

Estimation of Non-Negative ODFs using the Eigenvalue Distribution of Spherical Functions

Evan Schwab Bijan Afsari René Vidal Center for Imaging Science Johns Hopkins University

Motivation

- Diffusion magnetic resonance imaging (dMRI) measures the diffusion of water molecules along anatomical fibers in the brain.
- High Angular Resolution Diffusion Imaging (HARDI) measures diffusion by sampling along multiple gradient directions on the sphere (S²).
- HARDI signals can be represented with a spherical probability distribution function called Orientation Distribution Function (ODF).
- However, due to noise and approximation errors, the estimated ODFs may contain negative values, violating the axioms of a pdf.

Figure 1. ODF estimation of HARDI signal [Descoteaux 08].

Figure 2. Left: Gradient directions of HARDI signal [Scherrer 11].

Eigenvalue Distribution Theorem on \mathbb{S}^2

• **Theorem 1:** Let λ_1^{ℓ} be the smallest eigenvalue of $T_{\ell}(f_L)$. Then:

 $\min f_L = \lim_{\ell \to \infty} \lambda_1^\ell$

- **Theorem 2:** The sequence of minimum eigenvalues is decreasing, i.e., $\lambda_1^{\ell+1} \leq \lambda_1^{\ell}$ for all $\ell \geq L$.
- Therefore, enforcing that $f_L \ge 0$, is equivalent to enforcing that $\lambda_1^{\ell} \ge 0$ for all $\ell \ge L$. We can use the first few values of λ_1^{ℓ} to predict the minimum of f_L . This leads to an iterative algorithm that alternates between predicting the minimum and imposing a positive-semidefinite constraint.

Iterative SDP Algorithm

- 1. Initiate by solving least squares (LS) $\min_c ||\mathbf{B}c s||_2^2$ to get coefficients of f_L . 2. Calculate $T_L(f_L)$ and extract minimum eigenvalues for $L \le \ell \le 20$.
- 3. Fit curve to eigenvalues to predict $\gamma \triangleq f_L$.

Right: Discrete sampling of spherical function [Zhan 10].

Prior Work

• The method of [1] imposes non-negativity at finitely many directions on a discrete grid on \mathbb{S}^2 .

• However, this does not guarantee that the estimated ODF be non-negative everywhere on \mathbb{S}^2 .

Contributions

• We propose a method that enforces non-negativity of ODFs at infinitely many directions on \mathbb{S}^2 .

• Our approach uses a spherical harmonic (SH) representation of the ODF and enforces non-negativity by applying constraints to the SH coefficients with an iterative semi-definite programming (SDP) algorithm.

Continuous ODF Estimation Problem Formulation

• Let s = HARDI signal, $\mathbf{B} = \text{SH basis matrix} [Y_j]$ and $\text{ODF} = f_L = \sum_{j=1}^R c_j Y_j$, with $R = \frac{(L+1)(L+2)}{2}$,

- 4. Enforce $T_L(f_L) \gamma \mathbf{I} \succeq 0$.
- 5. Repeat steps 2–4 until $\gamma \ge 0$.

Experiments on Synthetic ODF Fields

Discrete ODF Estimation Problem:
$$\min_{c} ||\mathbf{B}c - s||_2^2$$
 s.t. $f_L \ge 0$ for finitely many points on \mathbb{S}^2 (1)

Continuous ODF Estimation Problem: $\min_{c} ||\mathbf{B}c - s||_2^2$ s.t. $f_L \ge 0$ for all points on \mathbb{S}^2 (2)

• By imposing constraints on a matrix $T_{\ell}(f_L)$ [2] formed by linear combinations of zero-padded vector of SH coefficients of f_L , we can equivalently constrain the ODF to be non-negative everywhere on \mathbb{S}^2 as follows:

$$\min_{c} \|\mathbf{B}c - s\|_{2}^{2} \text{ s.t. } T_{\ell}(f_{L}) \succeq 0, \quad \forall \ell \ge L,$$
(3)

• But enforcing (3) for infinitely many ℓ still requires infinitely many constraints. So instead we look at the behavior of the eigenvalues of $T_{\ell}(f)$ for all ℓ .

Results on Real HARDI Brain Dataset

References

[1] Goh, A., Lenglet, C., Thompson, P., Vidal, R.: Estimating Orientation Distribution Functions with Probability Density Constraints and Spatial Regularity. In MICCAI, 2009.

[2] Shirdhonkar, S., Jacobs, D.W.: Non-negative lighting and Specular Object Recognition. In: ICCV, vol. 2, pp. 1323-1330, 2005.

Acknowledgements

Supported in part by Acheson J. Duncan Fund and JHU Startup Funds.

Vision Lab @ JHU http://www.vision.jhu.edu