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Abstract. We consider the problem of classifying surgical gestures and
skill level in robotic surgical tasks. Prior work in this area models ges-
tures as states of a hidden Markov model (HMM) whose observations are
discrete, Gaussian or factor analyzed. While successful, these approaches
are limited in expressive power due to the use of discrete or Gaussian
observations. In this paper, we propose a new model called sparse HMMs
whose observations are sparse linear combinations of elements from a dic-
tionary of basic surgical motions. Given motion data from many surgeons
with different skill levels, we propose an algorithm for learning a dictio-
nary for each gesture together with an HMM grammar describing the
transitions among different gestures. We then use these dictionaries and
the grammar to represent and classify new motion data. Experiments on
a database of surgical motions acquired with the da Vinci system show
that our method performs on par with or better than state-of-the-art
methods.This suggests that learning a grammar based on sparse motion
dictionaries is important in gesture and skill classification.

Keywords: surgical skill evaluation; surgical gesture classification; time
series classification; sparse dictionary learning; hidden Markov models

1 Introduction

Direct instruction by an expert is arguably the most effective means of learning
the art of surgery. However, due to reductions in the amount of one-on-one
teaching [1], an expert may not always be available to oversee and guide residents
and fellows. Robotic surgery systems, such as the da Vinci robot, provide a well-
instrumented, controlled laboratory for recording surgical performance. Such
recordings can be used to model surgeon expertise and help understand how to
reflect this expertise back upon students in the form of teaching and training.

Prior Work. One approach to modeling surgical expertise is to use global
measurements of the task, such as the time to completion [2, 3], the speed and
number of hand movements [2], the distance travelled [3], force and torque sig-
natures [3–5], etc. These methods are generally easy to implement, but lack a
detailed description of the surgical procedure. Another approach is to use sta-
tistical models to decompose a surgical task into a series of pre-defined surgical
gestures or surgemes [6–11]. For example, in a suturing task, the surgemes can
be ‘insert a needle’, ‘grab a needle’, ‘position a needle’, etc. Notice that these
surgemes often appear in some pattern, e.g., one surgeme often follows another
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one, or several surgemes form a motif. This is analogous to what we see in natu-
ral language, where the grammar constrains the generation of words. In the case
of surgery, however, we know neither the words nor the grammar. Thus, we need
to develop algorithms for discovering the grammar and for classifying gestures
and skill. Hidden Markov models (HMMs) provide an excellent framework for
doing this. The simplest approach is to model each surgeme as the state of an
HMM and to vector-quantize the observations from each surgeme into discrete
symbols [6, 7]. Alternatively, one can model the observations from each surgeme
using a Gaussian [8]. However, parameter learning may not be robust when the
data is high-dimensional because of the large number of parameters to be es-
timated. To address this issue, [9] combines Gaussian HMMs (G-HMMs) with
Linear Discriminant Analysis (LDA) [12], while [10] proposes several variations
of HMMs, such as Factor Analyzed HMMs (FA-HMMs), and Switched Linear
Dynamical Systems (SLDSs), which model the observations as being generated
from a lower-dimensional latent space. However, the observation model is still
Gaussian, which may not be rich enough to capture the variability of complex
gestures. While one could use Gaussian mixture models (GMMs) [11] or mix-
tures of factor analyzers (MFAs) to describe more complex motions, this would
again results in a large number of parameters to be estimated.

Paper Contributions. To achieve a richer observation model, without dra-
matically increasing the number of parameters to be estimated, in this paper we
propose to use a sparse model as the HMM observation model. More specifically,
we propose to model each observation as a sparse linear combination of elements
from a dictionary of atomic surgical motions associated with a specific surgeme.
Therefore, the observations from each surgeme live in a union of K-dimensional
subspaces, one subspace per choice of K out of N atoms. While other models
such as MFAs also represent the data with a union of subspaces, the number of
parameters in our model is much smaller because we assume that the coefficients
are sparse, and so only a few dictionary elements are used to represent a given
observation. As a consequence, our observation model is more expressive than a
Gaussian or a FA, but the number of parameters does not grow as rapidly as in
the case of GMMs or MFAs. In principle, the parameters of the proposed sparse
HMM can be learned using an expectation maximization algorithm. However,
the expectation step cannot be computed in closed form. We thus propose an
approximate parameter learning algorithm based on a sparse dictionary learning
technique called KSVD [13]. We then show that surgeme classification can be
done using the Viterbi algorithm [14], as in the case of G-HMMs. Experiments
show that combining HMMs with sparse dictionary learning improves gesture
and skill classification and achieves stable performance for various sparsity levels.

2 Sparse HMMs for Surgical Gesture and Skill
Classification

Given a surgery trial {yt ∈ RD}Tt=1, the goal of gesture classification is to assign
a surgeme label st ∈ {1, . . . , S} to each frame, yt, while the goal of skill classifi-
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Fig. 1: Graphical models for standard HMMs (a) and HMMs with latent variables (b).

cation is to assign a skill level z ∈ {1, . . . , L} to the entire trial, {yt ∈ RD}Tt=1. In
this paper, we propose to model the trials using a sparse hidden Markov model
(S-HMM). In this model, the surgeme label st is an unobserved hidden state,
which is modeled as a Markov process characterized by the transition probability
qs′s = p(st = s|st−1 = s′). The observation at time t, yt, depends on the hidden
state st via the emission probability density p(yt|st).

In standard HMMs, which will be briefly reviewed in §2.1 and are illustrated
in Fig. 1a, p(yt|st) is assumed to be a Gaussian or a mixture of Gaussians. The
parameters of this model can be learned using the Baum Welch algorithm [15],
which is based on Expectation Maximization (EM). Given the model parameters,
the hidden states can be inferred using the Viterbi algorithm.

In the proposed S-HHMs, which will be discussed in §2.2 and are illustrated
in Fig. 1b, the observation yt is as a sparse linear combination of elements from
a dictionary of motion words. Therefore, yt also depends on another hidden vari-
able, namely the sparse coefficients xt. In §2.3, we show that parameter learning
for this model is more difficult than for G-HMMs, because the E-step cannot be
computed in closed form. We thus propose an approximate learning approach
based on sparse dictionary learning [13]. In §2.4, we show that surgeme classi-
fication can be done by combining a Viterbi-like algorithm with sparse coding
[16, 17]. Finally, in §2.5 we show how to use S-HMMs for skill classification.

2.1 Prior Work on Gesture and Skill Classification using HMMs

Much of the prior work on surgical gesture and skill classification uses HMMs
[18, 6–11]. The main difference between different approaches is in how they
model the emission probability density p(yt|st). For example, [7] vector-quantizes
the observations into discrete symbols, while [8] assumes a Gaussian distribu-
tion p(yt|st = s) ≡ N (us,Σs). These methods can leverage standard learning
and inference algorithms. However, parameter learning is not robust with high-
dimensional data due to the large number of parameters that need to be learned.
Moreover, high-dimensional data often lie in low-dimensional subspaces, and this
is not directly captured by a Gaussian distribution with an arbitrary covariance.

To address this problem, [9] uses a Gaussian model combined with LDA
[12]. Alternatively, one can use Probabilistic PCA (PPCA) [19, 20] or Factor
Analysis (FA) [21], as suggested in [10]. As illustrated in Fig. 1b, these models
introduce a low-dimensional latent variable xt ∈ Rd, where d � D, and model
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the observations as yt = Astxt + ust + et, where Ast ∈ RD×d, ust ∈ RD,
and xt and et are independent Gaussians distributed as N (0, I) and N (0, Σst),
respectively. In PPCA, Σst = σ2

stI, while in FA, Σst = diag(σ2
1,st , . . . , σ

2
D,st

).
[10] proposes efficient learning and inference methods for this model and shows
that using a low-dimensional model improves gesture classification results. This is
possible, in part, because one can marginalize over the latent variables and obtain
the emission probabilities in closed form as p(yt|st = s) ≡ N (us,AsA

T
s + Σs).

Therefore, PPCA-HMMs and FA-HMMs are particular cases of G-HMMs.
In practice, modeling the data with a single subspace (as done by PPCA

and FA) might not capture the distribution of the data for complex surgemes.
To address this issue, one can use a mixture of low-dimensional subspaces, as
proposed in [11]. This can be done by using MFAs, whose density can be written
as:

p(yt|st = s,xt = x) ≡
M∑
i=1

csiN (Asix+ usi, Σsi), (1)

where csi ∈ [0, 1] and
∑M
i=1 csi = 1. In other words, csi is the probability that yt

belongs to the i-th FA in the mixture. The drawbacks of using MFAs are that
there are many parameters to be learned and that one needs to specify a priori
the number of mixture components M and the dimension d of each FA.

2.2 Proposed Sparse Hidden Markov Model

In this section, we propose a new HMM that uses multiple subspaces to model the
observations from each surgeme (thus being more general than single-subspace
HMMs), but enforces sparsity constraints on the latent variables (thus rendering
the parameter learning problem more robust). More specifically, we use recent
advances in sparse dictionary learning and model the observation at time t as
yt = Dstxt + et, where Dst ∈ RD×N is an over-complete dictionary (D < N),
xt ∈ RN is a sparse latent variable, i.e., it has only a few nonzero entries, and
et is independent Gaussian noise distributed as N (0, σ2

stI). As a result, the
distribution of yt given the latent variables is given by

p(yt|st = s,xt = x) ≡ N (Dsx, σ
2
sI). (2)

The key difference between our approach and MFAs in (1) is that, instead of
fixing the number of mixture components M and their dimensions, we let the
dictionary Ds be over-complete, but we choose a few columns of the dictionary
using a sparse latent variable xt. This allows us to have an exponentially large
number of subspaces to choose from and also to automatically pick the dimension
of the low-dimensional subspace through the number of nonzero elements of xt.

To have a sparse latent variable, we use a Laplace prior on the distribution
of xt for each hidden state where

p(xt|st = s) ≡
(λs

2

)N
exp (−λs‖x‖1), (3)

with a parameter λs > 0.
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2.3 Parameter Learning in S-HMMs

Given N trials {yj1:Tj
}Jj=1 from many surgeons with different skill levels and their

surgeme labels {sj1:Tj
}Jj=1, our goal is to learn an S-HMM for these data. The

parameters to be learned are the transition probabilities Q = {qs,s′}s,s′=1,...,S

and the parameters for each surgeme model Θs = (Ds, σ
2
s , λs), for s = 1, . . . , S.

Since the surgeme labels are given, the transition probabilities can be di-
rectly computed from the frequency of surgeme transitions, and the remaining
parameters can be learned separately from data corresponding to each surgeme s.
Since p(yt|st) depends on the hidden variable xt, we can use the EM algorithm
to maximize the log-likelihood of the observations corresponding to surgeme s,
LΘs

=
∑
j,t:sjt=s

log pΘs
(yjt |sjt = s) w.r.t. the parameters Θs.

In the E-step we need to compute the expectation of the complete log-
likelihood w.r.t. the posterior of xt, given the current parameters Θ̂s, i.e.,

EΘ̂s
(LΘs

) =
∑

j,t:sjt=s

∫
xj

t

log pΘs(yjt ,x
j
t |sjt = s)pΘ̂s

(xjt |yjt , sjt = s)dxjt . (4)

However, this expression cannot be computed in closed form as in the case of G-
HMMs. Following [22], we approximate the posterior as pΘ̂s

(xjt |yjt ,sjt =s)=δ(x̂jt ),

where x̂jt = arg maxx pΘ̂s
(x|yjt , sjt =s) = arg maxx pΘ̂s

(yjt |x, sjt =s)pΘ̂s
(x|sjt =s).

Therefore, the E-step reduces to the following `1-minimization problem

x̂jt = arg min
x

λ̂s‖x‖1 +
1

2σ̂2
s

‖yjt − D̂sx‖2, (5)

which can be solved using a sparse coding algorithm such as Basis Pursuit [16].
With this approximation, we obtain the following approximate expectation

EΘ̂s
(LΘs) ≈

∑
j,t:s

j
t=s

log
(
pΘs(yjt , x̂

j
t |s

j
t =s)

)
=
∑

j,t:s
j
t=s

log
(
pΘs(yjt |x̂

j
t , s

j
t =s)pΘs(x̂jt |s

j
t = s)

)
=
∑

j,t:s
j
t=s

−λs‖x̂jt‖1 −
1

2σ2
s

‖yjt −Dsx̂
j
t‖

2
2 +N log(

λs
2

)− D

2
log(2πσ2

s). (6)

In the M-step we need to maximize the above quantity w.r.t. Θs, which gives:

D̂s=
∑

j,t:s
j
t=s

yjt x̂
jT
t

(∑
j,t:s

j
t=s

x̂jt x̂
jT
t

)−1

, λ̂s=

∑
j,t:s

j
t=s

N∑
j,t:s

j
t=s
‖x̂jt‖1

, σ̂2
s =

∑
j,t:s

j
t=s
‖yjt − D̂sx̂

j
t‖22∑

j,t:s
j
t=s

D
. (7)

Interestingly, the above approximate EM algorithm involves an E-step where
the MAP estimate of xjt is calculated given D̂s and an M-step where the dic-
tionary Ds is updated based on x̂jt . This is analogous to the method of optimal
directions (MOD) in sparse dictionary learning, which alternates between finding
the sparse coefficients and updating the dictionary [23]. This opens the door to
using faster and more accurate sparse dictionary learning methods that update
xjt and Ds jointly. One such algorithm is KSVD [13], which uses the `0-semi-
norm instead of the `1-norm in the cost function. Since λs and σ2

s are not involved
in KSVD, one can compute them afterwards by cross validation. We call this
approximate learning method KSVD-HMM, and this is our method of choice.
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2.4 Surgeme Classification using S-HMMs

Given a trial {yt}Tt=1 and the S-HMM parameters qs,s′ and Θs, s, s
′ = 1, . . . , S,

our goal is to infer the sequence of surgeme labels {st}Tt=1. In standard HMMs
this can be done by the Viterbi algorithm [14], where one maximizes the joint
probability of the hidden states and the observations

(ŝ1:T ) = argmax p(s1:T |y1:T ) = argmax p(s1:T ,y1:T ). (8)

However, unlike the Gaussian, PPCA and FA models discussed in §2.1, the
marginal probability p(yt|st) cannot be computed in closed form because xt
has a Laplace distribution. Nonetheless, in this section we show that the infer-
ence problem can still be solved using a dynamic programming approach. More
specifically, we can write the following recursion

αt(s,x) , max
s1:t−1,x1:t−1

p(s1:t−1,x1:t−1, st = s,xt = x,y1:t)

= max
s′,x′
{ max
s1:t−2,x1:t−2

p(s1:t−2,x1:t−2, st−1 = s′,xt−1 = x′, st = s,xt = x,y1:t)}

= max
s′,x′
{ max
s1:t−2,x1:t−2

p(yt|xt = x, st = s) · p(xt = x|st = s) · qs′,s

· p(s1:t−2,x1:t−2, st−1 = s′,xt−1 = x′,y1:t−1)}
= p(yt|xt = x, st = s) · p(xt = x|st = s) ·max

s′,x′
{qs′,s · αt−1(s′,x′)}. (9)

From the last equality, one can see that the value of xt only affects the first two
probabilities and has no influence on the last term. Now, since the number of
states S is finite, for each s we can find the x̂s that maximizes p(yt|x, s)p(x|s).
That is, x̂s = arg minx λs‖x‖1 + 1

2σ2
s
‖yt −Dsx‖2, which can be found using

Basis Pursuit [16] or Orthogonal Matching Pursuit (OMP) [17]. Since the learn-
ing algorithm uses KSVD, which in turn uses OMP, we also use OMP here.

2.5 Skill Classification using S-HMMs

For skill classification, we model the data from different skill levels with different
S-HMMs and classify a new trial by finding the model that gives the highest log-
likelihood. More specifically, for each expertise level, we learn an S-HMM using
KSVD-HMM, the approximate learning algorithm described in §2.3. This gives
us three models, Me, Mi and Mn corresponding to expert, intermediate and
novice. Given a test trial {yt ∈ RD}Tt=1, the skill level z is given by:

ẑ = arg max
z∈{e,i,n}

p(y1:T ,x1:T , s1:T |Mz). (10)

3 Experiments

Dataset Description. To evaluate the proposed KSVD-HMM approach for
surgeme classification and to compare it with other state-of-the-art methods, we
use the California dataset described in [7, 24, ?]. The dataset is acquired with the
da Vinci surgical robot, which provides both kinematic data and high-resolution
video data. For the experiments below, we use the kinematic data which consists
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0. Idle motion
1. Reach for needle
2. Position needle
3. Insert needle / push needle

through tissue
4. Move to middle with needle

(left hand)
5. Move to middle with needle

(right hand)
6. Pull suture with left hand
7. Pull suture with right hand
8. Orienting needle with two

hands
9. Right hand assisting left

while pulling suture
10. Loosen more suture
11. End of trial

(a) (b)

Fig. 2: List of surgemes (a) and sample surgeme time series (b).

Table 1: Best surgeme classification percentages obtained by different methods
MFA-HMM KSVD-HMM FA-HMM(1) SLDS(1) FA-HMM(3) HLDA-HMM SLDS(3)

SU
Setup 1 76.4 81.1 70.2 74.8 78.2 74.1 80.8
Setup 2 59.8 67.8 N/A N/A 57.2 N/A 67.1

NP
Setup 1 74.2 76.1 64.3 72.3 71.0 65.0 77.6
Setup 2 46.6 59.3 N/A N/A 42.7 N/A 60.0

KT
Setup 1 76.5 82.6 77.1 78.5 82.8 79.9 82.0
Setup 2 65.1 65.7 N/A N/A 67.0 N/A 66.0

of 78 variables describing the motion (velocity, rotation angle, position, etc.) of
the master and slave robots. The dataset consists of 39, 26 and 36 trials, respec-
tively, from three different tasks: suturing, needle passing and knot tying. Each
task is performed by 8 surgeons of three expertise levels: expert, intermediate
and novice. Typically each surgeon has around of 3− 5 trials for each task.

According to the definition of surgemes in [24], as listed in Fig. 2a, each of
the trials is manually segmented into a sequence of surgemes, and the surgeme
labels provide us the ground truth for surgeme classification. Each time series
data consists, in general, of 11 different surgemes, as shown in Fig. 2b.

Experiment Setup. We create two different test setups. Setup 1 is the leave-
one-supertrial-out setup, where we leave one trial from each one of the users out
for testing, and use the remaining trials for training. Setup 2 is the leave-one-
user-out setup, where we leave all the trials from one user out for testing and
use the remaining trials for training.

Surgeme Classification. We evaluate the surgeme classification performance
of KSVD-HMM and compare it to that of MFA-HMM on three datasets. For
KSVD-HMM we vary the sparsity level K and for MFA-HMM we vary the
number of subspaces M and the dimensions d. The parameters σ and λ in KSVD-
HMM are obtained by cross validation. The best results for each method using
each of the two setups are shown in Table 1. We also compare our results to those
in [10] for FA-HMM, HLDA-HMM, and SLDS. Notice that in [10], each surgeme
can be represented by 1 state HMM, or by a left-to-right HMM with 3 states.
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Fig. 3: Top: Surgeme classification rates of MFA-HMM as a function of the number
of subspaces M and the subspace dimension d. Bottom: Surgeme classification results
of KSVD-HMM as a function of the sparsity level K. Both methods are evaluated on
three surgery tasks: suturing, needle passing and knot tying.

The first case is analogous to our model of one state per surgeme. The second
case corresponds to a more sophisticated method in which surgemes are further
decomposed into smaller components. The numbers 1 and 3 in parentheses after
FA-HMM and SLDS indicate the number of HMM states used by [10] to represent
each surgeme. We can see from Table 1 that, for suturing and setup 2 of knot
tying task, KSVD-HMM outperforms even a more sophisticated 3-state HMM
model, or 3-state SLDS model where both latent variables at time t depend on
the latent variables at time t − 1. For the other tasks, KSVD-HMM performs
slightly worse than the 3-state SLDS, but is still better than any 1-state HMM
model based on Gaussian models or SLDS. Overall, the proposed KSVD-HMM
method performs on par with or better than state-of-the-art techniques.

Notice also that the performance of all methods decreases from setup 1 to
setup 2. This is because in setup 2 all the trials from the same surgeon are
excluded, which makes the classification problem more challenging because we
only use the trials of the other surgeons.

Fig. 3 shows the effect of changing the parameters of each dictionary learn-
ing algorithm on the classification performance. From the plots in Fig. 3 we
can see that the classification rates of MFA-HMM for different values of M =
1, 5, 10, 15, 20 and d = 5, 10 are in general lower than those of KSVD-HMM.
Also note that for KSVD-HMM, the classification rates do not change much as
we change the sparsity level K = 3, 5, 7, 9, 11, 13, 15. Thus, KSVD-HMM is less
dependent on model selection than MFA-HMM, which makes it more favorable
for classification using dictionary learning algorithms.

Skill Classification. We now evaluate the skill classification performance of
KSVD-HMM and compare it to that of MFA-HMM. Table 2 shows the best clas-
sification results achieved by KSVD-HMM and MFA-HMM. For setup 1, where
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Table 2: Best skill classification percentages obtained by MFA-HMM and KSVD-
HMM.

Suturing Needle Passing Knot Tying

Setup MFA-HMM KSVD-HMM MFA-HMM KSVD-HMM MFA-HMM KSVD-HMM
Setup 1 92.3 97.4 76.9 96.2 86.1 94.4
Setup 2 38.5 59.0 46.2 26.9 44.4 58.3

we have different data from the same user in both training and testing, KSVD-
HMM performs clearly better than MFA-HMM. Notice also that for setup 2,
where we exclude the trials of the same surgeon, we obtain much lower classifi-
cation rates than for setup 1. In addition to the fact that we have excluded the
trials of the same surgeon, another reason for this drop is the relatively small
number of overall training data in the dataset, which does not allow us to capture
well a specific skill level. For example, in the suturing data, we only have two
experts, two intermediates and four novices. We are currently collecting larger
datasets to be able to better evaluate the sensitivity of different methods.

4 Conclusion

We have proposed a new model called sparse HMMs for the classification of
gestures and skill in surgical tasks. In this model, the observations are expressed
as linear combinations of elements from a dictionary with sparse coefficients.
The experiments show that the proposed methods achieve stable performance
for various sparsity levels and perform on par with or better than the state of the
art. Future work involves evaluation of the proposed methods on larger datasets.
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