Estimation of Non-Negative ODF's using the Eigenvalue Distribution of
Spherical Functions
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called Orientation Distribution Function R
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Figure 2. Left: Gradlent directions of HARDI signal [Scherrer 11].
. Right: Discrete sampling of spherical function [Zhan 10). )
Prior Work
( )
e The method of [1] imposes non-negativity at finitely many directions on a discrete grid on S?.
o However, this does not guarantee that the estimated ODF be non-negative everywhere on S2.
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9 Figure 3. Process of discrete ODF non-negativity optimization. )
Contributions
( )

o We propose a method that enforces non-negativity of ODFs at infinitely many directions on S2.

e Our approach uses a spherical harmonic (SH) representation of the ODF and enforces non-negativity by

applying constraints to the SH coefficients with an iterative semi-definite programming (SDP) algorithm.
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Continuous ODF Estimation Problem Formulation
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e Let s = HARDI signal, B = SH basis matrix [Y}] and ODF = f = Zle c;Y;, with R = (L+1)2(L+2)7

Discrete ODF Estimation Problem: min ||Bc — s |% s.t. fp >0 for finitely many points on S (1)
C

Continuous ODF Estimation Problem: min ||Be — s |% st. fr >0 for all points on S? (2)
C

e By imposing constraints on a matrix Ty(f7) [2| formed by linear combinations of zero-padded vector of SH
coefficients of f7, we can equivalently constrain the ODF to be non-negative everywhere on S? as follows:

mgnHBc—SH% st. Ty(fr) =0, V¢>1L, (3)

e But enforcing (3) for infinitely many £ still requires infinitely many constraints. So instead we look at the

behavior of the eigenvalues of Ty(f) for all ¢.
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Eigenvalue Distribution Theorem on S?
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e Theorem 1: Let )\{ be the smallest eigenvalue of Ty(f7). Then:

min f7, = glggo )\g (4)

e Theorem 2: The sequence of minimum eigenvalues is decreasing, i.e., )\fﬂ < )\f for all £ > L.

e Therefore, enforcing that f; > 0, is equivalent to enforcing that )\f > ( for all £ > L. We can use the first

few values of )\{ to predict the minimum of f;. This leads to an iterative algorithm that alternates between
predicting the minimum and imposing a positive-semidefinite constraint.

[terative SDP Algorithm
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1. Initiate by solving least squares (LS) min, ||[Bc — 3||% to get coefficents of fr.
2. Calculate Ty (f7,) and extract minimum eigenvalues for L < ¢ < 20.
3. Fit curve to eigenvalues to predict v = f7.
4. Enforce Tr(fr) -~ 1> 0.
5. Repeat steps 2-4 until v > 0.
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9 Figure 4. Min eigenvalue of SH order up to /=20 with true and predicted minima from curve fitting. p
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9 Figure 5. Top: Qualitative ODF comparison with ground truth. Bottom: Quantitative comparison over 100 ODF field. p
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Figure 6. Real HARDI brain ODF field. Left: DN, Right: CN.
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