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Abstract. Current methods in high angular resolution diffusion imaging
(HARDI) estimate the probability density function of water diffusion as a
continuous-valued orientation distribution function (ODF) on the sphere.
However, such methods could produce an ODF with negative values, be-
cause they enforce non-negativity only at finitely many directions. In this
paper, we propose to enforce non-negativity on the continuous domain
by enforcing the positive semi-definiteness of Toeplitz-like matrices con-
structed from the spherical harmonic representation of the ODF. We study
the distribution of the eigenvalues of these matrices and use it to derive an
iterative semi-definite program that enforces non-negativity on the contin-
uous domain. We illustrate the performance of our method and compare
it to the state-of-the-art with experiments on synthetic and real data.

Keywords: diffusion imaging, orientation distribution functions, spheri-
cal harmonics, Toeplitz matrices, eigenvalue distribution theorem.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) uses the properties of water
diffusion in biological tissues to reconstruct the 3-dimensional architecture of
anatomical structures. Recent advances in this field, such as high angular resolu-
tion diffusion imaging (HARDI), have been able to compute the anisotropy of
water molecules in the brain by measuring diffusion along multiple directions.
This allows one to characterize the diffusion properties of biological tissues in
terms of a probability density function on the sphere, otherwise known as the
orientation distribution function (ODF).

In theory, an ODF must obey the axioms of a probability distribution, which
include being non-negative and integrating to 1 over the sphere. However, existing
ODF estimation methods based on a spherical harmonic (SH) representation of
the ODF [1–9] do not enforce the non-negativity constraint. As a consequence,
due to noise and low order SH representation, the estimated ODFs may contain
negative values. This is a problem in population studies, where one is interested
in applying statistical methods to ODFs to differentiate between healthy and
diseased populations, which cannot be accurately done without axiomatically
correct distributions. To address this problem, [10] enforces non-negativity at
finitely many directions on the sphere, but ODF interpolation and registration
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methods may require evaluating ODFs outside discrete grids. [11] uses a non-
ODF constrained spherical deconvolution method that reduces the occurrence of
negative values, but does not completely eliminate them.

In this paper, we propose an algorithm that enforces non-negativity for all di-
rections on the sphere. To do this, we extend the relationship between continuous
functions and their companion Toeplitz forms of Fourier coefficients to spherical
functions. This leads to a positive semi-definiteness constraint on matrices con-
structed from the SH coefficients of the ODF. Since these constraints cannot be
directly enforced, we study the distribution of the eigenvalues of these matrices
to predict their smallest eigenvalue given an estimate of the SH coefficients. This
prediction can in turn be used to improve the SH coefficients. This leads to
an iterative semi-definite program (SDP) that enforces non-negativity of the
ODF on the continuous domain. We illustrate the performance of our method in
comparison to the state-of-the-art with experiments on synthetic and real data.

2 Estimating ODFs using Spherical Harmonics

2.1 Standard and Modified SH Basis Representations

Recent ODF estimation methods have adopted the SH representation for HARDI
signals. The (standard) SH basis elements are complex-valued functions defined as

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ , l = 0, 1, 2, . . . , −l ≤ m ≤ l, (1)

where Pml is the associated Legendre polynomial of degree l and orderm, θ ∈ [0, π],
and φ ∈ [0, 2π). In practice, the signals we want to reconstruct are real. Hence, it
is more convenient to use the modified SH basis functions, which are defined as

Yj =


√

2Re(Y
|m|
l ) if − l ≤ m < 0,

Y 0
l if m = 0,√
2(−1)m+1Im(Y ml ) if 0 < m ≤ l,

(2)

where Re(·) and Im(·) are the real and imaginary parts, respectively, and j
.
=

j(l,m) = l2+l+2
2 +m for l = 0, 2, 4, . . . and −l ≤ m ≤ l. Notice that, for degree

up to L, there are R = (L+1)(L+2)
2 basis elements. Often it suffices to consider

the modified SH basis of degree up to L = 4 correlating to R = 15. Notice also
that

∫
S2 Y1(θ, φ) =

∫
S2

1
2
√
π

= 2
√
π and

∫
S2 Yj(θ, φ) = 0 for j > 1. Consider a real

continuous function f : S2 → R. Then we can write it as f =
∑∞
j=1 cjYj using the

modified basis in (2), where c = [cj ] are the real SH coefficients that parameterize
f . This is equivalent to writing f =

∑∞
l,m cl,mY

m
l using the standard SH basis in

(1), where we define c̄ = [cl,m] as the vector of standard SH coefficients. Given a

real vector c, we can obtain c̄ by the inverse mapping of j(l,m) = l2+l+2
2 +m,

where l = 0, 2, 4, . . . , −l ≤ m ≤ l with cl,m = 0 for l > 0 odd. This gives the
degree lj and order mj of Yj and defines a one-to-one mapping between the
vectors c and c̄. For example, c̄0,0 = c1, c̄2,−2 = c2, c̄2,−1 = c3 and so forth.
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2.2 ODF Estimation Problem and Prior Work

Let S0 be the baseline MRI signal and let S(θ, φ) be the HARDI signal along (θ, φ).

Following [7], we define the ODF as p(ϑ, ϕ) = 1
4π+ 1

16π2FRT{∇2
b ln(− ln(S(θ,φ)S0

))},
where FRT is the Funk-Radon transform, ∇2

b is the Laplace-Beltrami operator

on S2, ϑ ∈ [0, π] and ϕ ∈ [0, 2π). Let s(θ, φ)
.
= ln(− ln(S(θ,φ)S0

)) =
∑∞
j=1 cjYj(θ, φ).

Since ∇2
b(Yj(θ, φ)) = −lj(lj + 1)Yj(θ, φ), and FRT (Yj(θ, φ)) = 2πPlj (0)Yj(ϑ, ϕ),

where Plj (0) is the Legendre polynomial of degree lj at 0, we have

p(ϑ, ϕ) =
1

4π
+

1

16π2

∞∑
j=1

(−2πPlj (0))lj(lj + 1)cjYj(ϑ, ϕ) =

∞∑
j=1

c̃jYj(ϑ, ϕ), (3)

where c̃1 = 1
2
√
π

and c̃j = − 1
8πPlj (0)lj(lj+1)cj for j > 1. Therefore, to reconstruct

p, it suffices to compute the SH coefficients c̃
.
= [c̃j ] that parameterize the signal

s, or equivalently, the standard SH coefficients ¯̃c
.
= [c̃l,m], such that

∫
S2 p = 1

and p(ϑ, ϕ) ≥ 0 for all ϑ ∈ [0, π] and ϕ ∈ [0, 2π). To that end, assume that
the HARDI signals are measured at G gradient directions (θi, φi)

G
i=1. If we use

an R-dimensional approximation of s ≈
∑R
j=1 cjYj , we have s ≈ Bc, where

s
.
= [ln(− ln(S(θ1,φ1)

S0
)), . . . , ln(− ln(S(θG,φG)

S0
))]T , B is the G×R SH basis matrix

whose i-th row is Bi = [Y1(θi, φi), ..., YR(θi, φi)], and c = [c1, c2, . . . , cR]T ∈ RR.
With the above notation, we define the following ODF estimation problem:

Problem 1 (Continuous Domain ODF Estimation). Fix L and let c ∈ RR. Solve

minc ||Bc− s||22 s.t. pL(ϑ, ϕ)
.
=
∑R
j=1 c̃jYj(ϑ, ϕ) ≥ 0 for all ϑ ∈ [0, π], ϕ ∈ [0, 2π).

Perhaps the simplest approach to recovering c is to solve the least-squares
problem minc

1
2 ||Bc − s||22, as proposed in [5]. However, disregarding the non-

negativity constraints could result in negative values for p(ϕ, ϑ). To address this
issue, [10] proposes to enforce the non-negativity constraints at finitely many

directions (ϑi, ϕi)
M
i=1, with (ϑi, ϕi) possibly different from (θi, φi).

1 To solve this
problem, [10] defines the discrete ODF p ∈ RM whose i-th entry is pi = pL(ϑi, ϕi).
Then p = 1

4π1+ 1
16π2 CLPc, where 1 is the M ×1 vector of ones, C is the M ×R

SH basis matrix whose i-th row is Ci = [Y1(ϑi, ϕi)... YR(ϑi, ϕi)], L is the R×R
diagonal matrix of Laplace-Beltrami eigenvalues with Ljj = −lj(lj + 1), and
P is the R × R diagonal Funk-Radon transform matrix with Pjj = 2πPlj (0).
Thus, to enforce the non-negativity of p, [10] solves the optimization problem
minc ||Bc− s||22 subject to CLPc ≥ −4π1. This method enforces pL(ϑi, ϕi) ≥ 0
for i = 1, . . . ,M but not for all ϑ ∈ [0, π], ϕ ∈ [0, 2π).

3 Estimating ODFs with Non-Negativity Constraints

In this section, we propose an algorithm for solving Problem 1. In §3.1 we show
that b

.
= minϑ,ϕ pL(ϑ, ϕ) = lim`→∞ λ`1, where λ`1 is the smallest eigenvalue of a

1 Typically we consider M = 162 with G ≈ 100 HARDI measurements.
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matrix T` constructed from the SH coefficients, ¯̃c, of pL. Therefore, enforcing b ≥ 0
is equivalent to enforcing λ`1 ≥ 0 for all ` ≥ L. Unfortunately, we cannot solve an
optimization problem with infinitely many constraints. Also, enforcing λ`1 ≥ 0
for a finite ` ≥ L is a necessary but not a sufficient condition. To circumvent this
problem, in §3.2 we show that the sequence {λ`1}`≥L is decreasing and that b
can be predicted by fitting a curve to the first few {λ`1}N`=L. In §3.3, we show
that given b, one can estimate c̄ by solving an SDP. We thus propose an iterative
SDP that alternates between computing c̄ given b and predicting b given ¯̃c.

3.1 Toeplitz Form Analogue for Spherical Harmonic Basis

In [12], results are developed which relate the range of the values of a function
to the eigenvalues of a Toeplitz matrix (or form) constructed from finitely many
Fourier coefficients of the function. One can develop analogue results for the SH
coefficients. We follow [13] in constructing a matrix T` that serves as the SH
analogue of the Toeplitz form in the Fourier case.

Consider a spherical function f =
∑∞
j=1 ciYi and let c̄ = [cl,m] be its standard

SH coefficients of infinite length. Let T`(f), ` = 0, 1, . . . , be a matrix whose rows
and columns are indexed by the pair (l1m1, l2m2) = (l1(l1+1)+m1, l2(l2+1)+m2),
where li = 0, 1, 2, . . . , ` and −li ≤ mi ≤ li, for i = 1, 2. The entry of T` at position
(l1m1, l2m2) is defined as

T`(f)l1m1;l2m2
=

l1+l2∑
l=|l1−l2|

c̄l,m1−m2
G(l, l2, l1;m1 −m2,m2,m1), (4)

where G(l1, l2, l3;m1,m2,m3) is a real constant Gaunt Coefficient (See [13] Ap-
pendix A). The size of T` is (` + 1)2 × (` + 1)2 because there are (` + 1)2 SH
coefficients of degree less than or equal to `. The following result proved in [13]
relates the extremal eigenvalues of T` to the range of the values of the function f
and in particular the behavior as `→∞.

Theorem 1. (Eigenvalue Distribution Theorem in S2) Let f(u) ∈ L1(S2) be an
absolutely integrable real valued function on the 2-sphere. Let b and B be the
essential lower and upper bounds of f(u), respectively and let λ`i , i = 1, . . . , (`+1)2,
be the ascending eigenvalues of the matrix T`(f). Then we have

b ≤ λ`1 ≤ . . . ≤ λ`(`+1)2 ≤ B, lim
`→∞

λ`1 = b, and lim
`→∞

λ`(`+1)2 = B. (5)

This theorem shows that the smallest eigenvalue of T`(f) in the limit converges
to the minimum of f on S2. Therefore, enforcing that minϑ,ϕ f(ϑ, ϕ) ≥ 0, is
equivalent to enforcing that λ`1 ≥ 0 for all ` ≥ 0.

3.2 Predicting the Smallest Eigenvalue

Since we cannot enforce infinitely many constraints, let us first understand the
behavior of the smallest eigenvalue of T`(fL) for ` ≥ L, where fL belongs to the

class of functions expressed by SH of degree up to L, i.e., fL =
∑R
j=1 cjYj .
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Theorem 2. Let fL =
∑R
i=1 ciYi, where R = (L+1)(L+2)

2 . Let T`(fL) be defined

as in (4) and let λ`1 be its smallest eigenvalue. Then λ`+1
1 ≤ λ`1 for all ` ≥ L.

Proof. By [13], T`(fL) is Hermitian for every ` ≥ 0. Then, by interlacing [14, p.
189], λ`1 will be less than or equal to the minimum eigenvalue of every principal
submatrix of T`(fL). Thus it suffices to show that T`(fL) is a principal submatrix
of T`+1(fL) for all ` ≥ L. T`(fL) is of size (`+1)2×(`+1)2 and T`+1(fL) is of size
(`+ 2)2× (`+ 2)2. If we restrict our matrix T`+1(fL) to the first (`+ 1)2 columns
and rows, we denote this principal submatrix by P`+1(fL). In (4) for T`+1(fL), l1
and l2 each range from 0 to `+ 1 and so the upper limit l1 + l2 of the summation
over l will range from 0 to 2` + 2. But from the zero-padding construction of
T`+1(fL) we see that coefficients after 2` equal 0. Thus this summation reduces
to the range 0 to 2` which is exactly equal to T`(fL). So T`(fL) is a principal
submatrix of T`+1(fL) for all ` ≥ L. ut

This result guarantees monotone decrease of λ`1. However, to predict lim`→∞ λ`1
we need the rate of convergence, which is not straightforward to analyze. In the
1D Fourier case, one can argue that this rate is roughly proportional to 1

`+2 [12,
pp. 65-67 and p. 72]. However, there are technical difficulties in carrying this
argument over to S2. Nevertheless, in the 2D Fourier case one could argue that
the rate is proportional to 1

(`+2)2 . We use this intuition [12, 13] to obtain a good

estimate of the rate of convergence. Given a sequence of eigenvalues, λ`1, we fit
functions of the form q 1

(`+d)r + b, with free parameters q, r, b for different values

of d and small values of ` > L. In addition we compare them to an exponential
curve of the form qe−r` + b. Table 1 shows the R2 goodness of fit value and
exponent r for different values of d averaged over 100 samples of synthetic ODFs
for ` = 4, . . . , 15. We found that d ≈ 2 and 1 ≤ r ≤ 2 yield a satisfactory fit and
support our intuition. In our experiments we chose d = 2 and let r be free.

3.3 Iterative Semi-Definite Programming Optimization Algorithm

In this section, we formulate Problem 1 in terms of constraints on T`(pL). Ideally,
the optimization problem we want to solve is:

min
c
‖Bc− s‖22 s.t. T`(pL) � 0, ∀` ≥ L, (6)

where c ∈ RR. By Theorem 1, constraining T`(pL) � 0 for all ` ≥ L enforces

pL(ϑ, ϕ) =
∑R
j=1 c̃jYj(ϑ, ϕ) ≥ 0 for all ϑ ∈ [0, π], ϕ ∈ [0, 2π). It is important to

note here that since pL has SH coefficients c̃, T`(pL) will be built from ¯̃c = [c̃l,m].
Notice that we cannot solve the problem in (6), because it has infinitely many

Table 1: Rate of Convergence Parameters and Performance

d 0 1 2 2.5 3 qe−r` + b

R2 0.9989 0.9990 0.9991 0.9991 0.9991 0.4522

r 0.7678 1.0162 1.2606 1.3819 1.5026 4.0142
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Algorithm 1 Iterative T` Construction and SDP Optimization

Given a signal vector s, a precomputed modified SH basis matrix B, and for a fixed L
and fixed extension degree N ≥ L+ 3,

1. Initialization. Set k = 0.
a. Calculate initial SH coefficient vector c0 = arg min ‖Bc− s‖22 .
b. Construct T`(p

0
L) as in (4) for ` = L, . . . , N , fit curve q 1

(`+2)r
+ b to {λ`,0

1 }N`=L,
with free parameters q, r, b and set b0 ← b.

2. Until bk non-negative,
a. Calculate γk, and solve (8) using SDP solver to get ck+1.
b. Construct T`(p

k+1
L ) as in (4) for ` = L, . . . , N , fit curve q 1

(`+2)r
+b to {λ`,k+1

1 }N`=L,
with free parameters q, r, b, set bk+1 ← b and set k ← k + 1.

constraints. Notice also that enforcing T`(pL) � 0 for finite ` does not guarantee
the non-negativity of pL. To address this issue, we propose an iterative algorithm,
(see Alg. 1) that solves an approximation of (6) at each iteration. Let ck be the

estimate of c at iteration k and define pkL =
∑R
j=1 c̃

k
jYj . Let λ`,k1 be the minimum

eigenvalue of T`(p
k
L) and let bk be the prediction of lim`→∞{λ`,k1 } obtained by

the curve fitting method described in §3.2. At iteration k, we solve:

ck+1 = arg min
c
‖Bc− s‖22 s.t. TL(pkL) � γkI(L+1)2 , (7)

where γk
.
= λL,k1 −bk and I(L+1)2 is the identity matrix of size (L+1)2. Alg. 1 was

implemented in MATLAB utilizing the Coder Toolbox to speed up construction
of T`. The optimization problem was solved using CVX, a MATLAB software for
specifying and solving convex programs [15, 16]. Within the CVX environment (7)
is reformulated using the Shur complement of the constraint ‖Bc− s‖22 ≤ z as:

min
c

z s.t.

[
IR Bc− s

[Bc− s]T z

]
� 0 and TL(pkL) � γkI(L+1)2 (8)

for z ∈ R. In Alg. 1, we begin with a given measured signal s and modified SH
basis matrix B as described in §2.2. To initialize the algorithm, we fix L and
start with a least squares approximation for c as in step 1a. From the initial
optimal value c0 we can calculate ¯̃c0, by the mapping in §2, in order to construct
TL(p0L) by (4). We can optimize over any T` so we choose the smallest ` = L
for computational simplicity. For a fixed integer N ≥ L+ 3 we fit the curve to
{λ`,01 } for ` = L, . . . , N as in §3.2 in order to calculate the approximate minimum
b = b0 of the function p0L. If b0 < 0 we then solve the problem in (8), which will

increase the expected minimum of the sequence {λ`,k+1
1 }, generated from the

optimal coefficients of the optimization, closer to 0. Alg. 1 repeats until we arrive
at a bk ≥ 0, which means we have a function pkL ≥ 0 on the continuous domain.

4 Experiments

We conducted a number of experiments on real and synthetic datasets to compare
our continuous non-negativity (CN) method against the discrete non-negativity
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(DN) method [10] and the unconstrained least squares (LS) method. Our algorithm
uses (DN) as initialization. We used the multi-tensor method in [4] to generate
a field of 100 synthetic ODFs with 1, 2, and 3 fibers with varying angles. We
added complex Gaussian noise with a signal-to-noise ratio (SNR) of 5, 10 and
20 dB. Alg. 1 takes on avg. 2-3 iterations to converge. Each iteration in MATLAB

takes about 70s for N = 15 and 159s for N = 20, thus we choose N = 15 in our
experiments. This is about two orders of magnitude more than the method of [10],
which takes 1s per ODF. The runtime of our method could be reduced by using
a more efficient implementation than CVX. The computational complexity of our
SDP is almost O(L6). Fig. 1 offers a closeup investigation of a synthetic single
fiber ODF with SNR 5 dB, using each method. Notice that CN more closely
estimates the true ODF. To quantify the error, we used the Riemannian distance
between ODFs, distRie [17]. All experiments are calculated over a very fine mesh
of 1.002 million points on S2. The left plot in Fig. 2 shows the avg. Riemannian
error between the true and estimated ODFs for each SNR value. The avg. error of
CN is consistently lower than that of DN. Further analysis in the righthand plot
in Fig. 2 presents the avg. percentage of negative values on S2 for each SNR level
for LS, DN, and DN with two passes of spatial regularization (DN-S) [10]. The
number of negative values decreases but is not eliminated, while in CN 0% of the
ODFs have negative values over the fine mesh, and in theory for all points on S2.
Finally, we validate our methods on a 128× 128 real HARDI human brain dMRI
dataset measured at 94 gradient directions. Fig. 3 compares DN and CN on a
sample of the real dataset. Using the same mesh as in the synthetic experiments,
we found that over 99% of the ODFs estimated by DN had on avg. 0.04% of
negative values, while 0% of the ODFs estimated by CN had negative values.

(a) LS (b) DN (c) CN (d) True

Fig. 1: Single fiber ODF with SNR 5 dB Fig. 2: Quantitative comparison

Fig. 3: Real HARDI brain ODF field. Left: DN, Right: CN.

5 Conclusion

We have proposed a novel method to enforce non-negativity in the estimation of
ODFs. We not only eliminate the negative values of existing estimation methods,
but also improve the estimated ODFs, as demonstrated with synthetic and real
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experiments. Future work includes using our axiomatically correct ODFs to
demonstrate improvement in statistical analysis for population studies.
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