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Abstract. We propose a surgical gesture segmentation and classifica-
tion method based on shared, discriminative, sparse dictionary learn-
ing, which can be used to effectively analyze complex surgical gestures
recorded by the da Vinci robotic surgical system. Rather than learning a
separate dictionary for each gesture in an unsupervised manner, we pro-
pose an algorithm for jointly learning a common overcomplete dictionary
for all gestures together with a multi-class linear support vector machine
for classifying each gesture. Experiments on the JHU-ISI Gesture and
Skill Assessment Dataset (JIGSAWS), which contains the motions from
three surgical tasks, reveal that the proposed method performs on par
or better than state-of-the-art methods based only on kinematic data.
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1 Introduction

The advent of robotic minimally invasive surgery (RMIS) has enabled the cap-
ture of rich, high-fidelity time-series data during the execution of surgical tasks
by experts and trainees alike. The automatic segmentation and classification
of surgical gestures from such data holds transformative promise, from surgical
skill assessment to prognostic outcome prediction. Prior work on surgical gesture
classification has been mainly based on kinematic data recorded by a surgical
robot. These data include position of the robot’s tools, the robot joint angles,
and translational and rotational velocities of both joints and tooltips. Many prior
studies have quantified and analyzed high-level parameters such as time to com-
pletion of a task [5, 8], distance travelled [8], and force and torque signatures [16,
23, 8] for classification of surgical tasks. These approaches are generally easy to
implement, but they do not take advantage of the fact that a surgical task such
as suturing can be decomposed into a number of lower-level surgical gestures.

In recent years, several studies have attempted to provide a more detailed de-
scription of surgical tasks by decomposing them into a set of pre-defined atomic
gestures called surgemes [17, 15, 22, 21, 11]. Examples of different surgemes in a
surgical task such as suturing include “reach needle”, “insert needle,” and “pull
suture.” (see Fig. 1). Automatic segmentation and classification of surgemes can
facilitate automatic skill classification based on how well each of the surgical
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reach needle insert needle

pull suture transfer needle

Fig. 1. Examples of four surgical surgemes in the suturing task.

gestures is performed in a particular surgical task. A number of methods have
been proposed for classification [24, 2]. While these approaches perform very well
in classifying gestures, they assume that the data is already segmented. On the
other hand, a number of statistical models—including Hidden Markov Models
(HMMs) and Conditional Random Fields (CRFs)—have been proposed for the
joint segmentation and classification of surgical gestures. The most widely used
statistical models are HMMs and their variations [17, 11, 15, 21, 19, 20], which
differ from each other on how the observations associated with each gesture
are modeled. In particular, a Sparse-HMM (S-HMM) uses sparse dictionaries to
model the HMM observations (as the name suggests). While this model achieves
solid performance in segmentation and classification of surgical gestures, a sep-
arate dictionary of atomic surgical motions is learned for each surgical gesture.

In this paper, we propose a new sparse representation approach, called Shared
Discriminative Sparse Dictionary Learning (SDSDL), where instead of learning
a separate dictionary for each gesture, we jointly learn a common dictionary
for all possible surgical gestures together with the parameters of a multi-class
linear support vector machine (SVM). In this way, the learned dictionary of
atomic motions is shared across all gestures, which results in more compact
dictionaries. In addition, the dictionary is more discriminative, as it is learned
together with the gesture classifiers. 3 The classification scores of SDSDL are
then integrated into an HMM for gesture segmentation and classification. We
test our proposed SDSDL method on the kinematic data from the JHU-ISI
Gesture and Skill Assessment Dataset (JIGSAWS) [7]. Our experiments show
that the proposed SDSDL method outperforms state-of-the-art methods for joint
segmentation and classification of surgical gestures that use only kinematic data.

3 Similar advantages of learning shared discriminative dictionaries for object classifi-
cation in static images have been observed, e.g., in [12].
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2 Methods

Our approach to modeling surgical gestures consists of two stages: 1) dictionary
learning and sparse coding, and 2) training a multi-class linear support vector
machine. These stages are integrated into a common learning procedure, as illus-
trated in Fig. 2. The details of each stage of the model, as well as the algorithms
for inference and parameter learning, are discussed in the following sections.

2.1 Dictionary learning and sparse coding

Let {xk}Nk=1 be a sequence of observations (or features extracted from the obser-
vations), where xk ∈ Rp represents the observation at frame k (see Section 3.1
for dataset description). Let {yk}Nk=1 be their corresponding gesture labels and
C = {1, 2, . . . , L} be the set of all possible gestures.

Given ntrain training trials {Xi}ntrain
i=1 ∈ Rp×Ni (where Xi denotes the con-

catenation of all observations in trial i, and Ni is the number of observations in
trial i), and their corresponding labelings {Yi}ntrain

i=1 , let

X = [X1, X2, . . . , Xntrain ] = [x1,x2, . . . ,xNt
] ∈ Rp×Nt (1)

denote the concatenation of the observations from all training trials, where
Nt =

∑ntrain

i=1 Ni. We initialize our method by learning a common overcomplete
dictionary of surgical atomic motions, Ψ ∈ Rp×m (m > p), for the entire training
set and compute an initial sparse representation for each xi with respect to Ψ
by considering the following optimization problem:

min
Ψ,U∈Rm×Nt

1

Nt

Nt∑
i=1

(1

2
‖xi − Ψui‖22 + λu‖ui‖1

)
, (2)

where λu is a regularization parameter, and

U = [u1,u2, . . . ,uNt ] ∈ Rm×Nt , (3)

is the concatenation of all sparse coefficients. To prevent the entries of the dic-
tionary from being arbitrarily large (which would cause the sparse coefficients
to be very small), it is common to constrain the columns of the dictionary to
have a unit l2 norm. While the optimization problem in equation (2) is jointly
non-convex, it is convex with respect to each of Ψ and U when the other one is
fixed, and can be solved using existing sparse dictionary learning algorithms [13].

2.2 Multi-class linear support vector machine

While sparse codes have proven to be effective features for classification of static
data (see [14] references therein), in this paper we are dealing with time-series
data. Therefore, instead of using the sparse codes directly for classification, we
propose the following two steps for computing features from the sparse codes.

First, given the sparse coefficients, ui ∈ Rm for i = {1, 2, . . . , Nt}, which
have been computed from (2), we split the positive and negative components of
the sparse codes into two vectors:

u+
i = max(0,ui), and u−i = min(0,ui), (4)
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and form a feature vector of size 2m as follows:

αi =

[
u+
i

u−i

]
,∀i = {1, 2, . . . , Nt}. (5)

Second, at each frame i, we construct a histogram by sum-pooling the sparse
codes in a temporal window centered around the frame:

zi =
1

I
∑
j∈Ii

αi, (6)

where Ii represents the set of indices centered around the ith frame, and |Ii| = I
is the window size. The histogram carries local statistics of the surgical gestures.

Given a batch of training data {(zi, yi)}Nt
i=1, we initially train a multi-class

linear support vector machine (SVM) by minimizing the following cost:

min
w

λw
2
‖w‖2F +

1

Nt

Nt∑
i=1

`
(
w; (zi, yi)

)
, (7)

where w ∈ Rm×L is the matrix of classifiers that is formed by concatenating L
linear classifiers corresponding to the L surgical gestures:

w =
[
w(1) w(2) · · · w(L)

]
, (8)

λw is the regularizer for the classifier, zi is the feature vector for data point i
in the training set, yi is the corresponding class label, and Nt is the number of
data points in the training set. The loss function is the hinge loss:

`(w; (zi, yi)) = max(0, 1− (wT(yi)zi − w
T
(y′i)

zi)), (9)

where y′i = arg maxl∈C,l 6=yi w
T
(l)zi.

2.3 Discriminative dictionary learning

In the learning approach described so far we first learn the dictionary of atomic
motions Ψ by solving the optimization problem in (2). This is done in an unsu-
pervised manner, i.e., without any knowledge about y. Then, given Ψ , we learn
the gesture classifiers w by minimizing the empirical cost in (7).

In this section, we propose an alternative approach (called SDSDL) in which
Ψ and w are learned jointly. Our rationale is that the optimization problem in
(7) is implicitly dependent on the dictionary Ψ through the feature vectors zis,
which are constructed by average pooling of the sparse codes. Therefore, the
optimization in (7) can be written as a function of both w and Ψ as follows:

J(w, Ψ) =
λw
2
‖w‖2F +

1

Nt

Nt∑
i=1

`
(
w; (zi(Ψ), yi)

)
. (10)

To jointly solve for the classifier parameters and the dictionary, we propose to
use a stochastic sub-gradient descent algorithm [18], which requires computing
the sub-gradient of the cost function with respect to both w and Ψ .
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The sub-gradient with respect to the classifier parameters, w, is given by:

∂J

∂w
= λww +

1

Nt

Nt∑
i=1

∂`(w; (zi, yi))

∂w
. (11)

If `(w; (zi, yi)) is equal to zero then ∂`(w; (zi, yi))/∂w = 0, but if the loss is
greater than zero, the lth column of ∂`(w; (zi, yi))/∂w is computed as follows:

(∂`(w; (zi, yi))/∂w)l =


−zi if l = yi

zi if l = y′i
0 otherwise.

(12)

On the other hand, the cost in (10) is implicitly dependent on the dictionary
through the sparse codes. The sub-gradient of the loss function with respect to
the dictionary can be computed by the chain rule as shown in [3]—similar to
the “backpropagation” technique in neural networks [10]. Using the chain rule,
we have:

∂J

∂Ψgh
=

1

Nt

Nt∑
i=1

∂`(w; (zi, yi))

∂Ψgh
=

1

Nt

Nt∑
i=1

∂`(w; (zi, yi))

∂zi

>
∂zi
∂Ψgh

, (13)

where Ψgh is the entry in the gth row and hth column of the dictionary Ψ ,
∂`(w; (zi, yi))/∂zi = w(y′i)

− w(yi), for `(w; (zi, yi)) > 0. Then, recalling (6), we
need to compute the derivative of the sparse codes with respect to the dictionary

∂zi
∂Ψgh

=
1

I
∑
j∈Ii

∂αi
∂Ψgh

. (14)

For simplicity, let us drop the subscript i and write z for zi and u for ui. Since u
is the solution to the optimization problem in (2), it must satisfy the equation:

Ψ>Ψu− Ψ>x = −λusign(u). (15)

For a very small perturbation of the dictionary atoms, we can assume that the
support (set of non-zero entries) of u, denoted by S, does not change. Under
this assumption, we can compute the gradient of the kth non-zero entry of the
sparse coefficient with respect to the active columns of the dictionary as follows:

∂uS(k)

∂ΨS
= (x− ΨSuS)A[k] − (ΨSA)<k>u>S , (16)

where uS represents the vector containing the non-zero entries of u, ΨS contains
the active columns of Ψ , A = (Ψ>S ΨS)−1, the subscript [k] represents the kth row
of the matrix, and the subscript < k > represents the kth column of the matrix.

We use stochastic sub-gradient descent to minimize the cost in (10), where
at each iteration we compute the sub-gradients using a subset of the training
data.
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Time-series data Sum-pooling

backpropagation

Inference (Viterbi)
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Fig. 2. Two stages of the training method shown in the blue dashed line box. For test-
ing, inference is done by Viterbi algorithm. X : Input data; Ψ : dictionary; U : concate-
nation of sparse coefficients; w: multi-class linear SVM classifier parameters; Ŷ: output
sequence of predicted class labels

After learning the parameters of the classifier and the dictionary, the model
can predict a gesture label for the data in the testing set in a frame by frame
manner. This approach ignores the fact that a surgical task is composed of multi-
ple surgical gestures that are executed in a particular order and does not capture
the temporal coherence in the predicted labels. Statistical methods such as Hid-
den Markov Model (HMM) and Conditional Random Field (CRF) methods are
effective frameworks for modeling the time evolution of the surgical gestures [17,
11, 15, 21, 19, 20, 9]. To capture the temporal coherence of the predicted gesture
labels, we integrate the output of the learned discriminative classifier into an
HMM-like framework. Specifically, we use the soft-max function

P (y = l | z) =
ew
>
(l)z∑L

k=1 e
w>

(k)
z

(17)

to convert the classifier scores for feature vector z into the probability of predict-
ing gesture label l for feature z. The HMM transition probabilities can be directly
computed from the frequency of surgical gestures’ transitions. The surgeme la-
bels of the testing data can be inferred by the Viterbi algorithm [6].

3 Results

3.1 Dataset description

We evaluate the performance of the proposed SDSDL method for joint segmen-
tation and classification of surgical gestures on the JHU-ISI Gesture and Skill
Assessment Dataset (JIGSAWS) described in [7]. The JIGSAWS dataset includes
eight subjects with three different skill levels (novice, intermediate and expert)
performing 3–5 trials of three tasks (suturing, knot tying and needle passing).
Each trial lasts about 2 minutes and the kinematic data of both master and
slave manipulators of the da Vinci robotic surgical system is recorded at a con-
stant rate of 30 Hz. Kinematic data consists of 76 motion variables including
positions and velocities of both master (38 variables) and slave (38 variables)
manipulators. All trials in the JIGSAWS dataset are manually segmented to 15



7

surgical gestures [15, 7]. Fig. 3 shows a manually labeled suturing trial with the
corresponding surgical gestures listed in the caption. For each trial, we apply
a mean-variance normalization to all kinematic variables. Specifically, let xk(j)
denote the jth variable of the kinematic data at frame k. The corresponding
normalized feature, x̂k(j), is computed as follows:

x̂k(j) =
xk(j)− µj

σj
, (18)

where µj and σj are, respectively, the mean and standard deviation of the jth
kinematic variable.

3.2 Experimental setup

We consider two different test setups for surgical gesture classification. Setup 1
is the leave-one-supertrial-out (LOSO) setup, where we leave one trial of each
subject out for testing, and use the remaining trials for training. Setup 2 is the
leave-one-user-out (LOUO) setup, where we leave all trials corresponding to one
subject out for testing and use all the trials from the remaining users for training.

3.3 Implementation details

To initialize the dictionary and the sparse codes, we solve the optimization prob-
lem in (2) using the dictionary learning and sparse coding toolbox from the
SPAMS software [13]. Our results show that a choice for the LASSO regularizer
λu in (2) in the interval (0.05, 0.1) gives a good initialization. The dictionary
size, m, and window size, I, are chosen from m = {40, 60, 80, 100, 150, 200} and
I = {1 : 10 : 101, 151, 201} by cross-validation. The regularizer for the multi-
class linear SVM, λw, is varied from 10−4 to 1 and is chosen by cross-validation.

3.4 Segmentation and classification results

We apply the proposed SDSDL method to the following combinations of kine-
matic variables: (1) all 38-dimensional kinematic data from the master robot,
(2) all 38-dimensional kinematic data from the slave robot, (3) 76-dimensional
kinematic data (combined slave and master data), (4) principal component anal-
ysis (PCA) projections of (3) to n = {5, 15, 25, 35}. While SDSDL had a similar
performance for each combination, it performed slightly better with the data
projected to n = 35 dimensions by PCA. The method achieves its best perfor-
mance for the window sizes in the range of 51 to 81, and the dictionary sizes of
100 and 150. The prediction accuracy of the method is stable for the classifier
regularizer in the range of 0.01 to 0.06.

Table 1 reports the accuracy of SDSDL on three surgical tasks for the two
different setups explained in Section 3.2. The results of SDSDL outperform those
of S-HMM in joint segmentation and classification of surgical gestures using
only kinematic data. In particular, SDSDL gives an 8 − 10% improvement in
the more challenging LOUO setup for all three tasks. SDSDL also outperforms
other state-of-the-art statistical methods including LDA-HMM (with 3 states
for each gesture and one Gaussian per state) and MsM-CRF. However, notice
that SDSDL performs slightly worse than Skip-Chain CRF (SC-CRF) [9] in the
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LOUO setup. Notice also that, in general, all prior methods perform considerably
better in the LOSO setup than in the LOUO setup. The reason is that surgeons
have their own styles in surgery, and when the model is not trained with the
surgeon’s style (LOUO), it performs worse. By skipping some frames, the SC-
CRF model captures higher-order temporal relationships between the gestures,
achieves a more robust performance in LOUO, and thus becomes more invariant
to surgeon style. These results suggest that the performance of SDSDL could be
improved by integrating SDSDL with a SC-CRF, rather than an HMM.
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Fig. 3. (a) Confusion matrix corresponding to the LOSO setup for the suturing task.
(b) Sample time series in suturing task. List of surgemes: 0. Idle motion, 1. Reach
needle, 2. Position needle, 3. Insert/push needle through tissue, 4. Transfer needle, 5.
Move to center with needle (right hand), 6. Pull suture with left hand, 7. Pull suture
with right hand, 8. Orienting needle, 9. Right hand assisting left in tightening suture,
10. Loosen more suture, 11. Drop suture (end of trial).

Effect of temporal windowing: Our experiments show that constructing a
histogram by sum-pooling the sparse codes in a temporal window around
each frame improves the gesture classification results. Testing this effect over
a wide range of values for the window size reveals that a window sizes around
61−81 frames are the optimal values for capturing the local statistics of the
surgical motions in the JIGSAWS dataset.

Effect of duplicating sparse codes to positive and negative: Duplicating
the entries of sparse codes to positive and negative components before apply-
ing sum- or max-pooling have been shown to result in improved classification
performance [4, 14]. In our experiments on the JIGSAWS dataset, splitting
the positive and negative components of the sparse code (see equation (4))
improves the prediction accuracy by at least 1− 2%.

4 Conclusion

We have proposed a sparse-representation-based algorithm for the segmentation
and classification of atomic gestures in robotic surgery. The architecture of the
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Table 1. Average percentage of correctly classified frames using the kinematic data of
the JIGSAWS dataset [7].

Task Setup LDA-HMM [1] MsM-CRF [1] SC-CRF [9] S-HMM [1] SDSDL

Suturing
LOSO 82.21% 81.99% 85.18% 83.94 % 86.32%
LOUO 73.95% 67.84% 80.29% 70.81% 78.68%

Needle LOSO 70.54 % 72.44% 77.30% 70.69% 74.88%
Passing LOUO 64.12 % 44.68% 74.77% 55.02% 66.01%

Knot LOSO 80.95% 79.26% 80.72% 77.83% 82.54%
Tying LOUO 72.47% 63.28% 78.95% 67.89% 75.11%

proposed model is simple. By learning a shared dictionary of atomic surgical
motions for all the data in the training set, the model requires fewer parameters
compared to similar modeling approaches such as S-HMM [19], where a separate
dictionary is learned for each surgical gesture. The proposed model, can be inte-
grated with other statistical models such as Conditional Random Fields (CRF)
models [20, 9] to capture higher-order temporal information. More specifically,
the proposed sparse representation in this paper can be used to model the unary
potentials in the CRF model.
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