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Abstract— We present an algorithm for infinitesimal mo-
tion estimation and segmentation from multiple central
panoramic views. We first show that the central panoramic
optical flows corresponding to independent motions lie in or-
thogonal ten-dimensional subspaces of a higher-dimensional
linear space. We then propose a factorization-based tech-
nique that estimates the number of independent motions,
the segmentation of the image measurements and the motion
of each object relative to the camera from a set of image
points and their optical flows in multiple frames. Finally,
we present experimental results on motion estimation and
segmentation for a real image sequence with two indepen-
dently moving mobile robots, and evaluate the performance
of our algorithm by comparing the vision estimates with GPS
measurements gathered by the mobile robots.

I. INTRODUCTION

The panoramic field of view offered by omnidirectional
cameras makes them ideal candidates for many vision-
based mobile robot applications, such as autonomous navi-
gation, localization, and formation control. A problem that
is fundamental to most of these applications is multibody
motion estimation and segmentation, which is the problem
of estimating of the number of independently moving
objects in the scene; the segmentation of the objects
from the background; and the relative motion between the
camera and each one of the objects in the scene.

Most of the previous work in omnidirectional vision
(see Section I-B) has been concerned with the special case
in which a static scene is observed by a moving camera,
the so-called structure from motion problem. The case in
which both the camera and multiple objects move is more
challenging, because one needs to simultaneously estimate
multiple motion models without knowing which image
measurements correspond to which moving object. Recent
work has considered motion estimation and segmentation
for orthographic and perspective cameras. To the best of
our knowledge our work is the first one to address this
problem in the case of central panoramic cameras.

A. Contributions of this paper

In this paper, we present the first algorithm for mo-
tion estimation and segmentation from multiple central
panoramic views. Our algorithm estimates the number of

Fig. 1. Motion segmentation for two mobile robots based on their
omnidirectional optical flows.

independent motions, the segmentation of the image data
and the motion of each object relative to the camera from
a set of image points and their central panoramic optical
flows in multiple frames. Our algorithm is based on a
rank constraint on the optical flows generated by inde-
pendently moving objects, which must lie in orthogonal
ten-dimensional subspaces of a higher-dimensional linear
space. We present experimental results on motion esti-
mation and segmentation for a real image sequence with
two independently moving mobile robots (see Fig. 1), and
evalute the performance of our algorithm by comparing
the vision estimates with differential GPS measurements
gathered by the mobile robots. In [17], we applied the
results of this work to vision-based formation control of
nonholonomic mobile robots.

B. Previous Work

Central panoramic cameras are realizations of omni-
directional vision systems that combine a mirror and a
lens and have a unique effective focal point. In [1],
an entire class of omnidirectional cameras containing a
single effective focal point is derived. A single effective
focal point is necessary for the existence of epipolar
geometry that is independent of the scene structure [11],
making it possible to extend many results from perspective
projection to the omnidirectional case.

The problem of estimating the 3D motion of a moving
central panoramic camera imaging a single static object



has received a lot of attention over the past few years. Re-
searchers have generalized many two-view structure from
motion algorithms from perspective projection to central
panoramic projection, both in the case of discrete [5]
and differential motion [7], [13]. In [7], [13], the image
velocity vectors are mapped to a sphere using the Jacobian
of the transformation between the projection model of the
camera and spherical projection. Once the image velocities
are on the sphere, one can apply well-known ego-motion
algorithms for spherical projection. In [10], we proposed
the first algorithm for motion estimation from multiple
central panoramic views. Our algorithm does not need to
map the image data onto the sphere, and is based on a rank
constraint on the central panoramic optical flows which
naturally generalizes the well-known rank constraints for
orthographic [12], and affine and paraperspective [9] cam-
eras.

The problem of estimating the 3D motion of multiple
moving objects observed by a moving camera is, on
the other hand, only partially understood. Costeira and
Kanade [3] proposed a factorization method based on the
fact that, under orthographic projection, discrete image
measurements lie in a low-dimensional linear variety.
Recently, Vidal et al. [18] (see also [8]) proposed a factor-
ization algorithm for infinitesimal motion and perspective
cameras based on the fact that independent motions lie
in orthogonal subspaces of a higher dimensional space.
The case of discrete image measurements was recently
addressed by Vidal et al. [15], who proposed a linear
algebraic algorithm based on the so-called multibody
epipolar constraint between two perspective views of a
scene. To the best of our knowledge, there is no work on
motion segmentation from two or more central panoramic
views, neither in the discrete not in the continuous case.

Paper Outline: In Section II we describe the pro-
jection model for central panoramic cameras and derive
the optical flow equations. In Section III we present
an algorithm for motion estimation and segmentation
of multiple independently moving objects from multiple
central panoramic views of a scene. In Section IV we
specialize the algorithm to the case of planar motion in
the X − Y plane. In Section V we present experimental
results evaluating the performance of the algorithm, and
we conclude in Section VI.

II. CENTRAL PANORAMIC IMAGING

In this section, we describe the projection model for a
central panoramic camera and derive the central panoramic
optical flow equations (see [10] for further details).

A. Projection Model

Catadioptric cameras are realizations of omnidirectional
vision systems which combine a curved mirror and a lens.
Examples of catadioptric cameras are a parabolic mirror

in front of an orthographic lens and a hyperbolic mirror in
front of a perspective lens. Camera systems with a unique
effective focal point are called central panoramic cameras.

It was shown in [4] that all central panoramic cameras
can be modeled by a mapping of a 3D point onto a sphere
followed by a projection onto the image plane from a
point in the optical axis of the camera. By varying two
parameters (ξ,m), one can model all catadioptric cameras
that have a single effective viewpoint. The particular
values of (ξ,m) in terms of the shape parameters of
different types of mirrors are listed in [2].

According to the unified projection model [4], the image
point (x, y)T of a 3D point q = (X,Y, Z)T obtained
through a central panoramic camera with parameters
(ξ,m) is given by:
[
x
y

]
=

ξ +m

−Z + ξ
√
X2 + Y 2 + Z2

[
sxX
syY

]
+

[
cx
cy

]
, (1)

where 0 ≤ ξ ≤ 1, m, and (sx, sy) are scales that depend
on the geometry of the mirror, the focal length and the
aspect ratio of the lens, and (cx, cy)

T is the mirror center.
Since central panoramic cameras for ξ 6= 0 can be easily

calibrated from a single image of three lines [6], [2], in this
paper, we assume that the camera has been calibrated, i.e.
we know the parameters (sx, sy, cx, cy, ξ,m). Therefore,
without loss of generality, we consider the following
calibrated central panoramic projection model:
[
x
y

]
=

1

λ

[
X
Y

]
, λ , −Z + ξ

√
X2 + Y 2 + Z2 (2)

which is valid for Z < 0. It is direct to check that
ξ = 0 corresponds to perspective projection, and ξ = 1
corresponds to paracatadioptric projection (a parabolic
mirror in front of an orthographic lens).

B. Back-projection Rays

Since central panoramic cameras have a unique effec-
tive focal point, one can efficiently compute the back-
projection ray (a ray from the optical center in the
direction of the 3D point being imaged) associated with
each image point.

One may consider the central panoramic projection
model in equation (2) as a simple projection onto a curved
virtual retina whose shape depends on the parameter ξ.
We thus define the back-projection ray as the lifting
of the image point (x, y)T onto this retina. That is, as
shown in Fig. 2, given an image (x, y)T of a 3D point
q = (X,Y, Z)T , we define the back-projection rays as:

b , (x, y, z)T , (3)

where z = fξ(x, y) is the height of the virtual retina.
We construct fξ(x, y) in order to re-write the central
panoramic projection model in (2) as a simple scaling:

λb = q, (4)



PSfrag replacements

b = (x, y, z)T

O

q = (X,Y, Z)Tvirtual retina z = fξ(x, y)

(x, y)Timage plane

Fig. 2. Showing the curved virtual retina in central panoramic projection
and back-projection ray b associated with image point (x, y)T .

where the unknown scale λ is lost in the projection. Using
equations (4) and (2), it is direct to solve for the height
of the virtual retina as:

z , fξ(x, y) =
−1 + ξ2(x2 + y2)

1 + ξ
√

1 + (1− ξ2)(x2 + y2)
. (5)

Notice that in the case of paracatadioptric projection ξ = 1
and the virtual retina is the parabola z = 1

2 (x2 + y2 − 1).

C. Central Panoramic Optical Flow

If the camera undergoes a linear velocity v ∈ R3 and
an angular velocity ω ∈ R3, then the coordinates of a
static 3D point q ∈ R3 evolve in the camera frame as
q̇ = ω̂q + v. Here, for ω ∈ R3, ω̂ ∈ so(3) is the skew-
symmetric matrix generating the cross product. Then, after
differentiating equation (4), we obtain:

λ̇b + λḃ = λω̂b + v, (6)

where λ = −eT3 q+ξr, e3 , (0, 0, 1)T and r , ‖q‖. Now,
using q = λb, we get r = λ(1 + eT3 b)/ξ. Also, it is clear
that λ̇ = −eT3 (ω̂q + v) + ξqT v/r. Thus, after replacing
all these expressions into (6), we obtain the following
expression for the velocity of the back-projection ray in
terms of the relative 3D camera motion:

ḃ = −(I + beT3 )b̂ω +
1

λ

(
I + beT3 −

ξ2bbT

1 + eT3 b

)
v. (7)

Since the first two components of the back-projection ray
are simply (x, y)T , the first two rows of (7) give us the
expression for central panoramic optical flow:

[
ẋ
ẏ

]
=

[
xy z − x2 −y

−(z − y2) −xy x

]
ω + (8)

1

λ

[
1− ρx2 −ρxy (1− ρz)x
−ρxy 1− ρy2 (1− ρz)y

]
v,

where λ = −Z + ξ
√
X2 + Y 2 + Z2, z = fξ(x, y), and

ρ , ξ2/(1+z). Notice that when ξ = 0, then ρ = 0 and (8)
becomes the well-known equation for the optical flow of
a perspective camera. When ξ = 1, then ρ = 1/(x2 +y2),
and (8) becomes the equation for the optical flow of a
paracatadioptric camera [10].

III. MULTIBODY MOTION ESTIMATION AND

SEGMENTATION

In this section, we derive a factorization method for
estimating the motion of an unknown number no of inde-
pendently moving objects from multiple central panoramic
views. To this end, let (xi, yi)

T , i = 1, . . . , N , be a pixel
in the zeroth frame associated with one of the moving
objects and let (ẋif , ẏif )T be its optical flow in frame
f = 1, ..., F , relative to the zeroth frame. We assume no
prior segmentation of the image points, i.e. we do not
know which image points correspond to which moving
object. We define the optical flow matrix W ∈ R2N×F as:

W ,



ẋ11 · · · ẋN1 ẏ11 · · · ẏN1

...
...

...
...

ẋ1F · · · ẋNF ẏ1F · · · ẏNF




T

(9)

and the segmentation matrix Ws ∈ RN×2F as:

Ws ,



ẋ11 ẏ11 · · · · · · ẋ1F ẏ1F

...
...

...
...

ẋN1 ẏN1 · · · · · · ẋNF ẏNF


 . (10)

A. Single Body Motion Estimation

First consider the case where there is a single rigid body
motion generating the optical flow, i.e. no = 1. Following
equation (8), define the matrix of rotational flows Ψ and
the matrix of translational flows Φ as:

Ψ =

[
{xy} {z − x2} −{y}

−{z − y2} −{xy} {x}

]
∈ R2N×3,

Φ =

[
{ 1−ρx2

λ } {−ρxyλ } { (1−ρz)x
λ }

{−ρxyλ } { 1−ρy2

λ } { (1−ρz)y
λ }

]
∈ R2N×3,

where, e.g. {xy} = (x1y1, · · · , xNyN )T ∈ RN .
Then, the optical flow matrix W∈ R2N×F satisfies [10]:

W = [Ψ Φ]2N×6

[
ω1 · · · ωF
v1 · · · vF

]

6×F
= SMT , (11)

where ωf and vf are the rotational and linear velocities,
respectively, of the object relative to the camera between
the zeroth and the f -th frames. We call S ∈ R2N×6 the
structure matrix and M ∈ RF×6 the motion matrix.

We conclude that the optical flow matrix generated by a
single moving body undergoing a general translation and
rotation has rank 6. Such a rank constraint can be naturally
used to derive a factorization method for estimating the
relative velocities (ωf , vf ) and the scales λi from image
points (xi, yi)

T and optical flows (ẋif , ẏif )T . We can
do so by factorizing W into its motion and structure
components. To this end, consider the singular value
decomposition (SVD) of W = USVT , with U ∈ R2N×6

and VS ∈ RF×6, and let S̃ = U and M̃ = VS. Then we
have S = S̃A and M = M̃A−T for some A ∈ R6×6.
Let Ak be the k-th column of A. Then the columns of



A must satisfy: S̃A1−3 = Ψ and S̃A4−6 = Φ. Since
Ψ is known, A1−3 can be immediately computed. The
remaining columns of A and the vector of inverse scales
{1/λ} ∈ RN can be obtained up to scale from:



diag({1− ρx2}) −S̃x 0 0

−diag({ρxy}) 0 −S̃x 0

diag({(1− ρz)x}) 0 0 −S̃x
−diag({ρxy}) −S̃y 0 0

diag({1− ρy2}) 0 −S̃y 0

diag({(1− ρz)y}) 0 0 −S̃y







{1/λ}
A4

A5

A6


 = 0.

where S̃x ∈ RN×6 and S̃y ∈ RN×6 are the upper and
lower part of S̃, respectively.

B. Multibody Motion Segmentation

Let us now consider the case of a dynamic scene with
no independent motions. In this case, the algorithm will
proceed in two steps: (1) Use the segmentation matrix to
associate groups of image measurements that correspond
to the same moving object; (2) Given the segmentation,
apply the algorithm in Section III-A to each group of
measurements to estimate the motion of each object.

We first notice from (8) that, for a single motion k, the
segmentation matrix Ws ∈ RN×2F can be decomposed as

Ws = SkM
T
k (12)

where the structure matrix Sk ∈ RN×10 is given by

Sk=[{xy}, {z − x2},−{y},−{z − y2}, {x}, {1− ρx2

λ
},

−{ρxy
λ
}, { (1−ρz)x

λ
}, {1−ρy2

λ
}, { (1−ρz)y

λ
}]

and the motion matrix Mk ∈ R2F×10 is given by

Mk=




ωx1 ωy1 ωz1 0 0 vx1 vy1 vz1 0 0
−ωy1 0 0 ωx1 ωz1 0 vx1 0 vy1 vz1

...
...

ωxF ωyF ωzF 0 0 vxF vyF vzF 0 0
−ωyF 0 0 ωxF ωzF 0 vxF 0 vyF vzF



.

Hence, for a single object in the scene, the collection of
central panoramic optical flows across multiple frames lies
on a ten-dimensional subspace of R2F .

More generally, the segmentation matrix associated with
no independently moving objects can be decomposed as:

Ws =



S1 · · · 0
...

. . .
...

0 · · · Sno






MT

1
...

MT
no


 = SMT

where S ∈ RN×10no , M ∈ R2F×10no , Sk ∈ RNk×10,
Mk ∈ R2F×10, Nk is the number of pixels associated
with object k for k = 1, . . . , no, and N =

∑no
k=1Nk.

Since we are assuming that the segmentation of the
image points is unknown, the rows of Ws may be in a

Fig. 3. Showing eigenvector based segmentation. Left: Elements of
first eigenvector of a noisy Ws matrix. Right: Re-ordering the elements
based on the levels.

different order. However, the reordering of the rows of
Ws will not affect its rank. Assuming that N ≥ 10no and
that F ≥ 5no, we conclude that when the objects undergo
a general motion the number of independent motions no
can be estimated as no = rank(Ws)/10.

One can show [14], [19] that the block diagonal struc-
ture of Ws implies that the entries of its leading singular
vector will be the same for pixels corresponding to the
same motion, and different otherwise. Thus, as proposed
in [14], one can use the entries of the leading singular
vector of Ws as an effective criterion for segmenting the
pixels of the current frame into a collection of no groups
corresponding to the independent motions. Figure 3 shows
the elements of the leading singular vector for a noisy Ws

matrix, and its re-ordering after thresholding its entries.
Once the optical flow has been segmented into indepen-

dent motions, we can apply the factorization algorithm
described in Section III-A separately on each group of
measurements to estimate the motion of each object.

IV. ROBOT NAVIGATION: MOTION IN X -Y PLANE

The algorithm for infinitesimal motion estimation and
segmentation described in Section III assumes that the
motion of the objects is general, so that the subspace asso-
ciated with each object is fully ten-dimensional. However,
there are important robotics applications, e.g. ground robot
navigation, in which the motion of the robots is restricted,
hence the general algorithm described in Section III can
not be directly applied.

In this section, we consider the special case where the
moving objects are restricted to move only in the X-Y
plane. In this case, the angular velocity is ω = (0, 0, ωz)

T

and the linear velocity is v = (vx, vy, 0)T . Hence, the
optical flow generated by a single moving body is:
[
ẋ
ẏ

]
=

[
−y
x

]
ωz +

1

λ

[
1− ρx2 −ρxy
−ρxy 1− ρy2

] [
vx
vy

]
. (13)

where λ = −Z + ξ
√
X2 + Y 2 + Z2, Z = Zground, z is

given in (5), and ρ , ξ2/(1 + z).



A. Motion Estimation in the X-Y Plane

The optical flow matrix for a single body moving with
velocities ωf = (0, 0, ωzf )T , vf = (vxf , vyf , 0)T in frame
f can be written as

W = [Ψ Φ]2N×3



ωz1 · · · ωzF
vx1 · · · vxF
vy1 · · · vyF




3×F

= SMT ,

with the matrices of rotational flows Ψ ∈ R2N×1 and
translational flows Φ ∈ R2N×2 given by

Ψ =

[
−{y}
{x}

]
, Φ =

[
{ 1−ρx2

λ } {−ρxyλ }
{−ρxyλ } { 1−ρy2

λ }

]
.

We conclude that, in the case of a single object undergoing
general motion in the X-Y plane, the optical flow matrix
satisfies rank(W ) = 3. Therefore, as in Section III-A, we
consider the SVD of W = USVT and let S̃ = U ∈ R2N×3

and M̃ = VS ∈ RF×3. Then S = S̃A and M = M̃A−T

for some A ∈ R3×3. Let Ak be the k-th column of A. Then
the columns of A must satisfy: S̃A1 = Ψ and S̃A2−3 = Φ.
Since Ψ is known, A1 can be immediately computed. The
remaining columns of A and the vector of inverse scales
{1/λ} ∈ Rn can be obtained up to scale from:



diag({1− ρx2}) −S̃x 0

−diag({ρxy}) 0 −S̃x
−diag({ρxy}) −S̃y 0

diag({1− ρy2}) 0 −S̃y






{1/λ}
A2

A3


 = 0,

where S̃x ∈ RN×3 and S̃y ∈ RN×3 are the upper and
lower part of S̃, respectively.

B. Motion Segmentation in the X-Y Plane

We now specialize the procedure of Section III-B to the
case of planar motion. Following (13), the structure and
motion matrices become

Sk=[−{y}, {x}, {1−ρx2

λ
},−{ρxy

λ
}, {1−ρy2

λ
}] ∈RN×5

Mk=




ωzf 0 vxf vyf 0
0 ωzf 0 vxf vyf
...

...
ωzf 0 vxf vyf 0
0 ωzf 0 vxf vyf



∈ R2F×5.

We conclude that the collection of central panoramic
optical flows for a single object moving in the X-Y
plane lies in a 5-dimensional subspace of R2F . Therefore,
the number of independent motions can be estimated
as no = rank(Ws)/5. Then, the segmentation of the
image measurements can be obtained as before from the
leading singular vector of Ws. Once the optical flow has
been segmented into independent motions, we can use
the single-body factorization algorithm of Section IV-A
to separately estimate the motion and structure of each
independently moving object.

V. EXPERIMENTS

Here we evaluate the performance of the proposed
multibody motion estimation and segmentation algorithm
in the case where two independently moving mobile robots
are viewed by a static paracatadioptric camera (ξ=1). The
robots are equipped with GPS sensors with an accuracy of
2cm. We use the robots’ GPS measurements to evaluate
the performance of our motion estimation algorithm.

We grabbed 18 images of size 240 × 240 pixels at a
framerate of 5Hz. The optical flow was computed directly
in the image plane using Black’s algorithm available at
http://www.cs.brown.edu/people/black/ignc.html.

Fig. 1 shows a sample of the motion segmentation
based on the optical flow. On the left, the optical flow
generated by the two moving robots is shown, and on
the right is the segmentation of the pixels corresponding
to the independent motions. The two moving robots are
segmented very well from the static background.

Fig. 4 and Fig. 5 show the output of our motion
estimation algorithm for the two moving robots. These
figures plot the estimated translational (vx, vy) and rota-
tional velocity ωz for the robots as a function of time
in comparison with the values obtained by the on-board
GPS sensors. Fig. 6 shows the root mean squared error
for the motion estimates of the two robots. The vision
estimates of linear velocity are within 0.15 m/s of the GPS
estimates. The vision estimates of angular velocity are
more noisy than the estimates of linear velocity, because
the optical flow due to rotation is smaller than the one due
to translation.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm for infinitesimal mo-
tion estimation and segmentation from multiple central
panoramic views. Our algorithm is a factorization ap-
proach based on the fact that optical flows generated by a
rigidly moving object across many frames lie in orthog-
onal ten-dimensional subspaces of a higher-dimensional
space. We presented experimental results that show that
our algorithm can effectively segment and estimate the
motion of multiple moving objects from multiple cata-
dioptric views.

Future work will consider relaxing the constraint on
the motion of the objects being fully ten-dimensional.
While the case of five-dimensional motion in the X-Y
plane was easily handled with minor modifications of
the general algorithm, the case of planar motion in an
arbitrary plane is much more complex as demonstrated
in [16] for the case of a single motion. Future work will
also consider the extension of the current algorithm to the
case of uncalibrated central panoramic cameras.
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Fig. 4. Comparing the output of our vision-based motion estimation
algorithm with GPS data for robot 1.
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Fig. 6. Showing the RMS error for the motion estimates of the two
robots.
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