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a b s t r a c t 

Diffusion MRI (dMRI) provides the ability to reconstruct neuronal fibers in the brain, in vivo , by measur- 

ing water diffusion along angular gradient directions in q -space. High angular resolution diffusion imag- 

ing (HARDI) can produce better estimates of fiber orientation than the popularly used diffusion tensor 

imaging, but the high number of samples needed to estimate diffusivity requires longer patient scan 

times. To accelerate dMRI, compressed sensing (CS) has been utilized by exploiting a sparse dictionary 

representation of the data, discovered through sparse coding. The sparser the representation, the fewer 

samples are needed to reconstruct a high resolution signal with limited information loss, and so an im- 

portant area of research has focused on finding the sparsest possible representation of dMRI. Current 

reconstruction methods however, rely on an angular representation per voxel with added spatial regular- 

ization, and so, for non-zero signals, one is required to have at least one non-zero coefficient per voxel. 

This means that the global level of sparsity must be greater than the number of voxels. In contrast, we 

propose a joint spatial-angular representation of dMRI that will allow us to achieve levels of global spar- 

sity that are below the number of voxels. A major challenge, however, is the computational complexity 

of solving a global sparse coding problem over large-scale dMRI. In this work, we present novel adap- 

tations of popular sparse coding algorithms that become better suited for solving large-scale problems 

by exploiting spatial-angular separability. Our experiments show that our method achieves significantly 

sparser representations of HARDI than is possible by the state of the art. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Diffusion magnetic resonance imaging (dMRI) is a medical

maging modality used to analyze neuroanatomical biomarkers for

rain diseases such as Alzheimer’s. dMRI are 6D signals consist-

ng of a set of 3D spatial MRI volumes acquired in k -space that

re each weighted with a different diffusion signal measured in

 -space. In each voxel of a brain dMRI, the q -space diffusion sig-

als are reconstructed to estimate orientations and integrity of

euronal fiber tracts, in vivo . Different dMRI protocols measure q -

pace in different ways. For example, diffusion spectrum imaging

DSI) ( Wedeen et al., 2005 ) measures q -space densely on a 3D grid.

lternatively, diffusion tensor imaging (DTI) ( Basser et al., 1994 )

implifies acquisition by modeling a Gaussian distribution on the

nit q -sphere. High angular resolution diffusion imaging (HARDI)

 Tuch, 2004 ) also restricts measurements to the unit sphere, but

ncreases the angular resolution from that of DTI. Multi-Shell

ARDI (MS-HARDI) ( Wu and Alexander, 2007 ) expands its radial
∗ Corresponding author. 

E-mail address: eschwab3@jhu.edu (E. Schwab). 

e  

(

 

p  

ttps://doi.org/10.1016/j.media.2018.05.002 

361-8415/© 2018 Elsevier B.V. All rights reserved. 
ange to include multiple spheres, or shells. Since DTI collects the

ewest number of measurements, it has become the most widely

sed clinical dMRI protocol. However, its simple tensor model is

nable to capture the complex diffusion profiles in each voxel. On

he other hand, protocols like HARDI, MS-HARDI, and especially

SI, collect a higher number of q -space measurements to esti-

ate more accurate diffusion profiles at the expense of longer scan

imes, making them currently unsuitable for clinical studies. 

An ongoing research goal has been to find ways to reduce

cquisition times of HARDI, MS-HARDI, or DSI, while maintain-

ng accurate estimations of diffusion. One avenue is from a hard-

are perspective: maintain dense signal measurement configura-

ions while devising faster physical acquisition techniques like si-

ultaneous multi-slice acquisition ( Setsompop et al., 2012 ) and si-

ultaneous image refocusing ( Reese et al., 2009 ). The other is from

 signal processing perspective: maintain accurate signal recon-

tructions while devising methods to exploit redundancies in the

ata and reduce the number of required measurements to accel-

rate acquisition. This paradigm is known as Compressed Sensing

CS) ( Donoho et al., 2006 ). 

CS is a class of mathematical results and algorithms that ex-

loits sparse representations of signals, discovered through sparse

https://doi.org/10.1016/j.media.2018.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.05.002&domain=pdf
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coding, to obtain extremely accurate reconstructions at sub-

Nyquist rates. A classical application of CS has been to acceler-

ate structural MRI by subsampling the spatial frequency domain,

k -space ( Lustig et al., 2007 ), known as k -space CS or k -CS. These

ideas have also been previously applied to dMRI by subsampling

the angular frequency domain, q -space, ( Ning and et al., 2015 )

(analogously called q -CS) and more recently, to subsample both

k - and q -space ( Cheng et al., 2015a; Sun et al., 2015 ), commonly

called ( k, q )-space CS or ( k, q )-CS, to further increase acceleration.

However, because the goal of dMRI reconstruction is to estimate

diffusivity profiles at each voxel, dMRI signals are traditionally rep-

resented as a set of voxel-wise q -space signals in the angular do-

main. Spatial regularization is an important technique used to im-

prove these estimations over an entire dMRI volume ( Goh et al.,

2009 ), but the underlying data representation of dMRI is still angu-

lar and local to each voxel. Therefore, when applying sparse coding

for dMRI, the sparsest possible global representation over an entire

volume can be no less than the number of voxels since at least

one dictionary atom would be required to model q -space signals

in each voxel. 

To overcome this fundamental limitation, we propose a global

spatial-angular representation of dMRI that allows global sparsity

levels to fall below one atom per voxel by exploiting redundan-

cies in the spatial and angular domains, jointly with a global dic-

tionary. A major challenge, however, of optimizing over a global

dictionary is the computational complexity of solving a massive

global sparse coding problem over large-scale dMRI data. Yet, by

imposing that our global dictionary is separable over the spatial

and angular domains we can greatly improve computational effi-

ciency while preserving good sparsity levels for typical signals. One

of our main contributions in this paper is a set of novel adapta-

tions of popular sparse coding algorithms to solve general large-

scale sparse coding problems using separable dictionaries. Our ex-

periments on phantom and real HARDI brain data show that it is

possible to achieve accurate global HARDI reconstructions with a

sparse representation of less than one dictionary atom per voxel,

exceeding the theoretical limit of the state of the art in sparse cod-

ing. Sparse coding has many important applications like de-noising

( Ouyang et al., 2013 ), dictionary learning ( Cheng et al., 2015b ) and

super-resolution ( Yoldemir et al., 2014 ), and, in particular, apply-

ing our joint spatial-angular sparse coding framework within the

application of ( k, q )-CS will be the subject of future work. 

The remainder of this paper is organized as follows: In

Section 2 , we review state-of-the-art sparse coding methods for

dMRI and illustrate the limitations of their performance on a phan-

tom HARDI dataset. In Section 3 , we present our joint spatial-

angular dMRI representation and formalize the global spatial-

angular sparse coding problem. Then, in Section 4 , we develop and

compare a set of novel sparse coding algorithms using separable

dictionaries to efficiently solve our large-scale global optimization.

Finally, in Section 5 we provide experimental results showing the

performance of our method over the state-of-the-art and conclude

with a discussion in Section 6 . 

2. State of the art 

2.1. Angular (voxel-wise) reconstruction 

A dMRI can be modeled as a 6D signal S(v , q ) , where v ∈ � ⊂
R 

3 is the location of a voxel in the 3D spatial domain � and q ∈ R 

3

is a point in the so-called q -space. 1 A dMRI signal is measured

at a discrete number of voxels, V , and a discrete number of q -

space points, G . While dMRI signals can be viewed as a set of
1 The q -space is the frequency domain associated with the angular domain, while 

the k -space is the frequency domain associated with the spatial domain. 

s  

e  

2  

M  
 diffusion weighted images (DWIs) or volumes, the most com-

on view-point for dMRI processing and analysis is voxel-wise,

.e.for each voxel v ∈ �, we acquire a vector of G diffusion measure-

ents S(v , q g ) G g=1 
= s v (q g ) G g=1 

= s v at points q g in 3D q -space. The

atter interpretation is most common for modeling because a ma-

or goal of dMRI reconstruction is to estimate 3D probability dis-

ribution functions (PDFs) of fiber tract orientation at each voxel.

ccordingly, the signal vector s v is represented by a q -space basis,

= [�i (q )] 
N �
i =1 

, with N � atoms, such that 

 v = �a v . (1)

here a v is the vector of angular coefficients at voxel v . (See

ig. 1 ). The dMRI literature has produced a wide array of dMRI

econstruction algorithms for different acquisition protocols, an ar-

illery of q -space bases and varying models for estimating orien-

ation distributions. The vast majority of research reconstructs q -

pace signals in each voxel with a q -space basis (see the dMRI

hallenge ( Daducci et al., 2014 ) for a comprehensive summary

nd comparison of state of the art reconstruction frameworks).

o enforce or exploit desirable properties of dMRI signals, many

ethods will add a set of constraints C on the angular coeffi-

ients such as angular smoothing ( Ye, 2016 ), non-negativity of PDFs

 Schwab et al., 2012; Wolfers et al., 2014 ), or orientational symme-

ry ( Gramfort et al., 2014 ), solving: 

 

∗
v = arg min 

a v 

1 

2 

|| �a v − s v || 2 2 s.t. a v ∈ C. (2)

he constraint of particular interest in our paper is that of en-

orcing sparsity on the coefficients of the reconstruction, known as

parse Coding . 

.2. Angular (voxel-wise) sparse coding 

Sparse coding is a reconstruction problem which seeks a sparse

epresentation, i.e. a coefficient vector with few nonzero elements.

iven a sparsifying q -space basis � for which the dMRI signal in

ach voxel is expected to have a sparse representation, the angular

voxel-wise) sparse coding problem can be formulated as: 

 

∗
v = arg min 

a v 

1 

2 

|| �a v − s v || 2 2 s.t. || a v || 0 ≤ K v , (3)

here || a v || 0 counts the number of nonzero elements of vector a v ,

nd K v is the sparsity level at voxel v . This problem is known to

e NP-hard, and therefore the two main methodologies to tackle

3) are to a ) approximate a solution using greedy algorithms such

s Orthogonal Matching Pursuit (OMP) ( Tropp, 2004 ) or b ) replace

he L 0 semi-norm by its convex relaxation, the L 1 norm, and solve

ither the Basis Pursuit or LASSO problem given by: 

 

∗
v = arg min 

a v 

1 

2 

|| �a v − s v || 2 2 + λ|| a v || 1 (4)

sing algorithms such as Alternating Direction Method of Multipli-

rs (ADMM) ( Boyd et al., 2010 ) or Fast Iterative Thresholding Algo-

ithm (FISTA) ( Beck and Teboulle, 2009 ), where λ is the trade-off

arameter between data fidelity and sparsity. 

An important application of sparse coding in the dMRI com-

unity is that of CS. Angular sparse coding and q -CS have been

idely researched for dMRI to reduce long acquisition times.

any groups have done extensive work choosing sparsifying q -

pace bases ( Merlet et al., 2011; Ning and et al., 2015; Aranda

t al., 2015 ), developing dictionary learning methods ( Bilgic et al.,

012; Cheng et al., 2013; 2015b; Gramfort et al., 2012; 2014;

erlet et al., 2012; 2013; Sun et al., 2013 ), and testing q -space
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Fig. 1. Illustration of voxel-wise angular HARDI representation a v using a sparsifying dictionary �. 
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ubsampling schemes for DSI ( Gramfort et al., 2014; Merlet and

eriche, 2010; Menzel et al., 2011; Merlet and Deriche, 2013; Pa-

uette et al., 2015 ), MS-HARDI ( Cheng et al., 2011; Rathi et al.,

011; Merlet et al., 2013; Duarte-Carvajalino et al., 2014; Daducci

t al., 2015 ), HARDI ( Michailovich and Rathi, 2010a; 2010b; Tristán-

ega and Westin, 2011; Duarte-Carvajalino et al., 2012; Alaya et al.,

016 ) and DTI ( Landman et al., 2012 ) with promising results

n sparsity and measurement reduction for clinical tractography

 Kuhnt et al., 2013a; 2013b ). However, a major limitation for this

amily of methods is that the sparsest possible representation of an

ntire dMRI dataset can be no less than the number of voxels since

| a v || 0 ≥ 1 ∀ v ∈ �. In CS applications, this induces fundamental lim-

tations in the amount of subsampling factors that may be achiev-

ble in q -space. In practice, the spatial-angular sparsity level will

e much greater than the number of voxels, to account for noise.

or example the work of Michailovich and Rathi (2008, 2010b) re-

ort an average sparsity level of 6–10 atoms per voxel. The meth-

ds presented in the next section attempt to improve upon these

esults by exploiting spatial redundancies and reducing measure-

ents in k -space. 

.3. Angular sparse coding with spatial regularization 

Incorporating spatial information into voxel-wise reconstruction

s a well utilized technique for increasing the accuracy of recon-

truction. The following is a general formulation for including spa-

ial regularization into the angular sparse coding problem: 

 

∗ = arg min 

A 

|| �A − S|| 2 F + λ|| A || 1 + R (A ) , (5)

here S = [ s 1 . . . s V ] ∈ R 

G ×V is the concatenation of signals s v ∈ R 

G 

ampled at G gradient directions over V voxels, A = [ a 1 . . . a V ] ∈
 

N �×V is the concatenation of angular coefficients and R (A ) is a

patial regularizer that depends on the angular representation A .

ere || X|| F = 

√ ∑ 

i 

∑ 

j | X i, j | 2 is the Frobenius norm and || X|| 1 =
 

i 

∑ 

j | X i, j | is the 1-norm taken over all elements of the matrix.

n particular when R = 0 , this reduces to solving (4) for each

oxel. When λ = 0 and R (A ) = 

∑ 

i 

∑ 

j∈N i ‖ a i − a j ‖ 2 (Laplacian reg-

larization), where N i is a local spatial neighborhood of voxel i ,

his is the general non-sparse reconstruction with spatial coher-

nce ( Goh et al., 2009 ). Some have found incorporating both the

ngular sparsity constraint λ|| A || 1 and spatial coherence R (A ) ben-

ficial for applications such as de-noising ( Ye et al., 2012; Ouyang

t al., 2013; 2014; Ye, 2016 ) and tractography ( Ye and Prince, 2017 ).

Spatial regularization within sparse coding is more promi-

ently used for the application of reducing redundancies for CS.

or example, ( Michailovich et al., 2011; Rathi et al., 2014; Au-

ía et al., 2015 ) enforce spatial smoothing for q -CS while ( Ning

t al., 2016; Yin et al., 2016 ) combine q -CS with super-resolution

econstruction of the spatial domain. To further accelerate dMRI,

he recent work of Chao et al. (2017) combines CS with paral-

el imaging but reconstructs the signals in k -space and q -space

eparately in sequence. A joint ( k, q )-space reconstruction is im-

ortant for maintaining coherence throughout the dataset. As

uch, the works of Awate and DiBella (2013) , Shi et al. (2015) ,

heng et al. (2015a) , Sun et al. (2015) , McClymont et al. (2015) and
ani et al. (2015) combine k - and q -CS by adding a data fidelity

erm for k -space subsampling and an additional spatial sparsity

erm. In total, however, while each of these works may be applied

o different diffusion models and acquisition protocols testing var-

ous subsampling schemes, sparsifying transforms and dictionaries,

ach are based on an angular representation of dMRI data, A . In

act, they stem from the same optimization problem formulation

5) with 

 (A ) = α||T (�A ) || 1 , (6)

here α ≥ 0 is an additional trade-off weighting parameter, and

 (·) is a sparsifying transform (or dictionary) applied to the spatial

omain such as wavelets or the finite difference gradient operator,

eading to the usual total variation (TV) norm. In (6) , �A is a re-

onstruction of the signal S based on the angular representation

 . 

While adding these spatial and angular sparsity terms may ex-

loit redundancies in both the spatial and angular domains, be-

ause they are separate disjoint terms the minimal global sparsity

evel will be still limited by the size of the data since || A || 0 should

e greater than V and || �( �A )|| 0 should be greater than G . Indeed,

hen || A || 0 < V , there must exist voxels v such that a v = 0 , lead-

ng to a zero valued signal s v (column of S ) in that voxel. Likewise,

hen || �( �A )|| 0 < G , there must exist some gradient directions, q g ,

uch that the signal in the entire volume s q (rows of S ) equals zero.

his becomes a problem because zero valued signals are not phys-

cally representative of real dMRI data. This also becomes a heuris-

ic limitation of prior methods for appropriately choosing trade-off

arameters λ and ξ that result in a physically accurate sparsity

evel. 

In the next section we will explicitly show the limitation of

parsity on phantom HARDI data. Table 1 organizes the recent lit-

rature’s usages of sparse coding and CS for dMRI and places the

roposed work in context compared to the state of the art. There

e use the term “Spatial + Angular” Sparse Coding to emphasize

hat the state of the art perform both spatial and angular sparse

oding, but not jointly. As an important note, though we frame our

roposed sparse coding method in Table 1 with the backdrop of

S, we do not propose or implement CS in the current manuscript.

.4. Limitations of angular representations for sparse coding 

We illustrate the limitations of sparse coding using a per-voxel

ngular representation on a HARDI phantom dataset with V =50×
0 and G = 64 gradient directions (the same data is used in our ex-

eriments in Section 5 ). First, we solve (5) with R (A ) = 0 , showing

ualitative reconstruction results in Fig. 2 , for various sparsity lev-

ls given by the value of λ. Our second result considers the effect

f spatial regularization R (A ) 	 = 0 on the amount of angular spar-

ity as a function of the reconstruction error in Fig. 4 . 

For this setting, we choose angular basis � to be the

ell performing overcomplete spherical ridglet (SR) dictionary

 Michailovich and Rathi, 2008; 2010a; Tristán-Vega and Westin,

011 ). Fig. 2 shows the ODF estimations (computed using the

pherical wavelets ( Tristán-Vega and Westin, 2011 )) from the

parse signal reconstruction for various sparsity levels compared
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Table 1 

Summary of the state-of-the-art dMRI sparse reconstruction methods organized by domains of sparsity (spatial,angular) and CS 

subsampling ( k, q ). The literature has provided a natural extension from k -CS in MRI using spatial sparse coding to q -CS in dMRI 

angular sparse coding. However, for ( k, q )-CS, the state of the art enforce sparsity in the spatial and angular domains separately, 

(called “Spatial + Angular” Sparse Coding) with a purely angular representation. In contrast, the proposed work considers a joint 

spatial-angular representation for sparse coding which is a more natural model for joint ( k, q )-CS. ( † Though our proposed spatial- 

angular sparse coding framework is intended for the application of ( k, q )-CS as illustrated by this table, the work presented in this 

paper is only for sparse coding.) 

Sparse coding 

Spatial Angular Spatial + Angular Joint Spatial-Angular 

CS 

k ( Lustig et al., 2007 ) 

q 

( Paquette et al., 2015 ) 

( Auría et al., 2015 ) 

( Ning and et al., 2015 ) 

( Cheng et al., 2015b ) 

( Daducci et al., 2015 ) 

( Aranda et al., 2015 ) 

( Alaya et al., 2016 ) 

( Ning et al., 2016 ) 

( Yin et al., 2016 ) 

( k, q ) 

( Shi et al., 2015 ) 

Proposed † 

( Cheng et al., 2015a ) 

( Sun et al., 2015 ) 

( McClymont et al., 2015 ) 

( Mani et al., 2015 ) 
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to the ODFs estimated from the original signal, as well as close-

ups of a region of interest (ROI) containing ODFs with complex

crossings of 2, 3 and 4 fibers. In order to compare spatial-angular

sparsity levels we are interested in the average number of active

dictionary atoms over all voxels, i.e. || A || 0 / V . We use 5 different

values of λ which gives us average spatial-angular sparsity levels

of 0.246, 0.485, 1.11, 2.07, and 3.84 atoms per voxel. As expected,

when || A || 0 / V < 1 (see top left/middle), many voxels are forced to

zero (as indicated by yellow spheres in Fig. 2 ). This is especially

true for isotropic signals surrounding the fiber tracts. Also as ex-

pected, when || A || 0 / V ≈ 1, (see top right) many of the complex sig-

nals in the fiber crossing ROI are pushed to zero. This model re-

quires close to || A || 0 /V = 4 average atoms per voxel to achieve

nearly accurate signal reconstruction (bottom middle). In fact, the

actual number of coefficients per voxel to accurately represent typ-

ical dMRI data with angular bases is substantially higher. We il-

lustrate this in Fig. 3 which shows the number of atoms used to

represent the HARDI signals in each voxel for the reconstructions

in Fig. 2 . The bottom right image shows the ground truth number

of fibers crossing in each voxel. This experiment demonstrates that

voxels containing crossing fibers are forced to zero atoms when

the average number of atoms per voxel is very small and tend to

6–12 atoms for accurate reconstruction when the sparsity level is

decreased. This is consistent with the reports of Michailovich and

Rathi (2008, 2010b) for the SR dictionary. 

Next, we explore the effect of adding spatial regularization R
to the angular sparsity penalty, as a function of the reconstruction

error. As a common spatial regularizer used in the literature, we

consider for T in (6) the finite difference (gradient) operator T =
∇ := [ ∂ x , ∂ y , ∂ z ] and the corresponding isotropic TV norm given by

||∇(X ) || 2 , 1 = || √ | ∂ x X | 2 + | ∂ y X | 2 + | ∂ z X | 2 || 1 . This leads to the new

optimization problem 

A 

∗ = arg min 

A 

|| �A − S|| 2 F + λ|| A || 1 + α||∇(�A ) || 2 , 1 , (7)

for various λ and α ≥ 0, the relative weight of spatial reg-

ularization. This can be solved using Split-Bregman as in

Michailovich et al. (2011) . Fig. 4 shows the effect of nonzero α on

angular sparsity compared to the case of α = 0 ( R = 0 ) on a small

30 × 30 segment of the phantom HARDI data. As we can see, in all

cases, the minimal sparsity for accurate reconstruction does not go

below the limit of 5 atoms per voxel. In addition, increasing the
elative weight of the TV norm spatial regularization actually re-

ults in an increase in angular sparsity for a given reconstruction

rror. In a sense, this is not surprising since the additional regular-

zer R will enforce spatial smoothness of the reconstructed signal

which can be beneficial for noisy data and in compressed sensing

cenarios) but cannot improve the resulting sparsity of the solu-

ion which is still represented by a set of coefficients per voxel in

he angular basis �. As the goal of this paper is sparse coding, i.e

nding sparsest possible representations of full HARDI data, in our

ater experimental comparisons, we will be using R = 0 when re-

erring to state-of-the-art reconstruction. 

In the following section, we present our global spatial-angular

epresentation of dMRI which allows for spatial regularization with

he possibility to achieve accurate reconstruction at sparsity levels

elow the number of voxels, unachievable with an angular repre-

entation alone. 

. Joint spatial-angular dMRI representation 

To overcome the sparsity limits of an angular representation,

e propose to model a dMRI signal S : � × R 

3 → R globally with

 joint spatial-angular dictionary, say ϕ( v, q ), such that 

(v , q ) = 

∑ 

k 

c k ϕ k (v , q ) (8)

ith a single set of global coefficients c = [ c k ] . A global dictionary

llows us to find global representations with sparsity levels below

he number of voxels without forcing some voxels to have zero sig-

al. In fact, the sparsest possible representation would be the ab-

olute limit of 1 nonzero coefficient c k , and so we find ourselves

n a unrestricted setting for global sparse coding. To set up the

patial-angular sparse coding problem, we let s ∈ R 

GV be the vec-

orization of S(v , q ) where for v = 1 . . . V we stack the q -space sig-

als, s v ∈ R 

G , and 
k ∈ R 

GV be the vectorization ϕk ( v, q ) to build

he global dictionary 
 = [
1 . . . 
N 

] ∈ R 

GV ×N 
, with N 
 atoms.

hen, to find a globally sparse c , we can solve the L 0 minimization

roblem: 

 

∗ = arg min 

c 

1 

2 

|| 
c − s || 2 2 s.t. || c|| 0 ≤ K, ( P 0 v ec )

or a sparsity level K or the LASSO problem: 

 

∗ = arg min 

c 

1 

2 

|| 
c − s || 2 2 + λ|| c|| 1 , ( P 1 v ec ) 
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Fig. 2. Qualitative demonstration of state-of-the-art sparse coding limitations (5) with the spherical ridgelets (SR) dictionary for 5 different spatial-angular sparsity levels 

compared to the original signal (bottom right) with ROI closeups underneath. For high spatial-angular sparsity levels (top left, middle), voxels with complex signals are 

forced to zero (yellow spheres). Regions with crossing fibers are unable to be accurately reconstructed even when using an average of 2.07 atoms/voxel. The label I-SR refers 

to Identity-SR, explained in the next section. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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here λ> 0 is the sparsity trade-off parameter. However, typical

MRI contains on the order of V ≈ 100 3 voxels each with G ≈ 100 q -

pace measurements for a total of 100 4 = 100 million signal mea-

urements (| s | ≈ 10 8 ). Since many sparse coding applications often

tilize dictionaries that are over-redundant, this leads to a mas-

ive matrix 
 with 100 4 rows and over 100 4 columns (| 
| ≈ 10 16 ).
or some datasets, even committing 
 to memory is prohibitive.

herefore solving this large-scale global dMRI sparse coding prob-

em using traditional solvers like OMP to approximate (P0vec) or

DMM and FISTA to solve (P1vec) , prove intractable. 

To address this challenge, we introduce additional structure on

he dictionary atoms by considering separable functions over �
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Fig. 3. Number of atoms found in each voxel corresponding to the 5 levels of spatial-angular sparsity in Fig. 2 . The bottom right figure shows the ground truth number of 

fibers crossing in each voxel to illustrate the complexity of each angular signal in relation to how many atoms are needed to sparsely model them. Crossing fiber signals are 

either forced to zero for high spatial-angular sparsity levels (see: top row) or require between 3–5 atoms for single fiber signals (see: avg. sparsity 1.11 and 2.07) and 6–12 

for double and triple crossing fiber signals (see: avg. sparsity 3.83). The label I-SR refers to Identity-SR, explained in the experiments Section 5 . 

Fig . 4. Reconstruction error vs. the average number of angular dictionary atoms per voxel using spatial regularization for the HARDI phantom data. As α, the relative weight 

of spatial regularization (TV) in (7) , increases, the average number of angular atoms increases for a given reconstruction error. This suggests that sparser solutions for angular 

sparse coding can be achieved without spatial regularization, although using adequate spatial regularizers can improve the qualitative aspect of the reconstructed signal, in 

particular for noisy inputs. 
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3 , namely a set of atoms of the form { ϕ k (v , q ) } = { ψ j (v ) �
γi (q ) } , where { ψ j ( v )} is a spatial basis for the space of functions

from � → R and { γ i ( q )} is an angular basis for the space of func-

tions from R 

3 → R and � is the Kronecker product. In discretized

form for V voxels and G gradient directions, with � ∈ R 

V ×N � and

� ∈ R 

G ×N � , the matrix 
 = � � � is of the form: 

s = 

⎛ 

⎜ ⎜ ⎝ 

s 1 
s 2 
. . . 

s V 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

�1 , 1 � �1 , 2 � · · · �1 ,N � �
�2 , 1 � �2 , 2 � · · · �2 ,N � �

. . . 
. . . 

. . . 
. . . 

�V, 1 � �V, 2 � · · · �V,N � �

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

c 1 
c 2 
. . . 

c N � N �

⎞ 

⎟ ⎟ ⎠ 

= 
c. 

(9)

Fig. 5 illustrates the Kronecker structure of spatial-angular atom


k . We can see that by representing a dMRI signal with this type

of global spatial-angular atom, one can model an entire region of
he brain with as few as a single atom instead of angular atoms at

very voxel. 

A motivating model for this separable structure for dMRI is

s follows: first, as is traditionally done, the signal at each voxel

 ∈ � is written as a linear combination of angular basis functions

 �i ( q )}: 

(v , q ) = 

N �∑ 

i =1 

a i (v )�i (q ) . (10)

hen, we notice that each spherical coefficient a i ( v ) forms a 3D

olume and so can be written as a linear combination of spatial

asis functions { � j ( v )}: 

 i (v ) = 

N �∑ 

j=1 

c i, j � j (v ) . (11)
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Fig. 5. Top: A separable spatial-angular dictionary composed of the Kronecker product between curvelets � and spherical ridgelets �. A pair of spatial and angular atoms 

are highlighted in red and zoomed in below. Bottom: An example construction of a single spatial-angular basis atom 
k (right) by taking the Kronecker product of � j (left) 

and �i (middle), i.e. � j � �i = 
k . With this particular combination of spatial (curvelet ( Candès et al., 2006 )) and angular (spherical wavelet ( Tristán-Vega and Westin, 2011 )) 

atoms, we can see that it may be possible to represent an entire fiber tract with very few spatial-angular atoms. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Table 2 

Sparse coding variable dimensions, where G ( ≈ 100) is the number of gradient directions 

in q -space, V ( ≈ 100 3 ) is the number of voxels in the volume, N � ( � 100) is the number of 

atoms of the angular dictionary �, and N � ( � 100 3 ) is the number of atoms of the spatial 

dictionary � . 

Signal Coefficients Dictionaries 

Variable s S c C 
 � �

Dimensions GV G × V N �N � N � × N � GV × N �N � G × N � V × N �

C  

s

S  

W  

n  

S  

f

S

T  

a  

v

 

t  

m  

d  

K  

(  

c  

2  

o  
ombining (10) and (11) we arrive at our proposed separable

patial-angular dictionary 

(v , q ) = 

N �∑ 

i =1 

N �∑ 

j=1 

c i, j � j (v )�i (q ) , (12)

hen stacking each s v in a large vector, (12) results in the Kro-

ecker product in (9) , s = (� � �) c. Alternatively, when writing

 = [ s 1 , . . . , s V ] as a matrix, (12) results in the equivalent matrix

orm: 

 = �C�
 . (13) 
able 2 summaries the dimensions of the vector and matrix vari-

bles and Fig. 6 illustrates the Kronecker decompositions in the

ector and matrix forms. 

Decomposing signals into Kronecker (or more general multi-

ensor) structures has been well researched to increase algorith-

ic efficiency by reducing computations to the smaller, separate

omains. Many research groups have exploited properties of the

ronecker product, when solving problem types of the form of

P0vec) and (P1vec) for computational efficiency of larger sparse

oding ( Caiafa and Cichocki, 2013 ), dictionary learning ( Hawe et al.,

013 ) and CS ( Duarte and Baraniuk, 2012 ) applications. The work

f Caiafa and Pestilli (2015) has applied multi-tensor sparse cod-
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Fig. 6. Equivalent vector form (top) and matrix form (bottom) for the Kronecker 

decomposition of a signal. We propose to use the matrix form which provides a 

more compact representation for signals of large size and exploits the full sepa- 

rability of the Kronecker product, reducing matrix multiplication complexity from 

O (GV N �N � ) to O (GV N � ) . 
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i  
ing methods on dMRI data for the application of fiber tract data

compression. In particular, a Kronecker Orthogonal Matching Pur-

suit (Kron-OMP) ( Rivenson and S., 2009 ) has been utilized to solve

(P0vec) . Although Kron-OMP becomes much more efficient than

the classical OMP ( Tropp, 2004 ), the problem is not entirely sep-

arated into smaller domains, and the computationally expensive 


matrix is still built explicitly. For large-scale problems like that of

dMRI reconstruction, solving (P0vec) or (P1vec) even with a Kro-

necker structure dictionary remains largely intractable/expensive

for memory and computation time. 

In this chapter, we use the matrix form (13) which allows us

to avoid the expensive uses of 
 and fully reduce computational

complexity to the smaller separable basis domains of � and � . In

particular, we develop efficient algorithms to solve the completely

separable spatial-angular sparse coding problems: 

 

∗ = arg min 

C 

1 

2 

|| �C �
 − S|| 2 F s.t. || C || 0 ≤ K (P 0 mat) 

and 

 

∗ = arg min 

C 

1 

2 

|| �C�
 − S|| 2 F + λ|| C|| 1 . (P 1 mat) 

This becomes a general optimization to solve large-scale sparse

coding problems with separable dictionaries and can also be ex-

tended to the tensor setting. 

As an important note, this matrix formulation is a general-

ization of the voxel-wise angular sparse coding problem (5) in

the special case of � = I V , the V × V identity matrix, with C ≡ A .

We use the identity as a choice for � in the experiments of

Section 5 when comparing the performance of purely angular

sparse coding with our proposed framework. 2 Note that the op-

timization problem (P1mat) is on the coefficient matrix C of size

N � × N � in comparison to the matrix A of size N � × V of state-

of-the-art sparse coding (5) . This leads to a slight increase in the

dimension of the problem proportional to the redundancy factor

of the spatial dictionary � (i.e the ratio N �/V ). On the other hand,
2 Using � = I V identity with spherical ridgelets (SR) we adopt the notation I-SR 

for the dictionary used in the state-of-the-art illustration Fig. 2 and Section 5 . 

�  

r  

w  

p

ur formulation only involves a single sparsity penalty in compari-

on to a sum of angular and spatial terms, thus reducing the num-

er of weighting parameters to select. 

. Efficient kronecker sparse coding algorithms 

In what follows we present three novel adaptations of exist-

ng sparse coding algorithms for solving large-scale sparse cod-

ng problems with a Kronecker dictionary structure. These are

ronecker extensions of OMP ( Section 4.2 ), ADMM ( Section 4.3 ),

nd FISTA ( Section 4.5 ). We compare these to existing Kronecker

parse coding algorithms, a Kronecker OMP ( Rivenson and S., 2009 )

 Section 4.1 ) as well as Kronecker Dual ADMM ( Section 4.4 ), de-

eloped in our prior work Schwab et al. (2016) and derived in a

ew formulation for comparison in this paper. We compare these

lgorithms in terms of complexity for various types of bases in

ection 4.6 and show experimental time comparisons in Section 5 .

.1. Kronecker OMP 

To approximate a solution to the L 0 problem (P0vec) , Orthogo-

al Matching Pursuit (OMP) ( Tropp, 2004 ) is a popular greedy al-

orithm that iteratively selects the atom that is most correlated

ith the signal, orthogonalizes it to the previously selected atoms

y solving a least squares optimization, and selects the next atom

hat is most correlated with the resulting residual. For the case of

 Kronecker structured basis, a Kronecker OMP (Kron-OMP) algo-

ithm has been previously proposed ( Rivenson and S., 2009; Ca-

afa and Cichocki, 2013 ) that reduces computations of solving the

east squares subproblem in each iteration by exploiting properties

f the Kronecker product. This form of Kron-OMP, however, repre-

ents the signal, coefficients, and basis atoms in vector form pro-

iding a solution to (P0vec) . 

In Algorithm 1 we rewrite the Kron-OMP algorithm adapted

lgorithm 1 Kron-OMP. 

Choose: K, ε. 

Initialize: k = 1 , I 0 = ∅ , J 

0 = ∅ , R 0 = S, s = v ec(S) . 

while k ≤ K and error > ε do 

1: [ i k , j k ] = arg max [ i, j] | �
 
i 

R k � j |;
2: I k = [ I k −1 , i k ] ;J 

k = [ J 

k −1 , j k ] ;A 

k = (I k , J 

k ) ;
3: c k = arg min c 

1 
2 || (�I k � �J k ) c − s || 2 

2 
;

4: R k = mat(s − (�I k � �J k ) c k ) ;
5: k ← k + 1 ;

end while 

Return: A 

K , c K 

o the structure of our problem, where vec ( · ) and mat ( · ) convert

atrices to vectors and vice versa. The main complexity gain of

ron-OMP over the vector OMP is obtained by separating the ef-

ects of � and � when computing the maximally correlated atoms

ith the residual, | �
 R �| (See Algorithm 1 Step 1) with complex-

ty O (N �GV + GN �N �) instead of computing | 

 r | with complexity

 (N �N �GV ) . The other gain is in solving the least squares prob-

em (See Algorithm 1 Step 3) by exploiting properties of the Kro-

ecker product ( A � B = [ a 1 � b 1 , . . . , a N � B N ]) to compute a rank-

 update. However, the only real improvement on complexity is

n memory since 
 can be built atom by atom from columns of

and � instead of storing the entire matrix. The rank-1 update

emains O ( k 2 ) for both vector and Kron-OMP. In the next section

e present an alternative Kron-OMP algorithm that reduces com-

lexity further by exploiting the full separability of the dictionary. 
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Algorithm 2 Kron-OMP-PGD. 

Choose: K, ε1 , ε2 . 

Precompute: ˆ S = �
 S�, G = �
 �, P = �
 �. 

Initialize: k = 1 , C 0 = 1 , I 0 = ∅ , J 

0 = ∅ , ˆ R 0 = 

ˆ S . 

while k ≤ K and error > ε1 do 

1: [ i k , j k ] = arg max [ i, j] [ ̂  R k ] i, j ;
2: I k = I k −1 ∪ { i k };J 

k = J 

k −1 ∪ { j k };A 

k = (I k , J 

k ) ;O 

k = A 

k ;
3: Z 1 J k −1 , I k −1 

= C k −1 ; n 1 = 0 ; t = 1 ;
while error > ε2 do 

1: δ = linesearch (Z t ) ;
2: X t+1 = P O k (Z t − δ(G I k , I k Z 

t P J k , J k − ˆ S I k , J k )) ; 

4: n t+1 = 

1 
2 (1 + 

√ 

1 + 4 n 2 t ) ;
5: Z t+1 = X t+1 + 

n t −1 
n t+1 

(X t+1 − X t ) ;
6: t ← t + 1 ; 

end while 

4: C k = Z ∗;
5: ˆ R k = | ̂  S − G I k C k P J k |;
6: k ← k + 1 ;

end while 

Return: A 

K , C K . 

Fig. 7. Comparison of time per iteration for Kron-OMP and the proposed Kron- 

OMP-PGD. The total time to choose K = 70 0 0 = 2 . 8 V atoms for this V = 50 × 50 

slice of a phantom dataset, is 68 min for Kron-OMP and 40 min for Kron-OMP-PGD. 

We can see that as the number of atoms grows, the time per iteration of Kron-OMP 

continues to grow at a much higher rate than Kron-OMP-PGD. 
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.2. Kronecker OMP with projected gradient descent (PGD) 

In what follows, we develop a novel form of Kronecker OMP

hich solves the separable (P0mat) instead of (P0vec) . This allows

s to reduce computation by not building columns of 
 and not

epeating individual atoms of � or � . Instead, indices of � and

are updated only when they each have not been chosen before,

ully exploiting the separability of the dictionary. Given the previ-

us sets of respective of indices I k −1 and J 

k −1 , we update sets by

ollowing I k = [ I k −1 i k ] if i k 	∈ I k −1 and I k = I k −1 otherwise. Like-

ise, J 

k = [ J 

k −1 j k ] if j k 	∈ J 

k −1 and J 

k = J 

k −1 otherwise. With

he selected indices, the size of C k will be |I k | × |J 

k | instead of

 × k . To find C k , it seems natural to solve: 

 k = arg min 

C 

1 

2 

|| �I k C�
 
J k − S|| 2 F . (14)

ut the solution C k will contain possible nonzero coefficients that

o not coincide with the chosen selection of indices since addi-

ional indices in all combinations of pairs between I k and J 

k will

e updated in each iteration. This is problematic for the correct-

ess of the algorithm when choosing the next single most corre-

ated coefficient. Therefore we must enforce that these coefficients

re zero: 

 k = arg min 

C 

1 

2 

|| �I k C�
 
J k − S|| 2 F s.t. C i, j = 0 ∀ (i, j) ∈ O 

k . (15)

here O 

k := (I k , J 

k ) . To solve this problem, we can use projected

radient descent (PGD). The gradient of f (C ) = 

1 
2 || �I k C �


 
J k − S|| 2 

F 

t iteration k is 

f (C) = �
 
I k �I k C�
 

J k �J k − �
 
I k S�J k . (16) 

o save on computation we precompute G = �
 �, P = �
 �,

nd 

ˆ S = �
 S� and can access their entries at each iteration:

 I k , I k , P J k , J k , ̂
 S I k , J k . Then setting Z 1 = C k we iteratively project the

pdate in the gradient direction to the space of feasible solutions:

 

t+1 = P O k (Z t − ε∇ f (Z t )) , (17)

here the projection P O k sets all elements in O 

k to 0 and step-

ize ε is estimated each iteration using a line search. Once the

rocedure has converged to Z ∗, we set C k = Z ∗ and compute the

esidual R k = S − �I k C k �

 
J k . Then, for iteration k + 1 we must find

(i k +1 , j k +1 ) = arg max [ i, j] | �
 
i 

R k � j | . To save significantly on compu-

ation we can instead use our precomputed G and P to instead

nd arg max [ i, j] [ ̂  R k ] i, j , where ˆ R k = | ̂  S − G I k C k P 


 
J k | where G I k , P J k 

espectively access the I k , J 

k columns and all rows. Maintain-

ng matrix forms throughout allows us to combine computing the

esidual and the next atoms for a large reduction in computation

t each iteration k . Our proposed Kronecker OMP with projected

radient descent (Kron-OMP-PGD) is outlined in Algorithm 2 . 

We show a comparison of time per iteration for a small V =
0 × 50 , G = 64 phantom dataset in Fig. 7 . The steeper time in-

rease for Kron-OMP is due to the fact that at iteration k there

s a complexity of O (k 2 + kGV ) that comes from Steps 3 (rank-

 update) and 4 of Algorithm 1 . On the other hand, Kron-OMP-

GD has complexity involving |I k | , |J 

k | ≤ k which are in practice

ignificantly less than k . Even though a PGD sub-routine must be

erformed at each iteration k , we found that by incorporating Nes-

erov acceleration with a line search, the time per iteration re-

ains lower than Kron-OMP as the number of iterations k in-

reases. 

However, for dMRI data, typical sparsity levels are K = O (V ) . So

or V ≈ 100 3 the number of iterations as well as the time per it-

ration of both Kron-OMP and Kron-OMP-PGD when k approaches

 becomes astronomical. Even on a relatively small 3D phantom

ataset of spatial size V = 50 × 50 , for example, one iteration takes
n the order of a few seconds which results in over 34 hrs for

hese greedy algorithms to reach 1 atom/voxel atoms (K = V ) . In

his way, greedy algorithms such as OMP are not suitable for large-

cale problems that require hundreds of thousands of iterations.

nstead, optimizing the LASSO problem (P1mat) can be accom-

lished with significantly less iterations, as we examine in the fol-

owing section. 

.3. Kronecker ADMM 

The Alternating Direction Method of Multipliers (ADMM)

 Boyd et al., 2010 ) is a popular method for solving the LASSO prob-

em (P1vec) . However, its application in the case of a large dictio-

ary 
 remains prohibitive, requiring computations involving 

 s
f order O (GV N �N �) . Instead, we apply ADMM to the separable

ASSO problem (P1mat) to reduce computations by solving 

in 

C,Z 

1 

2 

|| �C�
 − S|| 2 F + λ|| Z|| 1 s.t. C = Z. (18)

he augmented Lagrangian writes: 

 μ(C, Z, T ) = 

1 

2 

|| �C�
 − S|| 2 F + λ|| Z|| 1 
+ < T , C − Z > + 

μ || C − Z|| 2 F , (19) 

2 
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and: 

∂L μ

∂C 
= �
 (�C�
 − S)� + T + μ(C − Z) = 0 (20)

⇒ �
 �C�
 � + μC = μZ − T + �
 S� := Q . (21)

In principle, one can solve for C by solving a linear sys-

tem of equations h (C) = Q, where h (C) = �
 �C�
 � + μC. How-

ever, solving this linear system directly is computationally chal-

lenging due to the size of the matrices involved. Therefore, to

solve for C efficiently, we begin by taking the SVDs of � and

� . With � = U ���V 
 
�

and � = U ���V 
 
�

, �
 � = V ���V 
 
�

and

�
 � = V ���V 
 
�

, where U �, U � are the matrices of eigenvectors

and �� = �
 
�
��, �� = �
 

�
�� are the diagonal matrices of eigen-

values for � and � respectively. Then: 

 ���V 


 
� CV ���V 


 
� + μC = Q (22)

⇒ ��
˜ C �� + μ ˜ C = 

˜ Q (23)

where we introduced the notation 

˜ X = V 
 
�

XV � . Since �� and ��

are diagonal with elements δ�i 
and δ� j 

, respectively, we can solve

for ˜ C by: 

δ�i 
˜ C i, j δ� j 

+ μ ˜ C i, j = 

˜ Q i, j ⇒ 

˜ C i, j = 

˜ Q i, j 

δ�i 
δ� j 

+ μ
(24)

To write this in matrix form we define [�μ] i, j �1 / (δ�i 
δ� j 

+ μ) and

have ˜ C = (�μ ◦ ˜ Q ) where ◦ stands for element-wise matrix multi-

plication. Finally, we can recover C = V � ˜ C V 
 
�

and the complete up-

date for C is: 

 k +1 = V �(�μ ◦ (V 


 
� Q k V �)) V 


 
� (25)

where Q = μZ − T + �
 S� . When minimizing L μ with respect to

Z , we end up with the usual proximal operator of the L 1 norm

that is given by the shrinkage operator, shrink κ (X ) = max (0 , X −
κ) − max (0 , −X − κ) , applied element-wise to matrix X , giving

Z k +1 = shrink λ/μ(C k +1 + T k ) . Similarly with respect to T , we have

the usual Lagrange multiplier gradient ascent update T k +1 = T k +
 k +1 − Z k +1 . 

The formal updates for Kron-ADMM are presented in

Algorithm 3 . The update for C in (25) works well when �

Algorithm 3 Kron-ADMM (for undercomplete dictionaries). 

Choose: μ, λ, ε. 

Precompute: V �, ��, V �, ��, �μ. 

Initialize: k = 0 , Z 0 = 0 , T 0 = 0 , ̂  S = �
 S� . 

while error > ε do 

1: Q k = 

ˆ S + μZ k − T k ; 
2: C k +1 = V �(�μ ◦ (V 
 

�
Q k V �)) V 
 

�
; 

3: Z k +1 = shrink λ/μ(C k +1 + T k ) ; 
4: T k +1 = T k + C k +1 − Z k +1 ;
5: k ← k + 1 ;

end while 

Return: C. 

and � are under-complete and the eigen-decompositions of �
 �
and �
 � are easily computable. However, dictionaries most

commonly used for sparse coding and the application to CS are

over-complete i.e. G < N � and V < N � making these SVDs poten-

tially expensive to compute. In the case of an over-complete 
, for

traditional vector ADMM, the matrix inversion lemma ( Boyd et al.,

2010 ) is involved in order to compute SVDs of the smaller 


 

instead of 

 
. In the following proposition, we derive the

equivalent result for the update of C in (25) . 
roposition 1. For over-complete dictionaries � and � , update

25) is equivalent to the more compact 

 = Q/μ − �
 U �(�μ ◦ (U 


 
� �Q�
 U �)) U 


 
��/μ. (26)

roof. For over-complete dictionaries � = U �[��, 0 ] V 
 
�

and � =
 � [��, 0 ] V 
 

�
, 


 � = V �

(
�� 0 

0 0 

)
V 


 
� and �
 � = V �

(
�� 0 

0 0 

)
V 


 
� . 

or G < i ≤ N �, V < j ≤ N �, δ�i 
, δ� j 

= 0 , so ˜ C i, j = 

˜ Q i, j 

δ�i 
δ� j 

+ μ = 

˜ Q i, j 

μ .

or i ≤ G and j ≤ V , we can rewrite 

˜ 
 i, j = 

˜ Q i, j 

δ�i 
δ� j 

+ μ
= 

˜ Q i, j 

μ
− δ�i 

˜ Q i, j δ� j 

μ(δ�i 
δ� j 

+ μ) 
= 

˜ Q i, j 

μ
−

σ 2 
�i 

˜ Q i, j σ
2 
� j 

μ(δ�i 
δ� j 

+ μ)

= 

˜ Q i, j 

μ
− σ�i 

σ�i 
˜ Q i, j σ� j 

μ(δ�i 
δ� j 

+ μ) 
σ� j 

⇒ 

˜ C = 

˜ Q /μ − �
 
� (�μ ◦ (��

˜ Q �
 
�))��/μ

C = Q/μ − V ��
 
� (�μ ◦ (��V 


 
� QV ��
 

�))��V 


 
� /μ

C = Q/μ − �
 U �(�μ ◦ (U 


 
� �Q�
 U �)) U 


 
��/μ. 

�

Letting �′ = U 


 
�
� and � ′ = U 


 
�

�, which can be precomputed,

e have a final efficient update 

 k +1 = Q k /μ − �′
 (�μ ◦ (�′ Q k �
′
 ))� ′ /μ. (27)

his allows us to compute the SVDs of ��
 and ��
 instead of

he larger �
 � and �
 � and work with smaller matrices within

ach iteration. We present Kron-ADMM for over-complete dictio-

aries in Algorithm 4 . 

lgorithm 4 Kron-ADMM (for overcomplete dictionaries). 

Choose: μ, λ, ε. 

Precompute: U �, ��, U �, ��, �′ , � ′ , �μ. 

Initialize: k = 0 , Z 0 = 0 , T 0 = 0 . 

while error > ε do 

1: Q k = �
 S� + μZ k − T k ; 
2: C k +1 = Q k /μ − �′
 (�μ ◦ (�′ Q k �

′
 ))� ′ /μ; 

3: Z k +1 = shrink λ/μ(C k +1 + T k ) ; 
4: T k +1 = T k + C k +1 − Z k +1 ; 

5: k ← k + 1 ; 

end while 

Return: C. 

.4. Kronecker dual ADMM 

As an alternative to ADMM, Dual ADMM, which applies ADMM

o the dual of l 1 problem (P1vec) , has been shown to be more effi-

ient than ADMM for over-complete dictionaries ( Goncalves, 2015 )

y allowing one to compute SVDs of the more affordable 


 

nstead of 

 
. In our previous work Schwab et al. (2016) we

roposed a Kronecker Dual ADMM (Kron-DADMM) that efficiently

olves the spatial-angular sparse coding problem. Below, we give

n alternative derivation of this algorithm directly based on the

atrix formulation of (P1mat) . The dual of (P1mat) is: 

ax 
A 

−1 

2 

|| A || 2 F + A 


 S s.t. || �
 A �|| ∞ 

≤ λ, (28)

here || X|| ∞ 

= max i, j | X i, j | . To apply ADMM to this optimization

roblem, we replace �
 A � with auxiliary variable V and add the

dditional constraint �
 A � − V = 0 to get: 

ax 
A, V 

−1 

2 

|| A || 2 F + A 


 S s.t. ||V|| ∞ 

≤ λ and V = �
 A �. (29)
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Table 3 

Comparison of algorithms complexity at iteration k . For Kron-OMP-PGD, T is the 

number of sub-iterations of PGD. 

Algorithm Standard Kronecker 

OMP k 2 + kGV + GV N �N � k 2 + kGV + GV N � + V N �N �
OMP-PGD – T G |I k ||J k | + T GV |J k | + |J k | N �N �
ADMM (GV ) 2 N �N � + GV (N �N � ) 2 (GN �N � + GV N � ) + GV 

DADMM (GV ) 2 N �N � (GN �N � + GV N � ) + GV 

FISTA (N �N � ) 2 + GV N �N � (GN �N � + GV N � ) 

T  

d  

a  
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|
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hen the augmented Lagrangian is 

 η(A, V, C) = −1 

2 

|| A || 2 F + A 


 S+ < C, V − �
 A � > 

+ 

η

2 

||V − �
 A �|| 2 F + δλ(V) (30) 

here 

λ(V) = 

{
0 if ||V|| ∞ 

≤ λ
∞ if ||V|| ∞ 

> λ
(31) 

nd the Lagrange multiplier C corresponds to the primal variable C

n (P1mat) , which is our variable of interest. We then have 

∂L η(A, V, C) 

∂A 

= −A + S − �C�
 − η�(V − �
 A �)�
 = 0 (32) 

⇒ A − η��
 A ��
 = S − �(C + ηV)�
 := P. (33) 

ow with eigen-decompositions ��
 = U ���U 


 
�

and ��
 =
 ���U 


 
�

and letting ˜ X = U 


 
�

XU �, 

 + ηU ���U 


 
� AU ���U 


 
� = P (34) 

 

˜ A + η��
˜ A �� = 

˜ P . (35) 

hen, ˜ A can be found element-wise by: 

˜ 
 i, j + ηδ�i 

˜ A i, j δ� j 
= 

˜ P i, j ⇒ 

˜ A i, j = 

˜ P i, j 

1 + ηδ�i 
δ� j 

. (36)

efining [�η] i, j � 1 / (1 + ηδ�i 
δ� j 

) , the update is ˜ A = �η ◦ ˜ P . As

hown in Goncalves (2015) we can keep the update in terms of
˜ 
 instead of A since the variable we are interested in is C . We

an then precompute S ′ = �′
 S� ′ , �′ = U 


 
�
� and � ′ = U 


 
�

� . The

pdates of V and C are as in Schwab et al. (2016) and presented

n Algorithm 5 , where P ∞ 

λ
(X ) sets all entries of matrix X that are

lgorithm 5 Kron-DADMM. 

Choose: η, λ, ε. 

Precompute: S ′ , �′ , � ′ , �η . 

Initialize: k = 0 , C 0 = 0 , V 0 = 0 . 

while Duality Gap > ε do 

1: ˜ A k +1 = �η ◦ (S ′ − �′ (C k − ηV k )� ′
 ) ;
2: V k +1 = P ∞ 

λ
( 1 ηC k + �′
 ˜ A k +1 �

′ ) ;
3: C k +1 = shrink λη(C k + η�′
 ˜ A k +1 �

′ ) ;
4: k ← k + 1 ;

end while 

Return: C. 

reater than λ to λ. 

.5. Kronecker FISTA 

The Fast Iterative Thresholding Algorithm (FISTA) ( Beck and

eboulle, 2009 ) is another well-known method for solving LASSO.

owever, just as before, applying FISTA to (P1vec) for large-scale

MRI data is largely intractable. So here we adapt FISTA to (P1mat)

n order to exploit the separability of our spatial-angular basis.

ISTA is a proximal gradient descent 

 k +1 = shrink λ/L (C k − ∇ f (C k ) /L ) , (37)

here the proximal operator is the soft-thresholding shrinkage op-

rator associated with the l 1 norm and 1/ L is a chosen step size.

he gradient is simply computed as: 

f (C) = �
 (�C�
 )� − �
 S�. (38) 
o help speed convergence, we use a line search subroutine to up-

ate L at each iteration in addition to the usual Nesterov acceler-

tion. By Beck and Teboulle (2009) , FISTA will converge for any L

reater than the Lipschitz constant of ∇f , which can be estimated

y bounding 

|∇ f (C) − ∇ f ( ̄C ) || F = || �
 �(C − C̄ )�
 �|| F ≤ λ�
max λ

�
max || C − C̄ || F

(39) 

here λ�
max and λ�

max are the maximum eigenvalues of �
 � and

 � respectively. Therefore we initialize L = λ�

max λ
�
max . The Kro-

ecker FISTA (Kron-FISTA) is presented in Algorithm 6 . This natural

lgorithm 6 Kron-FISTA. 

Choose: ε. 

Precompute: ˆ S = �
 S�
Initialize: Z 1 = C 0 = 0 , n 1 = 1 , L = λ�

max λ
�
max . 

while error > ε do 

1: L = linesearch (Z k ) ;
2: ∇ f (Z k ) = �
 (�Z k �


 )� − ˆ S ;
3: C k = shrink λ/L (Z k − ∇ f (Z k ) /L ) ;
4: n k +1 = 

1 
2 (1 + 

√ 

1 + 4 n 2 
k 
) ;

5: Z k +1 = C k +1 + 

n k −1 
n k +1 

(C k +1 − C k ) ;
6: k ← k + 1 ;

end while 

Return: C. 

ronecker extension to FISTA has also been recently presented in

i et al. (2016) , but has not been adapted and tested on data of

ur scale. 

.6. Complexity analysis 

To evaluate the efficiency of each algorithm and the gains of

ronecker separability compared to the original algorithms we

ummarize the complexity of each algorithm for general � and

in Table 3 . We notice that classical LASSO algorithms have

omplexity on the order of the size of the 
 matrix, including

erms that multiply all four dimensions GV N �N � . When applying

he Kronecker LASSO algorithms, the complexity is reduced to a

ummation that includes only 3 of the dimensions GV N �, a re-

uction on the order of N � ( ≈ 200 for some of our dictionary

hoices). We compare the Kronecker LASSO algorithms empirically

n Section 5 to identify which is fastest for our regime. Next we

ddress the fact that the dimensions of � ∈ R 

G ×N � and � ∈ R 

V ×N �

ill be orders of magnitude different since G ≈ 100 and V ≈ 100 3 .

e consider a few specific assumptions on the structure of spa-

ial dictionary � which can decrease the complexity and simplify

omputations of some of the proposed algorithms: 

Tight Frame. In the case that � is a tight frame, i.e. ��
 =
, which is commonly an assumption in compressed sensing the-

rems, our method can still be simplified. In Kron-ADMM (over-

omplete) and Kron-DADMM, we may avoid the SVD of ��
 and

espective updates (23) and (35) can be simplified. 
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Table 4 

Number of iterations to completion for Kron-ADMM, Kron-DADMM, 

Kron-FISTA on a 2D 50 × 50 phantom HARDI data using Haar-SR. Kron- 

FISTA converges in the fewest number of iterations. For computation 

time, see Fig. 8 . 

Atoms/Voxel 0.09 0.24 0.60 1.72 3.67 6.75 

λ 1.4 1 1 . 4 −1 1 . 4 −3 1 . 4 −5 1 . 4 −7 1 . 4 −9 

Kron-ADMM 797 1462 2096 3660 4365 4667 

Kron-DADMM 357 597 1060 1722 1928 1953 

Kron-FISTA 161 219 288 346 584 611 
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� Fast Transform. In the case that � corresponds to a well-studied

transform such as wavelets, curvelets, etc., fast transform imple-

mentations can be utilized to reduce complexity further. For the

case of FISTA, for example, matrix multiplications of �
 ( �Z k �

 ) �

(See Algorithm 6 Step 2) involve fast transform reconstructions

( �
 ) of each DWI ( �Z k ) and then deconstructions ( �) which we

parallelize over all DWI in our implementation. 

� Orthonormal. In the case that � is orthonormal, i.e. �
 � =
��
 = I then (P1mat) can be simplified to (5) after noticing: 

|| �C�
 − S|| 2 F = || �C�
 � − S�|| 2 F = || �C − ˆ S || 2 F . (40)

This optimization can be solved using traditional methods after

precomputing ˆ S = S� . 

� Separable Tensor Product. In the case that � can be separated

into a 3D tensor product � = �x � �y � �z , the complexity of

multiplication can be simplified by another degree, in the same

vein as the decrease in complexity we gained from using 
 =
� � �. In this case, instead of the matrix multiplication, S = �C�
 

can be written using n-mode products of tensors S = C ×x �x ×y 

�y ×z �z ×q �. Furthermore, if we consider DSI acquisition where

q -space measurements are acquired in a grid over R 

3 , and assume

we can represent these measurements over a separable basis over

each dimension, then we can take � = �q x � �q y � �q z and 
 be-

comes a 6-tensor. 

5. Experiments 

5.1. Data 

We perform our experiments on single-shell HARDI data,

though as we emphasized earlier, our framework and algorithms

can be applied to any dMRI acquisition protocol with a suitable

choice of the angular basis �. We experimented on a phantom and

a real HARDI brain dataset. Specifically, we applied our methods to

the ISBI 2013 HARDI Reconstruction Challenge Phantom dataset, 3 

a V =50 ×50 ×50 volume consisting of 20 phantom fibers crossing

intricately within an inscribed sphere, measured with G = 64 gra-

dient directions (SNR = 30 ). Our initial experiments test on a 2D

50 × 50 slice of this data for simplification. The real HARDI brain

dataset consists of a V =112 ×112 ×65 volume with G = 127 gradi-

ent directions. We conducted experiments on the core white mat-

ter brain region of size V =60 ×60 ×30 . 

5.2. Kronecker algorithm comparison 

In this section we compare the computational time perfor-

mance of each of the proposed Kronecker LASSO algorithms, (Kron-

DMM, Kron-DADMM, and Kron-FISTA) on a 2D 50 × 50 slice of

phantom data for various values of λ using Haar-SR. For our ex-

periment, we ran Kron-FISTA until we reached a very small mean

squared error of ε = 10 −8 . The objective value obtained was then

taken to be a rough ground truth minimum. We then tested each

of Kron-ADMM, Kron-DADMM, and Kron-FISTA and recorded the

time it took to reach a relative error of 10 −4 from the known min-

imum. Fig. 8 reports the objective value of each algorithm as a

function of computing time for various sparsity levels associated to

choices of λ. Table 8 gives the number of iterations until comple-

tion for each method and sparsity level. For our experiments, Kron-

FISTA appears to be the fastest algorithm in all cases, followed by

Kron-DADMM. The superior performance of DADMM over ADMM

is consistent with the findings of Goncalves (2015) . With these re-

sults, we henceforth use Kron-FISTA for subsequent experiments. 
3 http://www.hardi.epfl.ch/static/events/2013 _ ISBI/ 

a  

s  

n  
.3. Choice of spatial-angular dictionaries 

The experiments in this section are conducted using fixed spa-

ial and angular dictionaries. For the choice of the angular dic-

ionary �, we consider the over-complete Spherical Ridgelet (SR)

asis ( Tristán-Vega and Westin, 2011 ), which has been shown to

parsely model HARDI signals. The corresponding dictionary in the

pace of ODFs is the set of spherical wavelets (SW) (see Fig. 5 for

n example of one spherical wavelet atom). With order L = 2 and

, the SR dictionary contains N � = 210 and N � = 1169 atoms, re-

pectively. We used both amounts of atoms for the small 2D

0 × 50 phantom dataset and found roughly identical results sug-

esting that a basis of order L = 2 contains enough atoms if the

umber of gradients is below 210. This reduces computation signif-

cantly. In comparison, the spherical harmonic (SH) basis has been

hown in prior work Tristán-Vega and Westin (2011) to not exude

parse signals and so we do not repeat this comparison in the cur-

ent work. 

For the choice of spatial dictionary � , the spatial wavelet trans-

orm is a popular sparsifying basis for natural images and struc-

ural MRI volumes. In our previous work Schwab et al. (2016) we

ompared the performance of Daubechies wavelets and Haar

avelets and concluded that Daubechies wavelets resulted in a

moothing of the boundaries between isotropic and anisotropic re-

ions which was not indicative of the more abrupt boundaries that

eal HARDI data exhibits. Haar wavelets outperformed Daubechies

avelets in terms of reconstruction error arguably due to the fact

hat HARDI data exhibits more rigid boundaries and piece-wise

onsistencies, a spatial feature that has motivated the use of total-

ariation penalties in many other reconstruction methods. For this

eason, we do not consider Daubechies wavelets in this work. 

In addition to Haar wavelets, we consider the spatial curvelets

ictionary ( Candès et al., 2006 ) (featured as the spatial atom in

ig. 5 ) which, in addition to variations in position and scale, of-

ers directional variations which may be useful for sparsely mod-

ling the naturally directional HARDI fiber tracts regions. An im-

ortant criteria for choosing our spatial basis is that they be tight

rames as this choice has important theoretical implications for

ompressed sensing and offers computational advantages (as dis-

ussed in Section 4.6 ). They additionally have fast transform imple-

entations which also reduce computational complexity. Finally,

o compare our formulation to state-of-the-art voxel-wise angular

parse coding, we can simply choose � to be the V × V identity

 V . For ease of notation, we use a spatial-angular � − � labeling:

aar-SR, Curve-SR, I-SR for Haar wavelets, curvelets, and the iden-

ity, respectively, for the spatial domain with SR for the angular

omain. 

.4. Sparsity results 

In this section we compare the performance of our spatial-

ngular sparse coding method to the state-of-the-art angular

parse coding by analyzing reconstruction accuracy using very few

onzero coefficients. The first experiment is tested on the 50 × 50

http://www.hardi.epfl.ch/static/events/2013_ISBI/
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Fig. 8. Comparison of time for completion of Kron-ADMM, Kron-DADMM, and Kron-FISTA on a 2D 50 × 50 phantom HARDI data using Haar-SR for various sparsity levels. 

Kron-FISTA consistently reaches the minimum objective in the least amount of time. For number of iterations and lambda values, see Table 4 . 

Fig. 9. Quantitative results of residual error vs. spatial-angular sparsity levels for I-SR, Haar-SR, and Curve-SR on 2D phantom data for various values of λ. Curve-SR out 

performs Haar-SR for low sparsity levels while I-SR has very high relative reconstruction error. The reconstruction of I-SR data points are displayed in Fig. 2 and Haar- 

SR/Curve-SR in Fig. 10 . Our finding of I-SR requiring 6–8 atoms per voxel for accurate reconstruction is consistent with previous findings ( Michailovich and Rathi, 2008; 

2010b ). 
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hantom data slice. We ran Kron-FISTA for various values of λ for

aar-SR, Curve-SR and I-SR. In Fig. 9 we show the results of resid-

al reconstruction error 1 
GV || S ∗ − S orig || F vs. spatial-angular spar-

ity levels in terms of the average number of atoms per voxel

|| C ∗|| 0 / V ). The ideal reconstruction will have a very low average

umber of atoms per voxel with low residual error, which hap-

ens in the lower left-hand corner of our plot. We can see that

n this range, Curve-SR outperforms Haar-SR while I-SR is unable

o perform at this level. Reconstruction of I-SR for various spar-

ity levels are visualized in Fig. 2 . In comparison, Fig. 10 displays

he sparse reconstruction of Haar-SR and Curve-SR with an aver-

ge of 0.25 atoms/voxel. Notice that Curve-SR leads to a some-

ow smoother and more accurate reconstruction than the expect-

dly boxy reconstruction of Haar-SR at this very high sparsity level.

till, in both cases, the proposed joint spatial-angular sparse coding

an reconstruct accurate signals with much fewer number of atoms
han angular sparse coding, which as seen again from Fig. 2 can

e achieved with an average of around 4 atoms per voxel. More

trikingly, in cases of high signal complexity for crossing fibers, the

parse code requires on the order of 6–12 atoms per voxel (see

ig. 3 ). 

We repeat this same analysis on real HARDI data. First, as was

nvestigated for the phantom data in Section 2 , we analyze the ef-

ect of adding TV regularization to the angular sparse coding with

ifferent weighting α in (7) , with α = 0 being equivalent to the

urely angular I-SR model. The algorithm used to solve the re-

ulting optimization problem is the Split Bregman procedure out-

ined in Michailovich et al. (2011) . Consistent with the phantom

xperiment of Fig. 4 , we observe from Fig. 11 that adding spa-

ial regularization again increases the total number of atoms for

 given reconstruction error compared to the α = 0 case. While

he reconstructed signals may have a qualitatively spatial regular-
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Fig. 10. Results of the proposed spatial-angular sparse coding using Kron-FISTA for Haar-SR and Curve-SR using an average of ∼ 0.25 atoms/voxel compared to original 

signal. Curve-SR outperforms Haar-SR in this regime due to its additional directionality. We can see a drastically better reconstruction compared to the state-of-the-art at 

the same sparsity level in the top left of Fig. 2 . This clearly shows that we can achieve accurate reconstruction with less than 1 atom/voxel. 
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ity which may result in a qualitatively better output. In compari-

son, the joint model we propose achieves better sparsity levels for

comparable reconstruction errors. Note also that both algorithms

displayed very similar performances in terms of running time for

that particular experiment. 
c  
We finally validate the approach in the case of a full 3D HARDI

olume for a very sparse number of atoms. Fig. 12 presents the

econstruction error vs. sparsity results for the state-of-the-art

ramework (in which we set α = 0 as the results of Fig. 11 suggest)

ersus the joint Haar-SR and Curve-SR. The plot shows again that

urvelets outperforms Haar for high sparsity levels in the range of
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Fig. 11. Comparison of the spatial-angular sparsity levels achieved by our proposed joint method with Haar-SR dictionaries and state-of-the-art method of 

Michailovich et al. (2011) with different spatial regularization parameters α, both applied on a 2D slice of a real HARDI scan. Recall α = 0 corresponds to purely angu- 

lar sparse coding, I-SR. Adding TV regularization results in an increase of the number of atoms for a given reconstruction error. The joint method achieves better sparsity 

levels than using separate sparsity penalties. 

Fig. 12. Comparison of the spatial-angular sparsity level achieved by Haar-SR and Curve-SR with respect to the state-of-the-art I-SR on the entire 3D real HARDI volume. 

The curvelets provide a good reconstruction error with the sparsest number of atoms, in the range of 0.5–2 atoms/voxel. The state-of-the-art error is much larger in this 

sparsity range and only comparable in the predicted range of 6–8 atoms/voxel, consistent with the previously reported ( Michailovich and Rathi, 2008; 2010b ) for I-SR. 
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.5–2 atoms/voxel. As expected and consistent with our phantom

ata experiment, the state-of-the-art I-SR has comparable recon-

truction error in the range of 6–8 atoms/voxel. Fig. 13 shows the

uality of reconstruction of I-SR, Haar-SR, and Curve-SR compared

o the original signal using an average of ∼ 1 atom/voxel. Haar-SR

resents boxy regions while Curve-SR maintains a smoother recon-

truction with a preservation of smaller detailed fiber tract regions.

n contrast, the state-of-the-art I-SR is unable to model intricate

ber regions and is forced to set most voxels to zero atoms. All in

ll, we can see that using our proposed method, we can achieve

uch higher sparsity levels than the state-of-the-art, and accu-

ate reconstructions using less than 1 atom/voxel. In terms of ef-

ciency, Kron-FISTA was completed on the real HARDI data of size

 =60 ×60 ×30 , G=127 in 1.5 h for our sparsity level of interest

sing the fast 3D wavelet transform implemented in MATLAB. 

. Discussion and conclusion 

In this work, we have demonstrated that by using a joint

patial-angular dictionary, we can obtain accurate HARDI recon-

truction with spatial-angular sparsity levels of less than 1 atom

er voxel, surpassing the limitations of state-of-the-art angular
epresentations. This provides a new general reconstruction frame-

ork to achieve sparser dMRI representations than previously pos-

ible with optimal choices of spatial and angular dictionaries. In

articular, we have shown promising sparsity results for HARDI

rom the combination of curvelet (spatial) and spherical ridgelet

angular) dictionaries, but other spatial and angular dictionaries

ay be chosen for other dMRI protocols like DSI or MS-HARDI. In

uture work, we aim to further optimize sparsity levels by learning

 joint spatial-angular dictionary directly from dMRI data. 

Furthermore, to efficiently solve this large-scale global sparse

oding problem, we have proposed three novel extensions of pop-

lar sparse coding algorithms for the Kronecker dictionary set-

ing. All strategies improve upon previously proposed algorithms

y explicitly exploiting the separability of the dictionary and each

ay be beneficial depending on the problem regime and size of

ata. For our large-scale HARDI data, Kron-FISTA was the leader

n speed. In future work, we will investigate other efficient active

et methods such as the recent ORacle Guided Elastic Net (ORGEN)

 You et al., 2016 ). 

In addition to sparse coding, our spatial angular representa-

ion may have novel applications in other areas of dMRI pro-

essing such as denoising, feature extraction, global ODF non-
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Fig. 13. Results of proposed spatial-angular sparse coding on real HARDI brain data using Kron-FISTA for I-SR, Haar-SR and Curve-SR using an average of ∼ 0.5 atoms/voxel 

compared to original signal. Curve-SR outperforms Haar-SR in this sparsity range due to its directionality. The state-of-the-art I-SR is unable to compete at this sparsity level. 
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negativity, fiber tract segmentation, and tractography. However, our

main application for spatial-angular sparse coding framework is

the promising improvements of acquisition acceleration of dMRI

through CS. One natural future extension of this work will be to

incorporate our joint spatial-angular sparsifying dictionaries within

a unified ( k, q )-CS framework to subsample signal measurements

both in k - and q -space. With the adequate design of joint sensing

schemes, CS recovery results such as Candès et al. (2011) predict

that the minimum number of samples needed for stable and accu-

rate reconstruction is directly linked to the sparsity of the signal in

the chosen dictionary, which argues in favor of the joint represen-

tation we have proposed. 
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