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Abstract
We propose to bridge the gap between Random Field

(RF) formulations for joint categorization and segmenta-
tion (JCaS), which model local interactions among pixels
and superpixels, and Bag of Features categorization algo-
rithms, which use global descriptors. For this purpose, we
introduce new higher order potentials that encode the clas-
sification cost of a histogram extracted from all the objects
in an image that belong to a particular category, where the
cost is given as the output of a classifier when applied to the
histogram. The potentials efficiently encode the classifica-
tion costs of several histograms resulting from the different
possible segmentations of an image. They can be integrated
with existing potentials, hence providing a natural unifica-
tion of global and local interactions. The potentials’ pa-
rameters can be treated as parameters of the RF and hence
be jointly learnt along with the other parameters of the RF.
Experiments show that our framework can be used to im-
prove the performance of existing JCaS algorithms.

1. Introduction
JCaS corresponds to the problem of assigning an object

category label to each pixel in a given image. Several solu-
tions to this problem have been proposed using RF formu-
lations [22, 16, 21, 20, 10, 3, 15, 5, 4, 18, 8, 2, 9]. These
algorithms define a RF whose sites represent pixels in the
image or superpixels obtained by oversegmentation of the
image. In general, a unary potential is defined for each site,
which models the cost of that site being assigned a partic-
ular category label. Algorithms also define pairwise poten-
tials between neighboring sites to enforce spatial smooth-
ness of the labels or to encode contextual information. In
some cases, pairwise potentials may not be sufficient to de-
scribe the statistics of an object. To resolve this issue, recent
algorithms have used higher order potentials that model the
interactions among several sites [8, 17, 9].

While these methods have been fairly successful in prac-
tice, they have a few limitations. The unary potentials in
most cases are obtained by integrating information across
pre-defined local neighborhoods, e.g., [18, 8, 2]. Algo-
rithms do not integrate information across arbitrarily large
neighborhoods since they might cross the true boundaries of

an object. Some methods such as [22, 20] do consider long
range interactions between interest regions, but then encode
them as pairwise potentials. The higher order interactions
among different sites in the RF are typically restricted to
fairly local neighborhoods such as neighboring pixels or su-
perpixels. [17] is a notable exception which considers long-
range higher order interactions among several sites to model
co-occurrence statistics of object categories.

In general, most existing JCaS algorithms are primarily
bottom-up and use fairly local interactions among neigh-
boring sites to solve the problem. Moreover, most meth-
ods do not build a rich object model that considers long-
range interactions among several sites to capture higher or-
der statistics of the object. We argue that one can improve
performance by analyzing global interactions across larger
neighborhoods such as all the regions covered by an object.

Our concern regarding the lack of a global model also
leads us to pose the question: if we were given the true
boundaries of the objects in the image, would we follow
the same approach discussed above to categorize each seg-
ment? In such a case, it seems more natural to use ideas
from the genre of joint localization and categorization algo-
rithms, e.g., [7]. These algorithms aim to locate each object
in the image by placing a bounding box around it and also
identify its category. One popular approach to this problem
is to use the BoF approach. These algorithms extract inter-
est points (visual features) from the region of interest (area
enclosed by the bounding box) in the image. The descrip-
tors for the interest points are then quantized using a previ-
ously learnt dictionary of visual codewords. The histograms
of these quantized descriptors are assumed to follow char-
acteristic models for each object category. Hence, the al-
gorithms perform categorization based on the extracted his-
togram. This strategy can be useful for JCaS for the pur-
pose of globally analyzing each object present in a given
segmentation of an image. Unfortunately, it cannot be ap-
plied directly to JCaS since the interest regions given by the
objects’ segmentation are unknown beforehand.
Paper contributions. In this work, we address the afore-
mentioned concerns and present a framework that integrates
a global BoF based analysis into RF formulations for JCaS.

1) Our key contribution is a top-down cost function based
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on the BoF approach. This cost function depends on the
unknown segmentation of the image and is given as the out-
put of a classifier applied to the histogram of all the inter-
est points in the image that are assigned a particular cate-
gory label. We term this output as the classification cost of
the histogram. Although the number of possible segmenta-
tions of an image is exponentially large, the cost function
efficiently encodes for each segmentation, the classification
costs of the histograms extracted for each of the categories.
2) We show that the parameters of the classifiers may be
treated as parameters of the cost function. Hence, we can
learn the top-down parameters (the classifier parameters)
and the bottom-up parameters (trade off between unary and
pairwise terms) in a joint fashion. To this effect, we propose
to learn all the parameters with a max-margin formulation.
3) The problem of computing the segmentation is a dis-
crete optimization problem, which can be NP-hard in gen-
eral. We show that our proposed top-down cost function
is amenable to efficient discrete optimization schemes, i.e.,
a local optimum to the proposed optimization problem can
be computed efficiently using existing inference algorithms,
namely the graph cut based α-expansion method [1].
Related work. Recent work on JCaS has addressed the is-
sue of using top-down object models that generalize to the
case of multiple categories [10, 21, 5, 4, 23, 9]. Our frame-
work differs from these works in that the object category
information is encoded using the global BoF model. The
works most closely related to our work are those of [21]
and [9]. [21] also considers a global BoF approach by in-
specting histograms of features extracted from the image.
However, the framework in [21] considers the histogram
extracted from the entire image rather than considering the
histograms extracted from each segmented object region.
Very recently, [9] proposed the use of object detectors to
localize the objects in the estimated segmentation. We will
show later that [9] is a particular case of our framework.

2. Review
2.1. RF formulations for JCaS

We define a RF whose sites correspond to the pixels or
superpixels of an image I . The set of the sites in the RF is
denoted as V . A discrete valued random variable Xi is de-
fined at each site i ∈ V and can take any value xi in the set
of possible labels L = {1, . . . , L}. These labels denote the
different categories. Any assignment of labels to the ran-
dom variables is referred to as a labeling and is denoted as
x ∈ L|V|. We denote the restriction of the random vari-
ables and labeling to a set of sites A⊆V as XA and xA,
respectively. Note that xi is the restriction of x to the site i.

The neighborhood structure of the RF is defined using
the set of edges E ⊂ V ×V and an edge that spans two sites
i and j is denoted by eij . A clique defines a set of sites c ⊂
V whose random variables Xc are conditionally dependent

on each other, e.g., the set of pixels in a superpixel. We
denote the set of all cliques in the RF as C. One then defines
potential functions (or potentials) to model the interactions
among the sites in the RF as a function of their assigned
labels. The following are a few commonly used potentials.

A unary potential ψUi (xi; I) is defined for each site i ∈
V , such that ψUi (l; I) defines the cost of assigning the label
l ∈ L to the site i. Algorithms typically extract appearance
and/or location descriptors for each site i ∈ V in an image.
The descriptors extracted from the training images are used
to train classifiers for each of the object categories. These
classifiers are applied to the descriptor of each site i in the
image I to construct ψUi (xi; I) . This is equivalent to using
local BoF models for constructing the unary potentials.

A pairwise potential ψPij(xi, xj ; I) is defined for every
pair of neighboring sites i, j ∈ V , where eij ∈ E , such that
ψPij(li, lj ; I) defines the cost of assigning labels li and lj
to the sites i and j, respectively. These potentials are used
to enforce the spatial smoothness of x. They are also used
to encode contextual information. In general, the potential
ψPij(xi, xj ; I) for an edge eij is computed as a function of
the appearance and/or location descriptors of sites i and j.

Notice that these potentials model interactions of at most
two sites. One can also define a higher order potential
ψCc (xc; I) on the clique c ∈ C, such that ψCc (lc; I) defines
the cost of assigning the labels lc ∈ L|c| to the clique c.
For example, the potential ψCc (xc; I) can be defined over
the clique of all the pixels that belong to a superpixel in an
image. ψCc (xc; I) can then be used to enforce the consis-
tency of the labels within a superpixel, while being tolerant
towards some pixels taking labels that are different from the
label of majority of the pixels in the superpixel [6, 8, 9].

As described earlier in §1, these potentials typically de-
fine bottom-up models for fairly local interactions. They
can be used to construct a bottom-up energy function,
Ebu(x; I), for solving the JCaS problem for an image I as

Ebu(x; I) = λU
∑
i∈V

ψUi (xi; I) + λP
∑
eij∈E

ψPij(xi, xj ; I)

+ λC
∑
c∈C

ψCc (xc; I) = w>buΨbu(x; I),
(1)

where w>bu =
[
λU λP λC

]
∈ R3 denotes the relative

contributions of the different genres of potentials and

Ψbu(x; I) =

 ∑
i∈V ψ

U
i (xi; I)∑

eij∈E ψ
P
ij(xi, xj ; I)∑

c∈C ψ
C
c (xc; I)

 ∈ R3. (2)

2.2. BoF algorithms for categorization
BoF algorithms, e.g., [7], assume that the category of an

object in an image can be inferred by analyzing the relative
frequencies of certain visual keywords extracted from the
image. Given a training set ofN images {Ii}Ni=1, BoF algo-
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rithms detect interest points in each image such as corners,
junctions or SIFT interest points [11]. A feature descrip-
tor is associated with each of these interest points. These
descriptors are quantized using clustering schemes such as
K-means, to construct a dictionary of visual codewords. We
denote the size of the constructed dictionary, i.e., the num-
ber of quantized codewords as K. BoF algorithms assume
that the interest points in the image belonging to a particu-
lar object category follow a characteristic distribution. This
distribution is represented as a histogram of the quantized
descriptors of the interest points. We denote the histogram
extracted from the sth training image as hts ∈ RK+ . One can
repeat this process for all the training images to get a total
of S histograms {h1

t , . . . ,h
S
t }, where S = N . We refer to

these histograms as the training histograms.
BoF algorithms train classifiers φl(h) : RK+ → R for

each category l ∈ L. We define the classification cost of
a histogram h with respect to the classifier for a category l
as the value given by φl(h). In general, the classifiers are
trained such that they satisfy the constraint φl(h) ≥ 0 if h
is extracted from an object of category l and φl(h) < 0 oth-
erwise. While one may choose from several classifiers for
these histograms, we focus on classifiers based on the his-
togram intersection kernel [12]. Consider a test histogram
h extracted from an object whose category we want to in-
fer. Define the intersection kernel int(h,hts) operating on
the test histogram h and the sth training histogram hts, as

int(h,hts) =
K∑
k=1

min{hk, hts,k}, (3)

where s = 1, . . . , S, hts,k denotes the kth bin count of the
histogram hts and hk denotes the kth bin count of the his-
togram h. The general form of a classifier for category l
using the histogram intersection kernel is then given as

φl(h) =

S∑
s=1

al,sint(h,hts) + bl. (4)

Notice that the classifier φl(h) is linear in its parameters
al =

[
al,1 . . . al,S

]
∈ RS and bl ∈ R. However, the

kernel int(h,hts) is a non-linear function of the entries of
the histograms h and hts.
Remark 1. (Linear classifiers as a special case) The family
of linear classifiers, whose general form is given as

φl(h) =
K∑
k=1

al,khk + bl, (5)

is a special case of the family of the classifiers defined in
(4). Specifically, this special case is obtained bysetting all
the entries of each training histogram hts to ∞ or to any
large finite number M which is greater than the maximum
number of interest points possible in an image.

We note that one may use normalized histograms that
satisfy the constraint |h|1 =

∑K
k=1 hk = 1. This normal-

ization introduces invariance to changes in scale of the ob-

ject. However, as shown in [7], unnormalized histograms
may also be effectively used for categorization.

3. A top-down energy function for JCaS
In this section, we will define a new top-down energy

function by using concepts from BoF categorization algo-
rithms. Specifically, we introduce a new family of top-down
higher order potentials that model long-range interactions
among all the interest points detected in a given image.

We first introduce some additional notation. We denote
the subset of sites in an image where interest points have
been detected as I ⊂ V . We divide I into K disjoint sub-
sets Ik, k = 1, . . . ,K, where Ik is the set of interest points
whose descriptors are quantized as the kth codeword in the
learnt dictionary. Given a labeling x for an image I , we use
hl(x) to denote the histogram of the quantized descriptors
for all those interest points i ∈ I that have been assigned the
label l ∈ L. In this work, we use unnormalized histograms,
the reason for which will be made clearer later.

Since the ground truth labeling {yi}Ni=1 is provided for
the images {Ii}Ni=1 in the training set, we can extract the
training histograms {hts}Ss=1 from the training images as
follows. Given a training image Ii, we denote the set of dis-
tinct category labels present in its ground truth segmentation
yi as L+(yi). We extract the interest points in the image Ii
and then use the labeling yi to extract for each category
l ∈ L+(yi), the interest points in the image that belong to
that category. In this manner, we can construct |L+(yi)|
training histograms for the image Ii, where |L+(yi)| de-
notes the number of elements in the set L+(yi). We repeat
this process for all the training images to get a total of S his-
tograms {h1

t , . . . ,h
S
t }, where S =

∑N
i=1 |L+(yi)| ≤ LN .

We can then use these training histograms to train classi-
fiers {φl}l∈L for the histograms. Given a new test image I ,
we propose to use these classifiers to define a new top-down
energy function,Etd(x; I), that depends on the labels of the
interest points detected in the image, as

Etd(x; I) =
∑

l∈L+(x)

φl(hl(x)). (6)

Notice that the term φl(hl(x)), which is used to compute
a top-down score for the object category l, is derived from
the BoF framework discussed in the previous section. The
main difference is that the histogram is now a function of
the unknown labeling x. Also, recall that we mentioned that
BoF algorithms train the classifiers to satisfy the constraint
φl(h) ≥ 0 if h is extracted from an object of category l and
φl(h) < 0 otherwise. Without loss of generality, we modify
the constraints that the classifiers must satisfy. Specifically,
for any h extracted from an object belonging to category
l ∈ L, the classifiers are trained to satisfy the constraint
∀l′ ∈ L \ l : φl′(h) > φl(h). This is done to ensure that
the energy Etd(x; I) is lower when computed for accurate
segmentations as compared to erroneous segmentations.
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We now introduce a new family of top-down potentials
that we refer to as the classification potentials, to define the
top-down energy Etd(x; I). We will show that these po-
tentials can be modeled using the robust higher order Potts
potential functions introduced in [6]. This is of particular
importance since it was shown in [6] that the latter poten-
tials can be efficiently optimized using α-expansion.
3.1. Construction of the classification potentials

Our goal is to define for each category l ∈ L, a higher
order potential function ψBoF

I,l (xI ; I) on the clique of inter-
est points I detected in an image I , such that it encodes the
classification cost φl(hl(x)) for all the possible labelings
x ∈ L|V|. Specifically, this potential must satisfy

∀x ∈ L|V|, ψBoF
I,l (xI ; I)=

{
φl(hl(x)) if ‖hl(x)‖ > 0 and
0 otherwise.

(7)
In particular, the classification cost for an object category
l ∈ L is accounted for, only when at least one interest point
has been assigned label l, i.e., if ‖hl(x)‖ > 0. Now, we see
that the potential ψBoF

I,l (xI ; I) in (7) can be rewritten as

ψBoF
I,l (xI ; I) =

S∑
s=1

al,sint(hl(x),hts) + blδ(‖hl(x)‖ > 0)

=
S∑
s=1

al,s

K∑
k=1

min
{
hl,k(x), hts,k

}
+ bl min

{
K∑
k=1

hl,k(x), 1

}
,

(8)

where hl,k(x) is the kth bin count of hl(x). Notice that
when ‖hl(x)‖ = 0, we have ∀k = 1, . . . ,K, hl,k(x) =
0. This can be used to verify that ψBoF

I,l (xI ; I) satisfies the
property ψBoF

I,l (xI) = 0 when ‖hl(x)‖ = 0. Now, we note
that due to the use of unnormalized histograms, we have

hl,k(x) =
∑
i∈Ik

δ(xi = l), (9)

where δ(A) = 1 if the event “A” is true and δ(A) = 0 if
“A” is false. This can be used to rewrite (8) as

ψBoF
I,l (xI ; I) =

S∑
s=1

al,s

K∑
k=1

min

{∑
i∈Ik

δ(xi = l), hts,k

}

+ bl min

{∑
i∈I

δ(xi = l), 1

}
,

(10)

The last expression in (10) is obtained as a result of the
fact that

∑K
k=1

∑
i∈Ik δ(xi = l) =

∑
i∈I δ(xi = l), since

∪Kk=1Ik = I. To further simplify the representation of
ψBoF
I,l (xI ; I), we define two kinds of potentials as follows

ψHIk,l,s(xIk ; I) = min

{∑
i∈Ik

δ(xi = l), hts,k

}
and

ψδI,l(xI ; I) = min

{∑
i∈I

δ(xi = l), 1

}
.

(11)

Here, the potential ψHIk,l,s(xIk ; I) encodes the “mini-
mum” function over the kth bin counts of the histogram
hl(x) and the sth training histogram hts. The potential
ψδI,l(xI ; I) encodes the indicator function δ(‖hl(x)‖ > 0).
Notice that all the potentials defined in (11) belong to the
family of higher order potentials defined on a set A ⊂ V as

ψRHOP
A,l (xA; I)=min

{∑
i∈A

δ(xi = l), c

}
, where c ∈ R. (12)

This is precisely the family of robust higher order Potts po-
tential introduced in [6].

Now, note that Etd(x; I) defined in (6) can be written as

Etd(x; I) =
∑

l∈L+(x)

φl(hl(x)) =
∑
l∈L

ψBoF
I,l (xI ; I). (13)

We can use (10) and (11) to further simplify the expres-
sion of Etd(x; I) as w>tdΨtd(x; I), where

w>td =
[
· · · a>l bl · · ·

]
∈ RL(S+1) and

Ψtd(x; I) =


...∑K

k=1 ψ
H
Ik,l,s(xIk ; I)

ψδI,l(xI ; I)
...

 ∈ RL(S+1).
(14)

Remark 2. [9] uses the output of object detectors to first
localize objects with bounding boxes in the image. Each
pixel in a bounding box pays a constant cost if it is assigned
a category label that is different from the category prevalent
in the box. [9] also ensures that no additional cost is payed
when the number of pixels deviating from the prevalent cat-
egory exceeds a pre-decided number. It can be verified that
this is equivalent to using our framework by choosing all
the points inside the box as the interest points and using the
linear classifiers of (5) for defining the classification costs.

3.2. Constraints on the top-down parameters wtd

We previously mentioned that the potentials in (11) can
be minimized using α-expansion. However, Etd(x; I) is
constructed using scaled versions of these potentials, i.e.,{
al,sψ

H
Ik,l,s(xIk ; I)

}s=1,...,S

l∈L
and

{
blψ

δ
I,l(xI ; I)

}
l∈L

. In

order to optimize these potentials using α-expansion, they
need to belong to the family of the robust higher order Potts
potentials. It can be verified that this holds true when the
classifier parameters for each category l ∈ L satisfy the
constraints ∀s = 1, . . . , S, al,s ≥ 0 and bl ≥ 0. Theorem 1
shows that these constraints are not restrictive. Specifically,
given classifiers with real valued parameters, Theorem 1 de-
scribes the construction of new classifiers with non-negative
parameters that give identical classification results.

Theorem 1. Given a set of classifiers {φl}l∈L with param-
eters (al,1, . . . , al,S) ∈ RS and bl ∈ R, define a new set of
classifiers {φ̃l}l∈L with parameters ∀s = 1, . . . , S
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ãl,s = al,s −min
l′∈L

al′,s and b̃l = bl −min
l′∈L

bl′ (15)

for all l ∈ L. Then, the parameters of the new classifiers ãl
and b̃l are non-negative. Moreover, the classification results
obtained with the classifiers {φ̃l}l∈L are identical to those
obtained with the classifiers {φl}l∈L.
Proof. See additional material

While such constraints do not affect the classification re-
sults, they do affect the JCaS problem. Notice that bl can
be thought of as a category-level prior, i.e., a cost paid
when one of the interest points in the image is assigned
label l. The non-negativity of bl biases our algorithm to-
wards assigning a lower number of distinct category la-
bels to the interest points. Also, notice that the potential
al,sψ

H
Ik,l,s(xIk ; I) encodes the fact that a non-negative cost

al,s is paid when an interest point of type k is assigned cat-
egory label l ∈ L. However, these potentials incorporate
robustness by encoding the fact that beyond a certain num-
ber of interest points (given by hts,k) being assigned label l,
the potential does not pay any additional cost. Now, since
al is non-negative, this would imply that fewer sites should
be assigned category l. However, the classifier parameters
are non-negative for all the categories. Hence, we expect the
assignment of the labels to be balanced across the different
categories. The relative values of the parameters al for the
different categories l ∈ L determine how the interest points’
features are distributed across the different categories.

4. A new energy function for JCaS
The energy Etd(x; I) proposed in §3 is defined only

over the labels of the interest points detected in an image
I . Hence, Etd(x; I) alone cannot be used to solve the JCaS
problem for an image since it would not give a label for each
pixel. To this effect, we propose to solve the JCaS problem
by minimizing a new energyE(x; I) that we define by com-
bining the bottom-up energy Ebu(x; I) discussed in §2.1,
with our proposed top-down energy Etd(x; I), as
E(x; I) = Ebu(x; I) + Etd(x; I)

=
[
w>bu w>td

] [Ψbu(x; I)
Ψtd(x; I)

]
= w>Ψ(x; I).

(16)

As a result, the segmentation for the regions that do not con-
tain interest points is driven by the bottom-up potentials,
which we believe is a fair strategy if the regions themselves
do not offer any informative cue for BoF classification.

Notice that w contains the bottom-up parameters λU , λP
and λC that are used to regulate the relative contribu-
tions of the potential functions modeling the local interac-
tions, as well as the top-down parameters of the classifiers
{al, bl}l∈L that are used for modeling the global interac-
tions. Hence, the process of learning w is equivalent to the
joint learning of all the parameters needed for JCaS.

Note that as in [9], one may learn the top-down param-
eters separately from the bottom-up parameters. Specifi-
cally, one may extract histograms from the ground truth la-

belings of the training images and use them to train one-
vs.-rest SVM classifiers {al, bl} for each of the categories
l ∈ L. These classifiers can be used to construct the higher
order potentials discussed in the previous section. However,
one can construct several classifiers that partition the space
of histograms extracted from the objects and achieve good
classification. Not all the classifiers trained in this fashion
might give good potentials for the purpose of JCaS. Hence,
we need to learn classifiers specifically for the JCaS task.
4.1. A max-margin formulation for learning w

Recall that we propose to segment an image I by mini-
mizing the energy E(x; I). Hence, we would want that for
any image I , the ground truth segmentation y minimizes
the energy E(x; I) as ∀x ∈ L|V| \ y, E(x; I) > E(y; I),
i.e., w>Ψ(x; I) > w>Ψ(y; I). We will now describe a
strategy to learn w, motivated by this desired property.

Assume that we are given a training set of N images
{Ii}Ni=1 with ground truth labelings {yi}Ni=1. We refer to
any labeling of an image that is different from yi as a neg-
ative example of segmentation for that image. We denote
the set of negative examples of segmentations for an image
Ii as S−i . Now, note that all negative segmentation exam-
ples should not be treated equally. For example, a labeling
which has a few errors is not the same as a labeling with
50% errors. Hence, we propose to enforce the constraint
∀x∈S−i : w>

(
Ψ(x; Ii)−Ψ(yi; Ii)

)
>`(x,yi). (17)

Here `(x,yi) measures the error in the labeling x as the
average fraction of misclassified sites per category, as

`(x,yi) =
∑

l∈L+(yi)

∆l(x,yi)

|yli|
, (18)

where |yli| is the number of sites whose true category label
is l and ∆l(x,yi) is the number of sites whose true label is
l, but are assigned a different label as per x. Given µ > 0,
we propose to learn the parameters w as the solution of

{w∗, {ξ∗i }Ni=1} = argmin
w,{ξi}Ni=1

1

2
‖w‖2 +

µ

N

N∑
i=1

ξi, subject to

(a) ∀i = 1, . . . , N : ∀x ∈ S−i :

w>
(
Ψ(x; Ii)−Ψ(yi; Ii)

)
≥ `(x,yi)− ξi,

(b) ∀i = 1, . . . , N : ξi ≥ 0 and (c) w ≥ 0.

(19)

While we refer the readers to [19] for a detailed expla-
nation of this max-margin formulation, we now provide an
intuition for (19). The constraint (a) is similar to (17) and
the loss function `(x,yi) represents the margin between the
positive and negative examples of segmentation. Notice that
the margin has been rescaled as a function of the errors in
the segmentation. The difference between constraint (a) and
(17) is the non-negative valued slack variable ξi. Now, note
that it might not be possible to find weights w that ensure
that the ground truth segmentations have the minimum en-
ergy for each training image. The slack variables are intro-
duced precisely to account for the violation of (17).
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Finally, we enforce the constraint (b) in order to ensure
that the classifier parameters are non-negative, so that the
resulting energy can be optimized using α-expansion.

4.2. An iterative algorithm for learning w

Note that the number of negative examples of segmen-
tation for each image Ii is exponentially large (i.e., L|Ii|).
Hence, it is infeasible to solve (19) by considering all the
negative examples for all the training images. For this pur-
pose, we use an iterative algorithm to learn w. The algo-
rithm proceeds by sampling the space of negative examples
of segmentation rather than considering the entire space. In
particular, notice that for any image Ii, the slack variable ξi
in (19)(a), depends only on the segmentation x−i that vio-
lates the constraint in (17) the most, which satisfies

∀x ∈ S−i : w>
(
Ψ(x; Ii)−Ψ(yi; Ii)

)
− `(x,yi)

≥ w>
(
Ψ(x−i ; Ii)−Ψ(yi; Ii)

)
− `(x−i ,yi) = −ξi.

(20)

Hence, we propose to learn w using an iterative proce-
dure that aims to find x−i for each image Ii, by alternating
between the following two steps.
First step. Given an estimate of w, the first step of the
algorithm finds the segmentation x−i that satisfies (20). It
can be verified that given w, x−i can be computed as

x−i = arg min
x

[
w>Ψ(x; Ii)− `(x,yi)

]
, (21)

using α-expansion. Specifically, it can be shown that the
loss function `(x,yi) can be represented using unary po-
tentials. Moreover, we have shown in the previous sec-
tion that E(x; I) = w>Ψ(x; I) can be minimized using
α-expansion. Finally, notice that the term Ψ(yi; Ii) can
be ignored since it doesn’t affect the optimization prob-
lem. Hence, the objective function in (21), i.e., E(x; Ii) −
`(x,yi), can also be minimized using α-expansion.
Second step. Once we have xi−, we add this labeling to
the set of negative examples Si− for the training image Ii.
Having updated the set of negative examples of segmenta-
tion for each training image, we re-estimate w using (19) to
ensure that the desired constraints are satisfied.

The problem in (19) has a unique solution for a given set
of negative examples for the segmentations. Since there are
at most a finite number of such examples for each image,
there are a finite number of constraints that can be imposed
in (19). The parameters estimated by the described iterative
algorithm will converge to the solution that would be given
by (19) after including the constraints for all the possible
negative examples of segmentations (see [19]). In our ex-
periments, we restricted the number of iterations to 15 since
the algorithm typically converges in so many iterations.

5. Experiments
We evaluate our framework on the Graz-02 dataset [13],

which contains 3 object categories (bicycles, cars and peo-
ple) and the background category. For each of the three cat-

egories, there are 150 training images and 150 testing im-
ages of a single or multiple objects against the background.
Hence, we have 450 training images and 450 test images.

We will compare the JCaS results obtained by minimiz-
ing the bottom-up energy Ebu(x; I) in (1), with those ob-
tained by minimizing the energy E(x; I) in (16), which
contains the bottom-up as well as top-down potentials.

Constructing the bottom-up potentials. In general, we
can choose any algorithm to construct the bottom-up po-
tentials. We adopt the strategy of [2] which was shown to
produce good results. [2] oversegments a given image and
works under the assumption that all the pixels in a given
superpixel have the same label. This is equivalent to using
a higher order potential for the superpixel which constrains
all its constituent pixels to have the same label. For a fair
comparison, we used the same constraint. Due to this con-
straint, we treat each superpixel as a single node and define
unary and pairwise potentials over these nodes, as in [2].

A SIFT descriptor is extracted at each pixel and these de-
scriptors are quantized using K-means to create a dictionary
with 400 codewords. For each superpixel, the algorithm
constructs a histogram of the quantized SIFT descriptors of
the pixels in that superpixel. In order to account for spatial
context, the histogram for each superpixel is updated by ag-
gregating all the histograms over a neighborhood of size 4.
A one-vs.-rest multi-class SVM with an RBF χ2 kernel is
trained on these histograms (after normalization), for each
category. These classifiers are then used to analyze the his-
togram of a query superpixel i ∈ V and constructψUi (xi; I).

The pairwise potential ψPi,j(xi, xj ; I) for neighbor-
ing superpixels i and j is defined as ψPi,j(xi, xj ; I) =

L(i,j)
1+‖f(i)−f(j)‖δ(xi 6= xj), where f(i) is the mean LUV
color of the superpixel i andL(i, j) is the length of the com-
mon boundary between superpixels i and j.

Constructing the top-down classification potentials. No-
tice that one could use all the pixels in an image as interest
points for defining these potentials. However, the optimiza-
tion of potentials defined on such a large clique would be-
come intractable. Hence, we generate a sparse set of interest
points I by using the SIFT interest point detector [11].

We use K-means to quantize the SIFT descriptors of I
into a dictionary of K clusters. Notice that we could have
used the dictionary already learnt for the unary potentials,
to quantize the interest points. However, the SIFT interest
points form a subset of all the pixels in the image. Hence,
we learn a new dictionary with K = 20 clusters, to get a
quantization of the descriptors of the interest points only.

Learning the energies’ parameters. The iterative algo-
rithm described in §4.2 computes an optimal set of parame-
ters for the energy E(x; I). We can also modify this algo-
rithm to compute an optimal set of parameters for the energy
Ebu(x; I), by hardcoding the parameters for the classifica-
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tion potentials to be equal to 0. In both cases, we initialize
the algorithm with w =

[
1 02+L(S+1)

]
, to avoid any un-

wanted biases due to the difference in the initializations.
Results. We evaluate the JCaS results with the intersection/
union metric which is given as 100×#TP

#TP+#FP+#FN , where TP
= true positives, FP = false positives and FN = false nega-
tives. The evaluation is presented in Table 1. Notice that the
JCaS results (say x∗bu+td) obtained by minimizing E(x; I)
are quantitatively better than those (say x∗bu) obtained by
minimizing Ebu(x; I), across all the categories. In general,
we have noticed that our proposed potentials help reduce
several false positives for the object categories, therefore
leading to this improvement in performance.

Due to space constraints, we have provided in Fig. 1, a
few examples where x∗bu+td is better than x∗bu. We have
provided more qualitative results in the additional material
to provide examples of cases where x∗bu+td is better than
x∗bu as well as cases where x∗bu+td is worse than x∗bu.

JCaS result background bicycles cars people mean

x∗bu 76.25 40.58 34.66 37.17 47.16
x∗bu+td 82.32 46.18 36.49 38.99 50.99

Table 1. Analysis of JCaS results for the Graz-02 dataset, using the
intersection/union metric.

6. Conclusions and future work
Experiments on the Graz-02 dataset show that our pro-

posed potentials can be used to improve JCaS results. Al-
though we used SIFT features in our evaluation, our method
can be applied to any set of regions whose features can be
classified with the intersection kernel. In fact, our frame-
work can also be used to go beyond traditional pairwise
co-occurrence statistics by using the intersection kernel for
higher order co-occurrence statistics. Now, recall from §3,
that the number of training histograms S is roughly linear in
the number of training imagesN . Also, recall that the num-
ber of parameters to be learnt for the classification poten-
tials is equal to L(S + 1) which increases with the number
of training images and categories. Hence, learning these pa-
rameters can be computationally expensive on large datasets
with more categories, such as in the PASCAL VOC chal-
lenge. Future work entails an algorithm for learning these
parameters efficiently. Finally, it is of interest to develop
optimization schemes to deal with normalized histograms
which provide some invariance to scale chances and to mul-
tiple instances of objects of the same category in an image.
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