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Abstract

Given a video or time series of skeleton data, action
recognition systems perform classification using cues such
as motion, appearance, and pose. For the past decade, ac-
tions have been modeled using low-level feature representa-
tions such as Bag of Features. More recent work has shown
that mid-level representations that model body part move-
ments (e.g., hand moving forward) can be very effective.
However, these mid-level features are usually hand-crafted
and the dictionary of representative features is learned us-
ing ad-hoc heuristics. While automatic feature learning
methods such as supervised sparse dictionary learning or
neural networks can be applied to learn feature represen-
tation and action classifiers jointly, the resulting features
are usually uninterpretable. In contrast, our goal is to
develop a principled feature learning framework to learn
discriminative and interpretable skeletal motion patterns
for action recognition. For this purpose, we propose a
novel body-part motion based feature called Moving Pose-
let, which corresponds to a specific body part configuration
undergoing a specific movement. We also propose a sim-
ple algorithm for jointly learning Moving Poselets and ac-
tion classifiers. Experiments on MSR Action3D, MSR Dai-
lyActivity3D and Berkeley MHAD datasets show that our
two-layer model outperforms other two-layer models using
hand-crafted features, and achieves results comparable to
those of recent multi-layer Hierarchical Recurrent Neural
Network (HRNN) models, which use multiple layers of RNN
to model the human body hierarchy.

1. Introduction

Action recognition from video data has become an im-
portant topic in the computer vision community in recent
years. In contrast to action recognition from 2D images, ac-
tion recognition from video data usually involves process-
ing sequential visual data that contains temporal movement
information. While 2D images only provide appearance and

pose information at one single frame, videos contain tem-
poral dynamics of the entire sequence, and are thus much
more informative than static images. However, recognizing
actions in videos is still a difficult problem due to various
challenges such as occlusions, view point changes and vari-
ation in appearance.

Recent developments in depth sensors (e.g. Microsoft
Kinect) and pose estimation algorithms [20], have enabled
efficient and relatively accurate prediction of human skele-
tons, with robustness to view point changes or appearance
variations. This has motivated the interesting question of
how to extract discriminative features from this kind of se-
quential data. A frequently-used method is Bag of Fea-
tures (BoF) [10], which is based on extracting local spatial-
temporal features, and computing the distribution of feature
descriptors to represent each action instance. Recent work
has shown that mid-level features can be more effective at
recognizing actions. Unlike early BoF models, which only
use local information, mid-level features can capture dis-
criminative body part pose or movement (e.g., hand moving
forward) for different actions. These features are usually
interpretable, but they are typically generated with ad-hoc
heuristics (e.g., selecting the set of mid-level descriptors
that has a high ratio of in-class neighbors).

Our work aims at learning discriminative mid-level fea-
tures based on body part movement. We use an auto-
matic feature learning framework inspired by recent mid-
level representations and neural networks models for object
recognition. To capture information from different body
parts, we learn one dictionary for each body part configura-
tion. Specifically, our model extracts mid-level descriptors
at every frame for each body part. These features are then
represented in terms of their corresponding dictionaries to
generate a set of response maps. Finally a high-level feature
representation is computed based on the response maps and
used for action classification.

Our proposed model is capable of learning interpretable
and discriminative mid-level feature representation with
an efficient feature learning scheme. Specifically, our con-
tributions are three-fold:
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1. Body-part Motion Pattern Based Feature. We design
a body-part based feature descriptor to capture spatial-
temporal movement of human body parts, which is de-
fined as position and velocity values associated with
specific body part in a temporal window. While prior
work only uses mid-level features to capture the mo-
tion dynamics of single joint, or body pose informa-
tion at one frame, we show that the movement of the
human body part as a whole, is more informative.

2. Discriminative and Efficient Learning. Most prior
work on learning mid-level features uses a dictionary
that is pre-learned by complex data mining techniques.
In sharp contrast, we present a framework for jointly
learning the feature representations and action clas-
sifiers. In our model, each column of the mid-level
dictionary acts as a linear feature classifier and the
response maps to these classifiers are used to aggre-
gate histograms for classification. Our model can be
viewed as a modified two-layer Convolutional Neu-
ral Networks [12] model that is adapted to the human
body structure.

3. Interpretability. The features learned by generic CNN
models are usually hard to interpret. In sharp con-
trast, our mid-level feature classifiers are descriptive
of body part configuration undergoing a certain move-
ment, which is named as Moving Poselet. Thus the fea-
tures are interpretable and can be visualized to help un-
derstand the discriminative body part movement (e.g.,
hand moving up) for each action.

2. Related Work

There is much related work on designing feature repre-
sentation for action classification. For low-level features,
most state-of-the-art methods are based on the popular Bag-
of-Features (BoF) approach. A common first step of the
BoF approach is to extract a set of spatial-temporal inter-
est points using a Harris3D detector [10], densely sampled
trajectories [23, 24], or other interest point detectors. Each
interest point is then described using a spatio-temporal de-
scriptor. Unsupervised learning techniques such as k-means
are adopted to build a dictionary of motion words. A video
is then represented by a histogram of these motion words
[11, 23], and classifiers are trained on top of these his-
tograms for recognizing actions. For skeleton data, the in-
terest points are usually skeleton joints, and a sequence is
represented by a histogram of 3D joint positions [27]. The
main advantages of the BoF approach are its simplicity and
empirical success. Nevertheless, the key drawbacks of the
BoF approach are that (1) motion words depict only local
information and that (2) motion words are neither inter-
pretable nor discriminative of the action.

To overcome these shortcomings, there are several re-
lated studies in the direction of mid-level feature model-
ing. For videos, mid-level features are designed based on
3D regions, poselets, tracklets, and so on. Such examples
are acteme [30], acton [31], motionlet [26], group of track-
let [19], etc. In [30], an acteme is defined as a volume of
random size that captures a salient spatiotemporal visual
pattern, represented by HOG/HOF features. In [31], dif-
ferent from actemes, actons are built on top of the BoF rep-
resentation of each volume of interest, forming a mid-level
dictionary of intermediate concepts to characterize the se-
mantic properties. Similar to actemes, an activation vector
is computed for the final classification. In [26], a greedy
method is used to select the discriminative 3D regions with
high motion saliency, and a spatio-temporal pyramid repre-
sentation of the activation scores is used for final classifica-
tion. In [19], groups of trajectories are employed to define
mid-level primitives.

Similar mid-level features have also been developed for
motion capture data. In [25], Wang et al. use actionlet and
actionlet ensemble to represent actions. Each joint is de-
scribed by the Fourier coefficients of its position values at
different temporal scales. A mining algorithm is adopted
to discover conjunctive structure on these joint features,
which is defined as actionlet. The actionlet ensemble is then
computed with Multiple Kernel Learning (MKL) [1]. An-
other work along this line is the pose based approach [22]
by Wang et al. In that work, a skeleton sequence is first
quantized using pre-learned pose dictionaries. Discrimina-
tive spatial and temporal part sets are then generated using
contrast mining techniques. Actions are represented with a
BoW histogram and classified by one-vs-one linear SVMs.
In [4], a set of Linear Dynamic Systems (LDS) is fit to sub-
sequences of the time series data at different spatial and
temporal scales. MKL is then employed to compute the
weight of the LDS representation associated with different
spatial and temporal scales. In [29], the position, velocity
and acceleration feature at one frame is defined as a Mov-
ing Pose feature, and a mining algorithm is adopted to com-
pute the most discriminative Moving Pose frames. A voting
scheme based on k nearest neighbors is utilized to predict
the label of a test sequence. In [14], each action is modeled
by a sequence of latent poses, where the pose dictionary
and action/activity classifiers are jointly learned via Latent
Structural SVM [28].

An important disadvantage of all these methods for
building mid-level representations for action classifica-
tion is that, except for [19, 4, 14], the mid-level code-
book/classifier is learned separately from the action clas-
sifiers using clustering/mining techniques, which might not
be discriminative for specific actions.

On the other hand, joint learning of mid-level features
and classifiers has shown good performance in other vi-



sual recognition tasks. For example, Mairal et al. [16] and
Boureau et al. [3] learn a sparse representation based dic-
tionary together with the classifier for image classification.
Lobel et al. [15] introduce a two-layer feature representa-
tion for image classification, in which the feature classi-
fiers are learned jointly with object classifiers using Latent
Structural SVMs [28]. Jain et al. [7] use top-down fea-
ture representation for semantic segmentation, and jointly
learn the top-down feature dictionary with a Conditional
Random Field model. Moreover, CNN [12] based tech-
niques, which learn multi-layer features jointly, have been
applied to video-based action recognition. Ji et al. [8] pro-
pose using a 3D CNN for video classifications. Karpathy
et al. [9] apply CNNs to action recognition using 1 million
videos and out-performs one-layer histogram based classi-
fication. Nonetheless, to the best of our knowledge, there is
not much automatic feature learning method developed for
action recognition based on motion capture data. The only
one we are aware of is [5], which uses a Hierarchical Recur-
rent Neural Network (RNN) model. In this model, the data
from each body part is used as input to its corresponding
RNN model, and the generated hidden state series is used
as input to the RNN model at the next layer (e.g. upper
body and lower body layer, or full body layer). The output
sequence at the full body layer is then fed to a fully con-
nected layer following a softmax layer. This model shows
good performance, but it is very complicated and still lacks
interpretability since it contains multiple layers.

3. Our Framework
3.1. Body-Part Based Feature

Many actions can be differentiated by looking at the
movement patterns associated with parts of the body. For
example, a hand waving action can be recognized by detect-
ing the ’waving’ movement of the hand; a walking action
can be recognized by detecting the right and left leg mov-
ing forward alternately. Furthermore, these discriminative
patterns can be observed within a small temporal window,
rather than the whole time series data. We thus propose to
use dynamic motion features associated with a set of joints
from short temporal segments as our mid-level feature de-
scriptor.

More specifically, given a set of mk body joints Jk =
{jk1 , jk2 , . . . , jkmk

} corresponding to the kth body part, we
compute the position and velocity of these joints for L con-
secutive frames {t, t + 1, . . . , t + L − 1}, and concatenate
them to form a feature xk

t ∈ R6mkL for body part k at frame
t,

xk
t = [pJk(t),vJk(t), . . . ,pJk(t+L−1),vJk(t+L−1)],

(1)
where pJk(t) and vJk(t) denote the position and velocity
for the set of joint Jk at frame t respectively, and xk

t has

Figure 2: The feature descriptors extracted from each body
part are fed into a set of dictionaries respectively to generate
a set of response maps. A global feature is computed based
on the response maps as input to a linear SVM for action
classification.

dimension 6mkL since there are mk joints in the kth body
part Jk.

In this work, we are interested in exploring the ben-
efit of introducing body-part specific features. We man-
ually select 10 body parts {Jk}Kk=1, as shown in Figure
1. These body parts are selected to represent the human
body hierarchy from limbs level to full body level. Ide-
ally, one could choose to have parts at more granular levels.
However, inspired by the analysis in [4], we choose to not
include smaller parts to reduce the number of parameters
and avoid redundancy in representation. [4] automatically
learned a set of weights on the LDSs extracted from a larger
set of body parts, and showed that most of the weights from
smaller body parts are zero, suggesting that smaller parts
might be redundant in representing body-level actions.

3.2. Action Classification with Mid-level Feature
Representation

In [22], after extracting mid-level features from part-sets,
a complex data mining technique is adopted to find discrim-
inative features. In our work, instead of applying a Bag-
of-Features scheme, we learn one dictionary for each body
part configuration. Each dictionary atom is treated as a lin-
ear classifier for a specific body part movement pattern. In-
spired by the 2D poselet work [2], we call such classifiers
as Moving Poselets (MP), as they are descriptive of a body
part configuration undergoing a certain movement. The re-
sponse to these mid-level classifiers shows the similarity of
the motion segment to learned feature patterns. After all re-
sponse maps are computed, a max pooling step is performed
to compute the final representation. Moreover, these mid-
level feature classifiers are trained jointly with action clas-
sifiers to find discriminative mid-level motion patterns. This
process is also shown in Figure 2.

Mathematically, given a sequence of skeleton data with
T frames, we first extract the series of body-part based
feature Xk = [xk

1 ,x
k
2 , . . . ,x

k
T ], k ∈ {1, . . . ,K} for each

body part k. A set of mid-level feature classifiers Dk ∈



Body Part Joint Set

Back J1 = {4 : 7}
Left Arm J2 = {3, 1, 8, 10, 12}

Right Arm J3 = {3, 2, 9, 11, 13}
Left Leg J4 = {5, 14, 16, 18}

Right Leg J5 = {6, 15, 17, 19}

Body Part Joint Set

Torso J6 = {20, 1 : 7}
Upper Body J7 = {20, 1 : 4, 8 : 13}
Lower Body J8 = {7, 5, 6, 14 : 19}

Full Upper Body J9 = {20, 1 : 13}
Full Body J10 = {1 : 20}

Figure 1: Left: The skeleton model for MSR Action3D dataset [25]. Middle and Right: Mannually defined body parts for
Moving Poselet feature.

R6mkL×ck , ck being the number of classifiers, is then ap-
plied to the motion pattern features to generate a response
map,

hk
t = Dk>xk

t . (2)

Notice that the features {xk
t } have different dimensions for

different body part k, thus the dictionaries also have differ-
ent sizes. To compute the global representation, a max pool-
ing step is performed over the response maps. For longer
sequences, we adopt a temporal pyramid pooling structure,
which decomposes a sequence into I subsequences at multi-
ple scales. For each subsequence Si of S, the pooled feature
corresponding to body part k can be written as

f (i)(Xk;Dk)[j] = max
t∈Si

hk
t [j] = max

t∈Si

Dk>
j xk

t , (3)

where j means the jth entry, hkt denotes the response of
the feature at frame t for body part k to its corresponding
dictionary Dk.

These pooled features for different body parts and dif-
ferent subsequences are then concatenated to form the final
global representation F (X,D) of the sequence,

F (X,D) = [f (1)(X1;D1), ..., f (1)(XK ;DK),

. . . ,

f (I)(X1;D1), ..., f (I)(XK ;DK)],

X = {Xk}Kk=1,D = {Dk}Kk=1. (4)

To classify the action label, this vector F (X,D) is first
passed through a rectified linear unit (ReLU) and then fed
to action classifiers {Wq, bq}Qq=1. The classification result
y is given by:

F̂ (X,D) = ReLU(F (X,D)) = max(F (X,D), 0), (5)

y = argmax
q
W>q F̂ (X,D) + bq, (6)

where {Wq, bq} is the linear classifier corresponding to la-
bel q.

3.3. Relation with CNN

Our proposed model can be viewed as a variation of a
two-layer CNN model. However, there are three major dif-
ferences. First, we don’t assume that the input time series
are of fixed size. Instead, we use max pooling at the top
layer to generate a fixed dimensional feature to represent
each action. This gives more flexibility to process time se-
ries data. Secondly, we have one set of feature classifier per
body part configuration. This helps us to mine the discrimi-
native movements associated with each body part. Thirdly,
we use temporal pyramid representation for long sequences.
Our model is thus more specifically designed for modeling
action with human skeleton data.

4. Learning
Given training data ofN sequences {X(n)}Nn=1 and their

action labels {y(n) ∈ {1, . . . , Q}}Nn=1, we aim to learn the
set of dictionaries D jointly with the action classifiers W
and b. The optimization problem is formulated as follows,

min
D,{Wq}Qq=1,{bq}

Q
q=1

Q∑
q=1

N∑
n=1

L(Yqn,W
>
q F̂ (X

(n),D) + bq)+

λ

2
(

K∑
k=1

‖Dk‖2F +

Q∑
q=1

‖Wq‖2F ),

(7)

where the loss function

L(Y,W>q F̂ (X
(n),D) + bq) =

max(0, 1− Yqn(W>q F̂ (X(n),D) + bq)). (8)

The loss function L(·) is the standard hinge loss func-
tion, with Yqn denoting the binary indicator of sample X(n)

having label q. The regularization term contains both regu-
larization for action classifiersW and mid-level dictionaries
D.

We adopt a mini-batch stochastic gradient descent algo-
rithm to solve the optimization problem. The gradients of



action classifiers can be computed similarly as in standard
SVM training, while the gradients with respect to D can
be achieved by the back-propagation algorithm commonly
used in CNN learning [12]. More specifically, the gradient
with respect to the jth classifier for kth body part, i.e. Dk

j ,
for a mini-batch B can be written as:

gDk
j
(B) =

∑
n∈B

Q∑
q=1

∂L

∂F̂ (X(n),D)
· ∂F̂ (X

(n),D)

∂Dk
j

+ λDk
j

=
∑
n∈B

Q∑
q=1

δ(1− Yqn(W>q F̂ (X(n),D) + bq) > 0)

∗ δ(F̂ (X(n),D)[zkj ] > 0) ·Wq[zkj ] · xk(n)

t
(n)
kj

+ λDk
j ,

(9)

where zkj denotes the corresponding entry of the classifier
response of Dk

j in the global feature F̂ (X,D), and t(n)kj de-
notes the frame index of the MP feature in nth sample that
gives the max value at entry j for kth body part. During
training, we use a step decay strategy to anneal the learning
rate. We start from a small learning rate τ0 and then reduce
it by factor γ for every Te epochs.

5. Experiments
5.1. Datasets

We validate our algorithm on the MSR Action3D [13],
MSR DailyActivity3D [25] and Berkeley MHAD [17]
datasets, which are commonly used datasets for action
recognition from skeleton data. The MSR Action3D dataset
consists of skeleton data sequences of 20 actions such as
hand waving and clapping. Each action is performed 2-3
times by 10 subjects, and the 3D body joint positions of 20
joints are extracted from RGB-D videos. These action se-
quences are relatively short sequences with 30-50 frames,
and the frame rate is 15 frames per second. We conduct two
set of experiments, following the experimental setup in [25]
and [13] respectively. In Setup 1, all sequences from sub-
jects 1, 3, 5, 7 and 9 are used for training and the remaining
ones for testing. In Setup 2, the dataset is divided into three
action sets, AS1, AS2 and AS3, and the same algorithm is
tested on each of the three sets.

The MSR DailyActivity3D dataset consists of 16 daily
activities such as drinking and reading books. Each action is
performed twice by 10 subjects, making up 320 sequences
in total. This dataset has longer sequences, with 100-300
frames. The skeleton data also contains 3D positions of the
same 20 joints extracted from RGB-D videos. It is more
challenging than MSR Action3D, since the actions are more
complex, and contain human-object interactions. Also fol-
lowing [25], we use the sequences from subject 1, 3, 5, 7
and 9 for training, and remaining ones for testing.

The Berkeley MHAD dataset consists of 11 actions such
as jumping and clapping. Each action is performed by 12
subjects with 5 repetitions, making up 659 sequences in to-
tal. The skeleton data is obtained via a motion capture sys-
tem. It contains 3D positions of 35 joints and has a frame
rate of 480 fps. Following [4], we use sequences from the
first 7 subjects for training, and the remaining ones for test-
ing.

5.2. Implementation Details

Data Preprocessing. Before computing MP features, we
first normalize the skeleton data according to Algorithm 1
described in [29]. The raw skeleton joint positions are nor-
malized so that the limbs (skeleton segments) have same
lengths as a template skeleton model, while the joint angles
are not modified. The hip center joint position is then sub-
tracted from the skeleton data so that all sequences are cen-
tered at the origin. Following [29], after extracting velocity
features at every frame, we normalize them to unit norm
and scale them by a weight α. This weight is set according
to the best value in [29], which is 0.75 for MSR Action3D,
and 0.6 for MSR DailyActivity3D, and we also choose 0.6
for Berkeley MHAD. For Berkeley MHAD dataset, since
the data has a high frame rate, we subsample each sequence
at every 16 frames.
Temporal Pyramid. Since MSR Action3D consists of
shorter sequences with simple actions, we set the pyramid
level to be 1, i.e., the feature is max-pooled over the whole
sequence. For MSR DailyActivity3D, which contains more
complex actions, we set the pyramid level to be 3, and com-
pute features pooled from 7 subsequences. For Berkeley
MHAD dataset, we also set pyramid level to 1.
Optimization. In the stochastic gradient descent (SGD)
algorithm, we use a mini-batch of size 10. The initial learn-
ing rate τ0 is set to be 0.05 and it is reduced by a factor
γ = 0.5 for every Te = 50 epochs. The regularization term
λ is set to 1e−4. To initialize D and W, each entry is ran-
domly sampled from a uniform distribution of [−1, 1], and
each atom/classifier is then scaled by a factor of 1√

d
, where

d is the dimension of the corresponding vector. The bias
term is initialized as 0. Due to the randomness in SGD op-
timization, for each set of parameters, we run 10 repetitions
of the same experiment and report the mean accuracy and
standard deviation in our results section.

5.3. Results

We first compare our approach with other state-of-the-art
skeleton-based action recognition methods. In this case, we
use 10 body parts, and 50 mid-level feature classifiers for
each body part.

The performance on MSR Action3D under two experi-
ment setups is shown in Table 1 and Table 2. The number
in bracket is the standard deviation. We can see that our



Figure 3: Confusion Matrix for MSR Action3D Dataset

Moving Poselet approach achieves 93.6% mean accuracy
for Setup 1 on this dataset, while the Moving Pose [29],
which uses similar features (position, velocity and acceler-
ation of the full body at single frame) only gives 91.7%.
This suggests that the feature representation learned from
our method is more discriminative. Figure 3 presents the
confusion matrix from one repetition of the experiments un-
der this setup. We can observe that this approach achieves
100% accuracy on 15 out of 20 action classes. There is con-
fusion between hand catch, forward punch, high throw and
side boxing. This is expected, since they all involve hand
movement. Also, the action pick up is confused with bend-
ing since pick up also involves a bending action.

For Setup 2, our method achieves comparable results
to the state-of-art HRNN based method [5]. Note that
the HURNN-L version is the HRNN model with unidirec-
tional RNNs, while the HBRNN-L version uses a hierarchy
of bidirectional RNNs. We can see that our simple two-
layer model generates similar result as the very complicated
HURNN-L model, while its performance is only 1% less
than that of the HBRNN-L model.

On the MSR DailyActivity3D dataset (see Table 3), our
Moving Poselets approach achieves a mean accuracy of
74.5%, outperforming other state-of-the-art methods. How-
ever, only 5 out of 16 action classes are classified with 100%
accuracy on this dataset, as it’s more challenging then MSR
Action3D. Another observation is that the actions eat, read
book, call cellphone, write on a paper, use laptop are usu-
ally confused with each other, since they all involve human
manipulating some object that is close to his face.

On the Berkeley MHAD dataset (see Table. 4), our Mov-

Table 1: Action Classification Accuracy on MSR Action3D
(setup 1)

Method Accuracy
Actionlet Ensemble[25] 88.2
Lie Group [21] 89.5
Hierarchical LDS [4] 90.2
Pose Base Approach[22] 90.2
Moving Pose [29] 91.7
[6] 91.5
Moving Poselets (Ours) 93.6 (0.24)

Table 2: Action Classification Accuracy on MSR Action3D
(setup 2)

Method AS1 AS2 AS3 avg
Bag of 3D Points [13] 72.9 71.9 79.2 74.7
Lie Group[21] 95.29 83.87 98.22 92.46
HRNN (HURNN-L) [5] 92.38 93.75 94.59 93.57
HRNN (HBRNN-L) [5] 93.33 94.64 95.50 94.49
Moving Poselets (Ourts) 89.81 93.57 97.03 93.50

Table 3: Action Classification Accuracy on MSR DailyAc-
tivity3D

Method Accuracy
Actionlet Ensemble [25] 68.0
Moving Pose [29] 73.8
[6] 73.1
Ours 74.5 (1.43)

Table 4: Action Classification Accuracy on Berkeley
MHAD

Method Accuracy
SMIJ [18] 95.37
Hierarchical LDS [4] 100
HURNN-L [5] 99.64
HBRNN-L [5] 100
Moving Poselets (Ours) 100

ing Posetlets approach achieves 100% accuracy, which is
much higher than the performance on the previous two
datasets. Our conjecture is that since the skeleton data in
this dataset is obtained through motion capture system, it
is less noisy than the skeleton data extracted from RGB-
D videos, and thus easier to be classified. For comparison
with other methods, the HURNN-L model gives 99.64%
accuracy, and the Hierachical LDS and HBRNN-L models
both give 100% accuracy. This suggests that our two-layer
feature learning framework works as well as or better than
multilayer HRNN models.



Figure 4: Confusion Matrix for MSR DailyActivity3D
Dataset

5.4. Analysis

Importance of Body Part Structure. The intuition be-
hind our Moving Poselet feature is that the movement pat-
terns associated with a specific body part are discriminative
for recognizing actions. To validate this, we run experi-
ments using only the Moving Poselet feature from the full
body for comparison. More specifically, instead of having
50 mid-level classifiers per body part for 10 body parts, we
use 500 classifiers for features only extracted from the full
body. The performance does not change much on the less
challenging MSR Action3D (93.6%) and Berkeley MHAD
(100%) datasets, but it drops significantly on the more chal-
lenging MSR DailyActivity3D dataset (70.8%). This sug-
gests that exploring the discriminative body parts is very
important for recognizing human actions.
Comparison with Bag-of-Words Based Models. To show
the importance of jointly learning mid-level features and ac-
tion classifiers, we run experiments that compare with the
Bag-of-Words model. In this Bag-of-Words model, the dic-
tionary is trained via K-means using the Moving Poselet
features extracted at every frame. We use a dictionary of
size 500 and each video is represented by the aggregated
histogram with the same temporal pyramid. The perfor-
mance of this model on MSR DailyActivity3D is 60.6%
with linear SVM, while our method gives 74.5% average
accuracy. This suggests that performing feature learning
can help improve classification performance.
Size of Mid-level Classifiers. To understand the effect of
the size of mid-level classifiers, we run the same experiment

with the number of mid-level classifiers set to 100, 250,
500, and 800 (10, 25, 50, 80 per body part, respectively).
The performance is given in Table 5. The results suggest
that for Berkeley MHAD dataset, the performance does not
change and the accuracy is always 100%. Our conjecture is
that since this dataset is obtained from motion capture sys-
tem, it is less noisy and easier to classify comparing with
the other two datasets, and thus gives 100% accuracy using
our model. For the other two datasets, the performance is
better with larger size of mid-level classifiers. But the im-
provement starts to converge when the number of classifiers
reaches 500. For MSR DailyActivity3D, the accuracy even
starts to go down when the size is bigger than 500. Our
conjecture is that since this dataset only contains 320 sam-
ples, using large number of classifiers leads to overfitting
and could affect the performance.

Table 5: Performance Using Different Number of Mid-level
Classifiers on Three Datasets

MSR Action3D MSR DailyActivity3D MHAD
100 92.2 (0.69) 72.2 (1.85) 100
250 93.0 (0.48) 73.3 (1.37) 100
500 93.6 (0.24) 74.5 (1.43) 100
800 93.6 (0.17) 73.3 (1.25) 100

Effect of ReLU. To evaluate the contribution of the ReLU
layer, we perform the same experiment using 500 mid-level
classifiers, but with the ReLU layer removed. Similarly, for
the less challenging Berkeley MHAD dataset, the perfor-
mance is the same (100%). For MSR Action3D dataset, the
accuracy is slightly worse (92.8% versus 93.6%). For MSR
DailyActivity3D, removing the ReLU layer leads to a dra-
matic decrease in performance (66.2% versus 74.5%). This
suggests that for challenging datasets with complex struc-
tures and small amount of training data, adding a ReLU
layer leads to better performance.

Visualization of Discriminative Moving Poselets. To vi-
sualize the discriminative features, we first select the mid-
level classifiers corresponding to the top 5 highest weights
in Wq for each action class q. From training data, we find
the L−frame segment that gives the highest response to
each classifier. The selected Moving Poselet segments for
the top 5 mid-level classifiers per action are visualized in
Figure 5. We can see that our algorithm is able to automati-
cally select the discriminative body parts and their move-
ments. For example, for the high arm wave action, the
algorithm selects movements corresponding to upper body
or right arm; for the side kick action, the algorithm selects
movements corresponding to the right leg.



Figure 5: Moving Poselet segments that give highest response to the top 5 mid-level classifiers for each action. The actions
(from top to bottom) are: high arm wave, draw circle, two hand wave, side kick, golf swing. The red line indicates the
corresponding body parts, while the green dashed line shows the trajectory of the joints from selected body parts.

6. Conclusion and Future Work

We have proposed a novel Moving Poselet based mid-
level feature learning method for action recognition using
skeleton data. The results showed that by jointly learning
the feature representation and action classifiers, and explor-
ing discriminative body part movement for actions, our al-
gorithm outperformed state-of-the-art methods. Our current
work uses manually selected body parts for a fixed temporal
scale (a few frames). For future work, we are interested in
extending our work to automatically select body part con-
figurations and temporal scales. We are also interested in its
extension in video data.
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