may result in a qualitatively better output. In compari-
that particular experiment.

Fig. 10. Results of the proposed spatial-angular sparse coding using Kron
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Anglular Sparse Coding with TV on 2D Real HARDI
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Fig. 11. Comparison of the spatial-angular sparsity levels achieved by our proposed joint method with Haar-SR dictionaries and state-of-the-art method of
Michailovich et al. (2011) with different spatial regularization parameters «, both applied on a 2D slice of a real HARDI scan. Recall & = 0 corresponds to purely angu-
lar sparse coding, I-SR. Adding TV regularization results in an increase of the number of atoms for a given reconstruction error. The joint method achieves better sparsity

levels than using separate sparsity penalties.

Error vs. Sparsity of Real HARDI Brain Data

—I-SR )
—— Haar-SR
Curve-SR |
0 1 2 3 4 5 6 1)
Avg. Atoms/Voxel

Fig. 12. Comparison of the spatial-angular sparsity level achieved by Haar-SR and Curve-SR with respect to the state-of-the-art [-SR on the entire 3D real HARDI volume.
The curvelets provide a good reconstruction error with the sparsest number of atoms, in the range of 0.5-2 atoms/voxel. The state-of-the-art error is much larger in this
sparsity range and only comparable in the predicted range of 6-8 atoms/voxel, consistent with the previously reported (Michailovich and Rathi, 2008; 2010b) for I-SR.

0.5-2 atoms/voxel. As expected and consistent with our phantom
data experiment, the state-of-the-art I-SR has comparable recon-
struction error in the range of 6-8 atoms/voxel. Fig. 13 shows the
quality of reconstruction of I-SR, Haar-SR, and Curve-SR compared
to the original signal using an average of ~1 atom/voxel. Haar-SR
presents boxy regions while Curve-SR maintains a smoother recon-
struction with a preservation of smaller detailed fiber tract regions.
In contrast, the state-of-the-art I-SR is unable to model intricate
fiber regions and is forced to set most voxels to zero atoms. All in
all, we can see that using our proposed method, we can achieve
much higher sparsity levels than the state-of-the-art, and accu-
rate reconstructions using less than 1 atom/voxel. In terms of ef-
ficiency, Kron-FISTA was completed on the real HARDI data of size
V=60x60x30, G=127 in 1.5 h for our sparsity level of interest
using the fast 3D wavelet transform implemented in MATLAB.

6. Discussion and conclusion

In this work, we have demonstrated that by using a joint
spatial-angular dictionary, we can obtain accurate HARDI recon-
struction with spatial-angular sparsity levels of less than 1 atom
per voxel, surpassing the limitations of state-of-the-art angular

representations. This provides a new general reconstruction frame-
work to achieve sparser dMRI representations than previously pos-
sible with optimal choices of spatial and angular dictionaries. In
particular, we have shown promising sparsity results for HARDI
from the combination of curvelet (spatial) and spherical ridgelet
(angular) dictionaries, but other spatial and angular dictionaries
may be chosen for other dMRI protocols like DSI or MS-HARDI. In
future work, we aim to further optimize sparsity levels by learning
a joint spatial-angular dictionary directly from dMRI data.

Furthermore, to efficiently solve this large-scale global sparse
coding problem, we have proposed three novel extensions of pop-
ular sparse coding algorithms for the Kronecker dictionary set-
ting. All strategies improve upon previously proposed algorithms
by explicitly exploiting the separability of the dictionary and each
may be beneficial depending on the problem regime and size of
data. For our large-scale HARDI data, Kron-FISTA was the leader
in speed. In future work, we will investigate other efficient active
set methods such as the recent ORacle Guided Elastic Net (ORGEN)
(You et al., 2016).

In addition to sparse coding, our spatial angular representa-
tion may have novel applications in other areas of dMRI pro-
cessing such as denoising, feature extraction, global ODF non-
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Fig. 13. Results of proposed spatial-angular sparse coding on real HARDI brain data using Kron-FISTA for [-SR, Haar-SR and Curve-SR using an average of ~0.5 atoms/voxel
compared to original signal. Curve-SR outperforms Haar-SR in this sparsity range due to its directionality. The state-of-the-art I-SR is unable to compete at this sparsity level.

negativity, fiber tract segmentation, and tractography. However, our
main application for spatial-angular sparse coding framework is
the promising improvements of acquisition acceleration of dMRI
through CS. One natural future extension of this work will be to
incorporate our joint spatial-angular sparsifying dictionaries within
a unified (k, q)-CS framework to subsample signal measurements
both in k- and g-space. With the adequate design of joint sensing
schemes, CS recovery results such as Candes et al. (2011) predict
that the minimum number of samples needed for stable and accu-
rate reconstruction is directly linked to the sparsity of the signal in
the chosen dictionary, which argues in favor of the joint represen-
tation we have proposed.
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