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Motivation

•Diffusion magnetic resonance imaging (dMRI)
measures the diffusion of water molecules along
anatomical fibers in the brain.

•High Angular Resolution Diffusion Imaging
(HARDI) measures diffusion by sampling along
multiple gradient directions on the sphere (S2).

•HARDI signals can be represented with a
spherical probability distribution function
called Orientation Distribution Function
(ODF).

•However, due to noise and approximation er-
rors, the estimated ODFs may contain negative
values, violating the axioms of a pdf.

Figure 1. ODF estimation of HARDI signal [Descoteaux 08].

Figure 2. Left: Gradient directions of HARDI signal [Scherrer 11].
Right: Discrete sampling of spherical function [Zhan 10].

Prior Work

• The method of [1] imposes non-negativity at finitely many directions on a discrete grid on S2.

•However, this does not guarantee that the estimated ODF be non-negative everywhere on S2.

Figure 3. Process of discrete ODF non-negativity optimization.

Contributions
•We propose a method that enforces non-negativity of ODFs at infinitely many directions on S2.

•Our approach uses a spherical harmonic (SH) representation of the ODF and enforces non-negativity by
applying constraints to the SH coefficients with an iterative semi-definite programming (SDP) algorithm.

Continuous ODF Estimation Problem Formulation

• Let s = HARDI signal, B = SH basis matrix [Yj] and ODF = fL =
∑R
j=1 cjYj, with R =

(L+1)(L+2)
2 ,

Discrete ODF Estimation Problem: min
c
||Bc− s||22 s.t. fL ≥ 0 for finitely many points on S2 (1)

Continuous ODF Estimation Problem: min
c
||Bc− s||22 s.t. fL ≥ 0 for all points on S2 (2)

• By imposing constraints on a matrix T`(fL) [2] formed by linear combinations of zero-padded vector of SH
coefficients of fL, we can equivalently constrain the ODF to be non-negative everywhere on S2 as follows:

min
c
‖Bc− s‖22 s.t. T`(fL) � 0, ∀` ≥ L, (3)

• But enforcing (3) for infinitely many ` still requires infinitely many constraints. So instead we look at the
behavior of the eigenvalues of T`(f ) for all `.

Results on Real HARDI Brain Dataset

Figure 6. Real HARDI brain ODF field. Left: DN, Right: CN.
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Eigenvalue Distribution Theorem on S2

•Theorem 1: Let λ`1 be the smallest eigenvalue of T`(fL). Then:

min fL = lim
`→∞

λ`1 (4)

•Theorem 2: The sequence of minimum eigenvalues is decreasing, i.e., λ`+1
1 ≤ λ`1 for all ` ≥ L.

•Therefore, enforcing that fL ≥ 0, is equivalent to enforcing that λ`1 ≥ 0 for all ` ≥ L. We can use the first

few values of λ`1 to predict the minimum of fL. This leads to an iterative algorithm that alternates between
predicting the minimum and imposing a positive-semidefinite constraint.

Iterative SDP Algorithm
1. Initiate by solving least squares (LS) minc ‖Bc− s‖22 to get coefficents of fL.

2. Calculate TL(fL) and extract minimum eigenvalues for L ≤ ` ≤ 20.

3. Fit curve to eigenvalues to predict γ , fL.

4. Enforce TL(fL) - γ I � 0.

5. Repeat steps 2–4 until γ ≥ 0.

Least Squares Discrete Continuous

Figure 4. Min eigenvalue of SH order up to `=20 with true and predicted minima from curve fitting.

Experiments on Synthetic ODF Fields
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Figure 5. Top: Qualitative ODF comparison with ground truth. Bottom: Quantitative comparison over 100 ODF field.


